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Abstract Plasmodesmata are slender nanochannels that link neighboring plant cells and
enable the exchange of nutrients and signaling molecules. Recent experiments have demon-
strated significant variability in the concentric pore shape. However, the impact of these
geometric fluctuations on transport capacity is unknown. Here, we consider the effects on
diffusion and advection of two ideal shape perturbations: a radial displacement of the entire
central desmotubule and a harmonic variation in the cytoplasmic sleeve width along the
length of the pore. We use Fick’s law and the lubrication approximation to determine the dif-
fusive current and volumetric flow rate across the pore. Our results indicate that an off-center
desmotubule always increases the pressure-driven flow rate. However, the diffusive current
is only enhanced for particles comparable in size to the width of the channel. In contrast,
harmonic variations in the cytoplasmic sleeve width along the length of the pore reduce both
the diffusive current and the pressure-driven flow. The simple models presented here demon-
strate that shape perturbations can significantly influence transport across plasmodesmata
nanopores.

1 Introduction

Living organisms must confront the challenge of facilitating nutrient and signal exchange
between proximal compartments [1]. Plants solve this problem, in part, using plasmodesmata
(PD) nanopores [2]. PD are permanent channels that traverse the cell wall and directly link
the cytoplasmic fluid of neighboring cells. Their shape is that of an approximately circular
cylinder, and they are typically L ≈ 200−1000 nm long and 2a ≈ 25−50 nm in diameter
[3,4]. The pores are open, that is the plasma membrane of adjacent cells meets inside the pore.
The cortical endoplasmic reticulum permeates each PD, and the gap between the cylindrical
desmotubule (diameter 2b ≈ 20 nm) and the membrane forms an annular cytoplasmic sleeve
of width h = a − b ≈ 3−4 nm in mature pores [5] through which water and solutes move
(Fig. 1). See Table 1 for a summary of the geometric parameters.

The main transport impediment in plasmodesmata is associated with the open annular gap
between the cell membrane and the central rod. The cytoplasmic sleeve width h defines the
space available for molecular trafficking, governing the permeability and size exclusion limit
of the pores. Current models stipulate that transport capacity is reduced as the gap h shrinks
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Fig. 1 Shape fluctuations in plasmodesmata nanopores. a Electron tomography of a plasmodesma nanopore
that links two plant cells. b Sketch of a plasmodesma. Transport occurs in the open region of width h = a − b
between the desmotubule rod (radius b) and cell membrane pore (radius a). A difference �c = c1 − c2 in the
concentration c of signaling molecules (green dots) leads to a diffusive current I across the plasmodesmata.
Likewise, a pressure difference �p = p1 − p2 leads to a fluid flow rate Q, which carries the particles across
by advection. Side view (c) and top view (d) of an unperturbed desmotubule in the center of the cytoplasmic
sleeve. We consider two modes of shape perturbation: In panel (e), the desmotubule is displaced a distance
h0δ from the center of the plasmodesmata, thus forming an eccentric channel. In panel (f), the radius of the
desmotubule varies harmonically along the pore axis with amplitude h0ε. Panel (a) adapted from [3] and
reproduced with permission

Table 1 Geometric parameters
relevant to diffusion and
advection in plasmodesmata. See
details and sources in the text

Parameter Symbol Typical value

PD length L 500 nm

PD radius a 13 nm

Desmotubule radius b0 10 nm

Cytoplasmic sleeve width h0 = a − b0 3 nm

Number of tether proteins n 10

Perturbation parameters δ, ε 0 ≤ δ, ε < 1

or the radius s of the diffusing molecule increases. Some, but not many, experiments have
been carried out to test this proposition. Unexpectedly, [3] found that narrow, newly formed
plasmodesmata with no visible cytoplasmic sleeve nonetheless enable fast small molecule
diffusion and even non-selective macro-molecule trafficking between cells. This appears
counterintuitive based on their morphology, and open questions related to the link between
pore morphology and transport capacity remain.

Currently, PD-mediated transport is modeled as a purely diffusive or pressure-driven
phenomenon (see, e.g., [6] and [7]), and the transport rates are derived from Fick’s law
and basic solutions to the Navier–Stokes equation in the narrow cytoplasmic sleeve. These
models are based on the assumption that the gap geometry is uniform across all pores.
However, substantial variation in pore geometry has been observed [3]. Nevertheless, it is
unclear if the possibility that the pore aperture might, occasionally, differ significantly from
the steady-state size has an important impact on transport capacity.

