Skip to main content
Log in

X- and gamma-rays attenuation properties of DNA nucleobases by using FLUKA simulation code

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we report on the radiation attenuation properties of the essential DNA nucleobases such as guanine, adenine, cytosine, uracil, and thymine. Gamma attenuation parameters such as linear attenuation factor (LAF) and effective atomic number (EAN) are investigated by using FLUKA simulation code for seven chosen photon energies named 0.6, 1.25, 1.5, 2, 3, 5, and 10 MeV. The validation of the simulation results is performed by using XCOM calculations. Moreover, neutron and charge particles attenuation properties are examined for the essential DNA nucleobases. We also compare the radiation attenuation properties of the essential DNA nucleobases to those of liquid water. Our results indicate that the maximum LAF is observed at 0.6 MeV with the value of 0.183, 0.134, 0.130, 0.110, 0.103, and 0.089 cm−1 for guanine, adenine, cytosine, uracil, thymine, and liquid water, respectively. At a given photon energy, the exposure rate (ER) follows the trend: (ER)liquid water > (ER) thymine > (ER)cytosine > (ER)adenine. At 10 MeV, total stopping power (TSP) of electron interactions with the essential DNA nucleobases are 1.952, 1.977, 1.994, 1.990, 2.013, and 2.149 MeVcm2/g for guanine, adenine, cytosine, uracil, thymine, and liquid water, respectively. Comparatively, TSP of electron < proton < alpha particle < carbon ion at the same energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Masschaele, M. Dierick, L.V. Hoorebeke, V. Cnudde, P. Jacobs, The use of neutrons and monochromatic X-rays for non-destructive testing in geological materials. Environ. Geol. 46(3–4), 486–492 (2004)

    Article  Google Scholar 

  2. E. Sarkadi-Priboczki, T. Tsoncheva, L. Ivanova, Radioisotopic study of 11C-labelling methanol decomposition on iron oxide modified mesoporous MCM-41 silica. Can. J. Chem. 87(3), 478–485 (2009)

    Article  Google Scholar 

  3. A.F. Mettler, B.R. Thomadsen, M. Bhargavan, D.B. Gilley, J.E. Gray, J.A. Lipoti, J. McCrohan, T.T. Yoshizumi, M. Mahesh, Medical radiation exposure in the US in 2006: preliminary results. Health Phys. 95(5), 502–507 (2008)

    Article  Google Scholar 

  4. K. Kamiya, K. Ozasa, S. Akiba, O. Niwa, K. Kodama, N. Takamura, E.K. Zaharieva, Y. Kimura, R. Wakeford, Long-term effects of radiation exposure on health. The lancet 386(9992), 469–478 (2015)

    Article  Google Scholar 

  5. D.J. Brenner, R. Doll, D.T. Goodhead, E.J. Hall, C.E. Land, J.B. Little, J.H. Lubin et al., Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc. Natl. Acad. Sci. 100(24), 13761–13766 (2003)

    Article  ADS  Google Scholar 

  6. M. Rastgoo, M. Fathipour, Interaction of DNA nucleobases with boron, nitrogen, and sulfur doped graphene nano-ribbon for sequencing: an Ab initio study. Appl. Surf. Sci. 492, 634–643 (2019)

    Article  ADS  Google Scholar 

  7. E. Mohammadi-Manesh, M. Mir-Mahdevar, Adsorption behavior of guanine, adenine, thymine, and cytosine nucleobases of DNA on zinc oxide-graphene nanosensor: a DFT study. Synth. Met. 267, 116486 (2020)

    Article  Google Scholar 

  8. N. Lampe, M. Karamitros, V. Breton, J.M.C. Brown, I. Kyriakou, D. Sakata, D. Sarramia, S. Incerti, Mechanistic DNA damage simulations in Geant4-DNA part 1: a parameter study in a simplified geometry. Physica Med. 48, 135–145 (2018)

    Article  Google Scholar 

  9. C. Champion, S. Incerti, Y. Perrot, R. Delorme, M.-C. Bordage, M. Bardiès, B. Mascialino et al., Dose point kernels in liquid water: an intra-comparison between GEANT4-DNA and a variety of Monte Carlo codes. Appl. Radiat. Isot. 83, 137–141 (2014)

    Article  Google Scholar 

  10. M. Tajik, A.S.H. Rozatian, F. Semsarha, Calculation of direct effects of 60Co gamma rays on the different DNA structural levels: a simulation study using the Geant4-DNA toolkit. Nucl. Instrum. Methods Phys Res. Sect. B Beam Interact. Mater. Atoms 346, 53–60 (2015)