In this paper, we therefore seek to quantify the impact of shape perturbations on plasmodes-
mata transport capacity. We begin by outlining two basic modes of geometric variation. Then,
we quantify the impact on the cell–cell flux for diffusive and advective processes. The main
finding—that an off-center desmotubule enhances transport—is discussed. Finally, future
experiments are proposed.
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2 Results

2.1 Morphology of shape-perturbed plasmodesmata nanopores

Plasmodesmata are small channels that link adjacent plant cells (Fig. 1a–d). The cell wall,
lined by the cell membrane, provides the outer channel boundary, while the cylindrical
membranous desmotubule forms the inner channel wall. The coaxial structure is held in
place by filamentous protein tethers that anchor the cell membrane and desmotubule surface.
In the following, we denote the outer radius of the pore a, while the mean radius of the
desmotubule is b0. Molecular transport occurs in the cytoplasmic sleeve of average thickness
h0 = a − b0.

Current models of plasmodesmata stipulate that transport occurs in the gap between two
idealized perfectly co-axial and straight cylinders. It is important to realize, however, that this
picture is an approximation. Indeed, variations in the structure and alignment of the channel
could occur. This provides impetus for reevaluating both basic assumptions. In particular, it
is not unreasonable to assume that the desmotubule is sometimes positioned off-center, or,
that the thickness of the cytoplasmic sleeve could vary along the length of the pore.

We begin by considering the effect of a radial displacement (Fig. 1e). In the ideal case, the
co-axial alignment is perfect and the center of the pore and desmotubule overlap. If they do not
line up perfectly, however, we denote the distance between their center coordinates h0δ, where
the non-dimensional parameter δ varies from 0 to 1. It is clear that the displacement h0δ <

h0 = a−b0, since the desmotubule cannot penetrate the cell membrane. The desmotubule is
also held in place by filamentous protein tethers that connect the membrane and desmotubule
surfaces. There are about n ≈ 10 tethers discernible when counting along the length of the
pore (Fig. 1a, [3]). These, presumably, limit the transverse movement of the desmotubule.
Assuming that the tethers act like a linear spring actuated by thermal motion, the energy
required to displace the desmotubule center a distance h0δ is k(h0δ)

2/2, where k is a spring
constant that depends on the stiffness and number of tether proteins. To our knowledge,
the spring constant has not been measured directly. However, it can be estimated from k =
3NE ItetherL

−3
tether if we assume the deformation of the tether proteins follow the deflection

of a cantilever beam fixed at one end (e.g., at the plasma membrane) and experiencing a
point load at the other (e.g., at the desmotubule) [8,9]. Here, N ∼ 100 is the total number
of tethers, estimated as n ∼ 10 along the length of the pore [3] multiplied by ∼ 10 around
the circumference of the pore [10]. E ∼ 10−1000 MPa is Young’s modulus for soft and stiff
tethers [11] and Itether = πd4/64 the area moment of inertia, with d = 0.5 − 1.5 nm the
diameter of the tethers. Finally, L tether = 2h0 = 6 nm is the length of the tether proteins, taken
as the largest possible gap between the desmotubule and plasma membrane. The ratio of the
largest possible elastic potential energy to thermal energy varies from 1

2k(δh0)
2/(kBT ) ∼

0.05 − 375 (for δ = 1), where kB is the Boltzmann constant and T is temperature. If the
tethers are relatively stiff ( 1

2k(δh0)
2/(kBT ) � 1) the desmotubule remains fixed in place

at the center and the mean radial displacement is 〈h0δ〉 = 0. In contrast, if the tethers
are relatively soft and the desmotubule is free to move ( 1

2k(δh0)
2/(kBT ) � 1), the mean

displacement is 〈h0δ〉 = 2h0/3 (see Appendix A). Notably, more angular positions are
accessible when h0δ > 0, hence the mean radial position is not the geometric center of the
domain.

Having established the effects that influence the radial desmotubule displacement h0δ,
we now turn to potential variations in transverse dimensions along the length of the pore
(Fig. 1f). Our idea is that the radial positions of the inner cytoplasmic channel boundary b(x)
could vary along the axial direction x . In some locations, the desmotubule might be wider
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than the mean b0 and vice versa. We do not know the exact functional form of b(x), but for
simplicity, we consider a harmonic function

b(x) = b0 − h0ε sin
nπx

L
, (1)

where n is the of number half waves along the length L of a plasmodesma. The amplitude
εh0 cannot exceed h0 (otherwise the desmotubule penetrates the cell membrane), so the
perturbation parameter ε < 1. We assume in the following that n is even, because this allows
us to compare the relative performance of channels where the mean desmotubule radius
〈b〉 = b0 is constant. Note that the half wavelength L/n corresponds to the distance between
adjacent tether proteins. Electron micrographs indicate n ≈ 10 [3].

Given the aforementioned properties of the desmotubule shape function in Eq. (1), it is
useful to consider how large are the energy fluctuations associated with the amplitude εh0

and wave number n. One difference between the uniform shape (b(x) = b0) and perturbed
system (Eq. (1)) is that the desmotubule surface area S increases with both ε and n. The area
gained by the harmonic variation is

�S = 2π

∫ L

0
b(x)

√
1 + b′(x)2 dx − S0 ≈ S0

(
π

2

εh0n

L

)2

, (2)

where b′ = ∂xb and S0 = 2πb0L is the unperturbed desmotubule surface area. The last
approximation holds for nεh0/L � 1. The energy needed to increase the surface area is
γ�S, where γ is the energy per unit area of the desmotubule. The parameters ε, h0, and L
are constants, so the area �S can only grow by increasing the wave number n. If, however,
the shape index n is constrained by the number of tether proteins n ≈ 10, the relative area
gain is at most �S/S0 ≈ (εh0n/L)2 = 0.004, as estimated for the maximum deformation
(ε = 1). The maximum change in surface energy is thus 0.4%, which is within the limits of
small thermal fluctuations. In the following, we therefore assume that all states are equally
likely.

2.2 Transport properties

Transport across plasmodesmata is facilitated by a combination of molecular diffusion and
pressure-driven bulk flow [6]. Current models assume that trafficking occurs across a smooth
and perfectly aligned cytoplasmic sleeve. In Sect. 2.1, however, we established two basic
modes of plasmodesmata shape perturbations that deviate from the ideal conditions (Fig. 1).
In the following sections, we consider the impact of pore shape perturbations on cell-to-cell
transport processes.

2.2.1 Diffusion

We begin by considering molecular diffusion. In this process, a concentration difference
�c = c1 − c2 between two adjacent cells leads to a net migration of molecules from high
to low concentrations (Fig. 1). The molecular flux j is proportional to the concentration
gradient

j = −D∂x c, (3)

where D is the diffusion constant. Equation (3) is known as Fick’s law, and typical values of
D are D ≈ 10−9−10−10 m2/s for small ions and proteins, respectively, in unbounded space.
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Fig. 2 Impact of shape fluctuations on diffusive transport. a Current I/I0 plotted as a function of the relative
transverse offset δ (Eq. (4)). For small molecules, transport is not affected (for finite-sized particles, see Fig. 4).
b Current I/I0 plotted as a function of the radial fluctuation ε (Eq. (7)). Transport is strongly reduced when
the pore closes (ε → 1)

The magnitude of D is also affected by the radius of the diffusing particle s, relative to the
channel dimensions. We return to this phenomena in Sect. 2.3.

A basic problem, which is important for the interpretation of plasmodesmata experiments,
is the diffusive current through the straight unperturbed pore. Here, the current is found by
integrating Fick’s law across the pore area A = π(a2 − b2

0)

I0 = DA
�c

L
= πD(a2 − b2

0)
�c

L
≈ 2πDb0h0

�c

L
, (4)

which is proportional to the concentration difference �c and scales linearly with the area
A (Fig. 2a). In the last approximation, we have used that the gap height h0 = a − b0 is
reasonably small when compared to a and b0.

In the first mode of perturbation (radial displacement of the desmotubule), the open area
A is not affected and the diffusive current I = I0 is therefore not modified. There is an
important exception to this rule, which occurs when the size of the diffusing molecule is
comparable to the slit width h0 = a − b0. We will deal with this special case in Sect. 2.3.