    Article  ADS  Google Scholar 

  11. Z. Francis, S. Incerti, M. Karamitros, H.N. Tran, C. Villagrasa, Stopping power and ranges of electrons, protons and alpha particles in liquid water using the Geant4-DNA package. Nucl. Instrum. Methods Phys. Res. Sect. B 269(20), 2307–2311 (2011)

    Article  ADS  Google Scholar 

  12. G. Battistoni, F. Cerutti, A. Fasso, A. Ferrari, S. Muraro, J. Ranft, S. Roesler, P.R. Sala, The FLUKA code: description and benchmarking, in AIP Conference Proceedings, vol. 896, no. 1, American Institute of Physics, pp. 31–49 (2007)

  13. G. Battistoni, T. Boehlen, F. Cerutti, P.W. Chin, L.S. Esposito, A. Fassò, A. Ferrari et al., Overview of the FLUKA code. Ann. Nuclear Energy 82, 10–18 (2015)

    Article  Google Scholar 

  14. H.X. Shi, B.X. Chen, T.Z. Li, D. Yun, Precise Monte Carlo simulation of gamma-ray response functions for an NaI (Tl) detector. Appl. Radiat. Isot. 57(4), 517–524 (2002)

    Article  Google Scholar 

  15. H.H. Somaily, H. Algarni, S. Alraddadi, Y.S. Rammah, T. Nutaro, M.S. Al-Buriahi, Mechanical, optical, and beta/gamma shielding properties of alkali tellurite glasses: role of ZnO. Ceram. Int. 46(18), 28594–28602 (2020). https://doi.org/10.1016/j.ceramint.2020.08.017

    Article  Google Scholar 

  16. H.H. Somaily, H. Algarni, Y.S. Rammah, A. Alalawi, C. Mutuwong, M.S. Al-Buriahi, The effects of V2O5/K2O substitution on linear and nonlinear optical properties and the gamma ray shielding performance of TVK glasses. Int. Ceram. (2020). https://doi.org/10.1016/j.ceramint.2020.08.215

    Article  Google Scholar 

  17. M.S. Al-Buriahi, H.H. Somaily, A. Alalawi, S. Alraddadi, Polarizability, optical basicity, and photon attenuation properties of Ag2O–MoO3–V2O5–TeO2 glasses: the role of silver oxide. J. Inorgan. Organomet. Polym. Mater. 2020, 1–10 (2020)

    Google Scholar 

  18. M.S. Al-Buriahi, F.I. El-Agawany, C. Sriwunkum, H. Akyıldırım, H. Arslan, B.T. Tonguc, R. El-Mallawany, Y.S. Rammah, Influence of Bi2O3/PbO on nuclear shielding characteristics of lead–zinc–tellurite glasses. Physica B Conds. Matter 2019, 411946 (2019)

    Google Scholar 

  19. M.I. Sayyed, H. Akyildirim, M.S. Al-Buriahi, E. Lacomme, R. Ayad, G. Bonvicini, Oxyfluoro-tellurite-zinc glasses and the nuclear-shielding ability under the substitution of AlF 3 by ZnO. Appl. Phys. A 126(2), 1–12 (2020)

    Article  Google Scholar 

  20. M.S. Al-Buriahi, C. Sriwunkum, H. Arslan, B.T. Tonguc, M.A. Bourham, Investigation of barium borate glasses for radiation shielding applications. Appl. Phys. A 126(1), 1–9 (2020)

    Article  Google Scholar 

  21. M.S. Al-Buriahi, A.S. Abouhaswa, H.O. Tekin, C. Sriwunkum, F.I. El-Agawany, T. Nutaro, E. Kavaz, Y.S. Rammah, Structure, optical, gamma-ray and neutron shielding properties of NiO doped B2O3–BaCO3–Li2O3 glass systems. Ceram. Int. 46(2), 1711–1721 (2020)

    Article  Google Scholar 

  22. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  23. M.S. Al-Buriahi, H. Arslan, H.O. Tekin, V.P. Singh, B.T. Tonguc, MoO3-TeO2 glass system for gamma ray shielding applications. Mater. Res. Express 7(2), 025202 (2020)

    Article  ADS  Google Scholar 

  24. M.S. Al-Buriahi, H.O. Tekin, E. Kavaz, B.T. Tonguc, Y.S. Rammah, New transparent rare earth glasses for radiation protection applications. Appl. Phys. A 125(12), 866 (2019)