In the second case (axial variations in the desmotubule radius b(x)), the impact on trans-
port is not negligible. Computing the diffusive current through an axially varying channel,
however, is a complex problem, and exact solutions, based on, e.g., Fick–Jacobs theory,
are only known in a few specific cases [12]. To get an idea of the impact on transport we
will assume that the area A(x) varies slowly, i.e., |∂xb(x)| � 1, which should be repre-
sentative of plasmodesmata in most configurations. In that case, we can model the pore as
a serial connection of short straight segments. The diffusive current for a straight segment
can be written as I = �c/RD , where RD = �x/(DA) is the diffusive resistance a seg-
ment of length �x and area A (see Eq. (4)). For two straight segments placed after one
another with resistances RD,1 and RD,2, the current is I = �c/(RD,1 + RD,2). The total
resistance of M straight segments with lengths �x and cross-sectional areas A(x) in series
is RD = ∑M

i=1 RD,i = ∑M
i=1 �x/(DA(i�x)). By letting the length of each segment be

sufficiently small the sum can be approximated by an integral and if the total length of the
M segments is M�x = L , the total resistance RD ≈ 1

D

∫ L
0 A(x)−1 dx . Fick’s law (Eq. (3))

then leads to
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I = D�c

(∫ L

0

1

A(x)
dx

)−1

. (5)

The same result follows directly from Fick’s law by writing I = − ∫
A D∂x c dA ≈

−DA(x)∂x c, because the concentration gradient does not vary substantially over the area
A. The local cross-sectional area of the plasmodesma channel is A(x) = π(a2 − b(x)2) ≈
2πb0h(x), assuming once again that we are in the small-gap limit. For a harmonically varying
desmotubule with relative amplitude ε and wave number n, the height h(x) follows from Eq.
(1)

h(x) = a − b(x) = h0

[
1 + ε sin

(nπx

L

)]
. (6)

From Eq. (5), the diffusive current is

I = 2πbh0D
�c

L

(
1

nπ

∫ nπ

0

1

1 + ε sin q
dq

)−1

= I0
√

1 − ε2 (7)

where we have introduced the short-hand notation q = nπx/L . The expression in Eq. (7)
provides an estimate of the current I (Fig. 2b) for a specific magnitude of the desmotubule
amplitude εh0. We note that it decreases as the occlusion increases (ε → 1), consistent with
experiments on single-particle diffusion in microchannels [13]. It is likely, however, that the
level of occlusion is large (ε = 1) in some pores while it is small (ε = 0) in others. Recalling
that the relative change in surface energy related to variations in gap size is small, we assume
that all ε states are equally likely. Averaging Eq. (7) over 0 ≤ ε < 1 we find

〈I 〉 = π

4
I0. (8)

In conclusion, perturbations in the cytoplasmic sleeve width along the length of the pore lead
to an approximately 20% reduction in the diffusion current.

2.2.2 Advection

Having established the effects of pore shape on diffusive transport, we now continue our dis-
cussion by focusing on bulk fluid flow. We imagine a situation in which a pressure difference
�p = p1 − p2 exists between two neighboring cells (Fig. 1). The intracellular pressure p
exerted by fluid in a cell presses the membrane against the cell wall. This turgor pressure
is what makes living plant tissue rigid. Loss of turgor, resulting from the loss of water from
plant cells, causes flowers and leaves to wilt. The hydrostatic pressure p that develops in a
cell depends on the chemical potential in the cell, and in the surrounding tissue. Close to
equilibrium, and in the case of negligible external pressure and solute concentration, we can
write the turgor pressure as p = Π , where Π is the osmotic potential of the cellular fluid. For
reasonably dilute solutions the osmotic pressure is given by the van’t Hoff relation Π ≈ RT c̃,
where R is the gas constant, T is the absolute temperature and c̃ is a molar concentration
[14]. The concentration c̃ is the sum of all solute contributions. Plant cells contain a myriad
of different molecules, from dilute hormones (1µM) to concentrated electrolytes (100 mM)
and sugars (100 mM) [15,16]. This leads to a typical turgor pressure of p ≈ 1 MPa. Note
that the hormone concentration difference �c = c1 − c2 ∼ 1µM is too small to create a
noticeable pressure imbalance and therefore the hormone synthesis and fluid flow processes
are probably not directly coupled. However, a sugar or ion concentration imbalance created
by active membrane pumps can generate a cell-to-cell pressure difference �p ≈ RT (c̃1− c̃2)

which would compel fluid to flow through the plasmodesmata pores.
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The pressure imbalance between neighboring cells forces the cytoplasmic fluid to flow
through the plasmodesmata pores, and we will now quantify how much material is transported
by this process. If the concentration of the signal molecules differs between the two cells by
an amount �c, then the net current of particles through each channel is I = Q�c, where
Q is the volumetric flow rate, which depends on the pressure drop �p, the viscosity of the
cellular fluid η, and on the channel shape.

Pressure-driven fluid flow through plasmodesmata can be described by the Navier–Stokes
and continuity equations, which in the steady-state and low-Reynolds-number limits are

η∇2v − ∇p = 0, and ∇ · v = 0. (9)

Here, v is the velocity field, and the flow rate Q = ∫
v · n dA is found by integration across

the open pore surface area perpendicular to the flow, where n is a unit normal vector. We note
that the use of Eq. (9) to describe the flow through relatively small gaps, i.e., for ε → 1, is an
approximation based on the use of a continuum description, i.e., that length and time scales
are much larger than those associated with molecular processes. The assumptions behind it
are, however, the same used for Fick’s description of diffusion and for the diffusion constant
D found through the Stokes–Einstein equation. Including slip in the model could reduce the
drag [17], however, the viscous friction in the entrance region would then dominate [18].
For a straight and perfectly aligned pore, and with no-slip conditions (v = 0) on the channel
boundaries, the pressure-drop versus flow-rate relationship is [19]

Q = �pπa4

8ηL

[
1 −

(
b0

a

)2

+ ((b0/a)2 − 1)2

ln(b0/a)

]
. (10)

We notice two features of Eq. (10). First, when the desmotubule is narrow, the ratio b0/a � 1,
we recover the flow-rate relationship for a cylindrical pipe Q = πa4�p/(8ηL). In contrast,
when the gap h0 = a − b0 is relatively small, i.e., h0 � b0, the flow rate is

Q0 = 2πb0h3
0�p

12ηL
. (11)

This limit corresponds to pressure-driven flow in a shallow channel of width 2πb0 and height
h0, with negligible effects of channel curvature. This is equivalent to the lubrication limit,
where the local axial velocity field vx is a parabolic function of the transverse coordinate y
and it is proportional to the axial pressure gradient

vx (y) = − 1

2η
(yh − y2)∂x p. (12)

Note that vx fulfills the no-slip boundary conditions vx = 0 on the channel boundaries at
y = 0 and y = h.

It is straightforward to extend the ideal flow-rate equation (11) to other cases using the
lubrication approximation in Eq. (12). Following the outline in Sect. 2.2.1, we begin by
considering the effects of an off-center desmotubule. We first notice that the gap height can
be expressed as function of the azimuthal angle θ :

h(θ) = h0(1 − δ cos θ), (13)

where we remind ourselves that h0δ is the distance the inner cylinder is displaced from the
center of the outer cylinder and that the gap h0 is smaller than the desmotubule radius b0. The
angle θ varies as 0 ≤ θ ≤ 2π . The flow rate is found by integrating the velocity distribution
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Fig. 3 Impact of shape fluctuations on bulk flow. a Flow rate Q/Q0 plotted as a function of the relative
transverse offset δ (Eq. (15)). Transport is enhanced as the channel widens. b Flow rate Q/Q0 plotted as a
function of the radial fluctuation ε (Eq. (16)). Transport is strongly reduced when the pore closes (ε → 1)

across the pore

Q =
∫ 2π

0

∫ h

0
b0vxdydθ = − 1

12η
2πb0h

3
0

[
1 + 3

2
δ2

]
∂p

∂x
, (14)

corresponding to the pressure-drop versus flow-rate relationship

Q = Q0(�p)

[
1 + 3

2
δ2

]
, (15)

where Q0 is the unperturbed current (Eq. (11)), see Fig. 3a. Recalling that the displacement
h0δ is limited by the initial gap height h0 (i.e., δ < 1), we observe that the flow rate can at
most increase by 150% (Q = 5Q0/2), which occurs when δ = 1 and the desmotubule is in
contact with the cell membrane. If the desmotubule is equally likely to occupy all positions
within the domain, the mean square displacement is 〈δ2〉 = 1/2 and the flow is enhanced by
75% to Q = 7Q0/4. This is less than the theoretical maximum (Q = 5Q0/2), but still an
appreciable increase when compared to the base flow rate in Eq. (11).

We continue our analysis of bulk flow by considering the effects of axial variations in
the desmotubule shape. Using the sinusoidal channel height profile h(x) (see Eq. (6)) in the
lubrication equation (12) leads to the flow-rate versus pressure-drop relation

Q = Q0

(
1

nπ

∫ nπ

0

1

(1 + ε sin q)3 dq

)−1

= Q0
2(1 − ε2)5/2

2 + ε2 , (16)

see Fig. 3b. (We note that the last equality holds for n even.) The flow rate averaged over
all accessible states (0 ≤ ε < 1) is 〈Q〉/Q0 = 3π(12

√
6 − 29)/8 ≈ 0.5, so on average,

fluctuations in the desmotubule radius thus leads to a 50% reduction in pressure-driven flow
capacity.