    Article  ADS  Google Scholar 

  25. M.S. Al-Buriahi, K.S. Mann, Radiation shielding investigations for selected tellurite-based glasses belonging to the TNW system. Mater. Res. Express 6(10), 105206 (2019)

    Article  ADS  Google Scholar 

  26. A. El-Khayatt, Calculation of fast neutron removal cross-sections for some compounds and materials. Ann. Nucl. Energy 37(2), 218–222 (2010)

    Article  Google Scholar 

  27. M.S. Al-Buriahi, B.T. Tonguc, Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography. Radiat. Phys. Chem. 2019, 108507 (2019)

    Google Scholar 

  28. G. Lakshminarayana, I. Kebaili, M.G. Dong, M.S. Al-Buriahi, A. Dahshan, I.V. Kityk, D.-E. Lee, J. Yoon, T. Park, Estimation of gamma-rays, and fast and the thermal neutrons attenuation characteristics for bismuth tellurite and bismuth boro-tellurite glass systems. J. Mater. Sci. 55(14), 5750–5771 (2020)

    Article  ADS  Google Scholar 

  29. Y. Al-Hadeethi, M.S. Al-Buriahi, M.I. Sayyed, Bioactive glasses and the impact of Si3N4 doping on the photon attenuation up to radiotherapy energies. Ceram. Int. 46, 5306–5314 (2020)

    Article  Google Scholar 

  30. M.S. Al-Buriahi, H. Arslan, B.T. Tonguç, Mass attenuation coefficients, water and tissue equivalence properties of some tissues by Geant4, XCOM and experimental data Indian. J. Pure Appl. Phys. (IJPAP) 57(6), 433–437 (2019)

    Google Scholar 

  31. G. Lakshminarayana, M.G. Dong, M.S. Al-Buriahi, A. Kumar, D.-E. Lee, J. Yoon, T. Park, B2O3–Bi2O3–TeO2–BaO and TeO2–Bi2O3–BaO glass systems: a comparative assessment of gamma-ray and fast and thermal neutron attenuation aspects. Appl. Phys. A 126(3), 1–18 (2020)

    Article  Google Scholar 

  32. I.O. Olarinoye, S. Alomairy, C. Sriwunkum, M.S. Al-Buriahi, Effect of Ag2O/V2O5 substitution on the radiation shielding ability of tellurite glass system via XCOM approach and FLUKA simulations. Phys. Scr. 96(6), 065308 (2021)

    Article  ADS  Google Scholar 

  33. J.S. Alzahrani, A.A. Miysoon, C. Eke, H. Al-Ghamdi, D.A. Al-Aloraini, M.S. Al-Buriahi, Simulating the radiation shielding properties of TeO2–Na2O–TiO glass system using PHITS Monte Carlo code. Comput. Mater. Sci. 196, 110566 (2021)

    Article  Google Scholar 

  34. I. Kebaili, S. Znaidia, J.S. Alzahrani, M.A. Alothman, IB, I. O. Olarinoye, C. Mutuwong, and M. S. Al-Buriahi, , Ge 20 Se 80–x Bi x (x ≤ 12) chalcogenide glasses for infrared and gamma sensing applications: structural, optical and gamma attenuation aspects. J. Mater. Sci. Mater. Electron. 2021, 1–14 (2021)

    Google Scholar 

  35. M.S. Al-Buriahi, C. Eke, S. Alomairy, C. Mutuwong, N. Sfina, Micro-hardness and gamma-ray attenuation properties of lead iron phosphate glasses. J. Mater. Sci. Mater. Electron. 2021, 1–11 (2021)

    Google Scholar 

  36. M.S. Al-Buriahi, J.S. Alzahrani, I.O. Olarinoye, H. Akyildirim, S. Alomairy, I. Kebaili, H.O. Tekin, C. Mutuwong, Role of heavy metal oxides on the radiation attenuation properties of newly developed TBBE-X glasses by computational methods. Phys. Scr. 96(7), 075302 (2021)

    Article  ADS  Google Scholar 

  37. V.F. Sears, Neutron scattering lengths and cross sections. Neutron News 3, 29–37 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through Research Groups Program under grant number R.G.P.2/187/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Al-Buriahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Buriahi, M.S., Sriwunkum, C. & Boukhris, I. X- and gamma-rays attenuation properties of DNA nucleobases by using FLUKA simulation code. Eur. Phys. J. Plus 136, 776 (2021). https://doi.org/10.1140/epjp/s13360-021-01755-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01755-8

Navigation