In summary, our analysis reveals that pressure-driven flow is enhanced by transverse
displacement of the desmotubule, which creates larger channel paths for all x , but is reduced
as a consequence of radial shape fluctuations, which have repeated axial regions of high
resistance (small gap size).
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2.2.3 Relative importance of advection and diffusion

We end this section by providing a brief discussion of the relative importance of advection
and diffusion. To quantify their proportionate magnitude, we introduce the Peclet number Pe
as the ratio of the molecular current facilitated by bulk flow �cQ0 (Eq. (11)) to the molecular
diffusion current I0 (Eq. (4))

Pe = advective transport rate

diffusive transport rate
= �cQ0

I0
= �ph2

0

12ηD
. (17)

Advection dominates when the Peclet number is large, while diffusion is most important
when it is relatively small. It is, however, difficult to make broad statements about the precise
magnitude of the Peclet number due to the large number of parameters that enter into Eq.
(17). We therefore choose to consider two limiting cases. First, we can think about an isobaric
tissue where cell-to-cell pressure differences are negligible, i.e., �p = 0. Here, Pe = 0 and
diffusion dominates. To estimate the upper limit to the Peclet number Pe, we note again
that the turgor pressure in a plant cell is around p ≈ 1 MPa. However, even slender plant
tissues rarely comprise fewer than ten cells along the transverse axis, hence an estimate
of the greatest potential cell-to-cell pressure difference is of the order �p ≈ 105 Pa. This
leads to Pe = 0.75, i.e., an approximately even distribution between diffusive and advective
contributions to transport. These estimates nevertheless lead to the conclusion that in most
cases, molecular diffusion provides the greatest contribution to transport. Consideration of
the coupled diffusion–advection problem leads to a similar conclusion, see Appendix B. We
note, however, that Eq. (17) is strongly dependent on geometry. In wider or tapering pores,
such as the funnel plasmodesmata present in the phloem unloading zone, the contribution
from advection is substantially larger [20].

2.3 The impact of shape fluctuations on selectivity

We end our analysis of transport across shape-perturbed nanochannels by considering the
effects of molecular size. Plasmodesmata carry many different compounds; from small water
molecules (diameter 0.3 nm) and ions (Stokes radius 0.2 nm), sugars (0.4–0.6 nm) [21],
signaling molecules (e.g., auxin ∼ 0.5 nm), to different fluorescent particles used in experi-
ments, e.g., carboxyfluorescein diacetate (0.6 nm) and GFP (2.8 nm) [3]. Larger compounds,
e.g., F-Dextran (3.2 nm) do not pass through plasmodesmata [22], but the exact pore size is
still under debate [23]. It was recently reported that molecules with a radius s comparable to
the cytoplasmic sleeve half-width h0/2 are able to traverse some plasmodesmata pores [3].
This is surprising, since particle–wall interactions are known to hinder transport significantly
[24]: both entropic [13] and hydrodynamic [24] effects hinder transport in axially varying
channels when the radius of the diffusing particle is comparable to the smallest gap in the
channel h0(1 − ε). Interestingly, it was recently pointed out that temporal fluctuations in the
axial shape can shuttle relatively large molecules across nanopores [25]. It remains unknown,
however, how perturbations to the radial position of the desmotubule may impact transport.
This question is addressed below.

We envision a situation in which a molecule of radius s is approaching the inlet of a
perfectly aligned plasmodesma. If the width of the cytoplasmic sleeve h0 = a − b0 is larger
than the particle diameter 2s, the particle can enter the pore. In contrast, if 2s > h0, the
molecule is unable to pass. Because the diffusive current I is proportional to the open area A
(Eq. (4)) we can, to a first approximation, quantify the probability of transport by considering
the area available to a particle of radius s. We denote this area As . If the molecule is relatively
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small the entire pore is open and As = A0 = π(a2 − b2
0). In contrast, if the particle is larger

than the slit width (2s > h0), the open area As = 0. In the intermediate regime, the open
area varies between these two extremes: 0 < As < A0.

If we now allow the desmotubule to be displaced radially by the distance h0δ, the slit will
shrink in some places, and expand in others. We write the total open area As as a function of
the relative displacement δ from the center as

As(δ) =

⎧⎪⎨
⎪⎩

0 1 + δ < 2s/h0

π(ã2 − b̃2) 0 < δ < 1 − 2s/h0

π ã2 − Alens 1 − 2s/h0 < δ < 1

(18)

where ã = a − s and b̃ = b0 + s are the reduced pore and desmotubule radii that take
into account the inaccessible region of width s created by particle–wall interactions. The
first region describes the case where there is no open area for the particle to pass through.
This happens when the particle diameter, 2s, is larger than the widest possible gap for a
pore displaced a distance h0δ, h0(1 + δ). The second region is where the open area remains
constant as the desmotubule is displaced radially, i.e., when the gray areas in Fig. 4 do not
overlap. The third region describes the open area when the gray areas do overlap and the open
area depends on the radial displacement of the desmotubule h0δ. The area of the lens-shaped
region (Fig. 4) is

Alens = b̃2 arccos

(
−ã2 + b̃2 + (h0δ)

2

2h0δb̃

)
+ ã2 arccos

(
ã2 − b̃2 + (h0δ)

2

2h0δã

)

− 1

2

√
(ã + b̃ − h0δ)(h0δ − ã + b̃)(ã − b̃ + h0δ)(ã + b̃ + h0δ). (19)

Transverse displacement dramatically enhances the potential transport capacity for particle
sizes comparable to the cytoplasmic sleeve width, as displayed in Fig. 4. For instance, the
available area for molecules that take up 2s/h0 = 0.9 of the space is nearly quadrupled,
while for 2s/h0 = 0.5 it increases by approximately 20%.

3 Discussion and conclusion

Plasmodesmata nanopores, which are small channels linking neighboring cells in plants,
enable exchange of nutrients and signaling molecules. Current models assume that the annular
pore geometry is perfectly concentric and static [7,26]. However, recent experiments hint
at substantial variations in the conduit geometry [3]. In this study, we therefore considered
the effects of shape perturbations on the diffusive and pressure-driven transport through
plasmodesmata pores. We restricted our analysis to two classes of perturbations: (1) radial
displacement of the central desmotubule rod and (2) harmonic variations in the cytoplasmic
sleeve width along the length of the pore. These idealized cases do not necessarily represent
the true pore shape, but they allow us to ascertain the approximate impact on the signal
transduction capacity.

Our results indicate that an off-center desmotubule increases the rate of pressure-driven
transport (Fig. 3a). Advection is increased by up to a factor of 2.5 compared to the flow rate
through the unperturbed geometry, with the largest rate occurring when the desmotubule is in
contact with the cell wall (Fig. 3a, Eq. (15)). The diffusive current is unchanged for particles
much smaller than the cytoplasmic sleeve width (Fig. 2a). However, the diffusive current is
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Fig. 4 Impact of shape fluctuations on selectivity. a Accessible area As/A0 plotted as a function of relative
offset δ for molecules of radius s (Eq. (18)). The open area As increases with displacement h0δ. The effect is
largest for particles with strongly restricted access to the unperturbed pore (i.e., 2s ≈ h0). For instance, for
2s/h0 = 0.9, the relative available area increases almost fourfold (from 0.1 to 0.37) as δ varies from 0 to 1
and the desmotubule is shifted toward the channel periphery. The insets (b–d) visually illustrate the available
area (white) to the center coordinate (black dot) of a particle of radius s (green circle). b For 2s

h0
= 0, the

available area does not change as δ varies from 0 to 1. c For 2s/h0 = 0.5, the available area varies from 50%
to approximately 61% of the full area A0 as δ varies from 0 to 1. d For 2s/h0 = 1, the available area varies
from 0 to approximately 32% of the full area A0 as δ varies from 0 to 1. Note that As (δ) = A0 when δ = 0
and s = 0. The values from Table 1 were used in the plot, however, for small values of the unperturbed gap,
h0 � b0, the plot is almost independent of the values for a and b0

dramatically enhanced if the size of the diffusing particles is comparable to the gap width.
Surprisingly, our modeling suggests that particles larger than the mean cytoplasmic sleeve
width are able to migrate for off-center desmotubules (Fig. 4a, Eq. (18)). In contrast, we find
that harmonic variations in the cytoplasmic sleeve width along the length of the pore lead to
a reduction in both diffusion (Fig. 2b, Eq. (7)) and advection (Fig. 3b, Eq. (16)). This effect
becomes greater when the perturbation amplitude increases. On average, diffusion is reduced
by 20% while advection is 50% lower.

The shape perturbations discussed in this paper are basic geometric effects which have
surprising impact on both advection and diffusion. As such, they could help explain the
observed transport of molecules nominally larger than the slit width by Nicolas et al. [3].
Even so, we note that there are several other ways in which the pore morphology could vary
with potential impact on signal transport. For instance, it is possible that dynamic effects, such
as wiggling [25] or peristaltic pumping [27], are involved in transport. Also, in large pores,
it is possible that transport is enhanced by Taylor–Aris dispersion [28,29]. However, more
detailed knowledge of plasmodesmata geometry and temporal effects is needed to assess
their significance. This points to the need for new experimental and theoretical methods
being applied to intercellular transport in plants.
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A Thermal model of desmotubule displacement

This appendix outlines the thermal theory of transverse desmotubule displacement. As
described in Sect. 2.1, the desmotubule is anchored to the cell membrane by tether pro-
teins that limit the transverse movement of the desmotubule. Assuming that the tethers act
like a linear spring, the energy required to displace the desmotubule center a distance h0δ is
k(h0δ)

2/2. Here, k is a spring constant which depends on the stiffness and number of tether
proteins. If the tethers are relatively stiff, the desmotubule remains fixed in place at the center
and the mean radial displacement is 〈h0δ〉 = 0. In contrast, if the tethers are relatively soft and
the desmotubule is free to move, the mean displacement is 〈δ〉 = 2/3 because more angular
positions are accessible when δ > 0, hence the mean radial position is not the geometric
center of the domain.

In the intermediate energy regime, we can determine the probability P(δ) of observing
the displacement h0δ by considering the Boltzmann distribution:

P(δ) =
2πh0δ exp

(
− k(h0δ)2

2kBT

)
∫ h0

0 2πh0δ exp
(
− k(h0δ)2

2kBT

)
d(h0δ)

, (20)

where T is temperature and kB is the Boltzmann constant. The factor 2πh0δ accounts for
the increasing number of angular positions available as the radial displacement h0δ grows.
The mean relative displacement is

〈δ〉 = h0

∫ 1

0
δP(δ) dδ = 1

1 − e−α

(√
π

2

1√
α

erf(
√

α) − e−α

)
, (21)

where

α =
1
2kh

2
0

kBT
, (22)

is the ratio of potential elastic to thermal energy and erf() is the error function. When α is
large, the desmotubule stays is place (〈δ〉 = 0) because the thermal energy is too small to
deform the relatively stiff tether proteins. In contrast, when α is small, the comparatively soft
tethers are unable to resist molecular perturbations. In this limit, the mean radial displacement
is 〈δ〉 = 2/3 and 〈δ2〉 = 1/2.

B Coupled advection and diffusion

So far, we have considered the diffusive and advective currents separately. In this appendix,
we look at how they may superimpose. Our goal is to compute the relative magnitude of
the diffusive and advective currents. In doing so, we consider a simplified version of a
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plasmodesmata: a flat channel of length L in the x-direction and height h, with a velocity u
in the x-direction and a concentration profile c = c(x, t) with c(0) = �c and c(L) = 0 at
the upper and lower cell. (Here, t denotes the time.)

Before proceeding with a detailed calculation of the concentration profile in the channel,
we will briefly justify why a flat channel can help us understand the impact of geometry in
a complex PD. Our previous results have clearly demonstrated that introducing harmonic
variations in the cytoplasmic sleeve width along the length of the pore decreases the current.
This happens because the resistance to both flow and diffusion increases. The largest contri-
bution to the resistance occurs near the point with the smallest gap. Instead of looking at the
entire axially varying channel, we therefore consider a flat channel, where the height of the
channel corresponds to the height of the smallest gap in the harmonically varying channel.
On the other hand, having an off-center desmotubule increases the current through the pore
(except for the case of diffusion of very small particles, where the current remains the same),
and the resistance thus decreases. As the desmotubule is displaced off-center, most of the
transport occurs at the side of the channel with the largest gap between the cell membrane and
desmotubule. In this case, we therefore consider a flat channel with a height that corresponds
to the largest gap between the cell membrane and desmotubule.

To find the concentration profile in the channel, and thus the current across it, we consider
the coupled diffusion–advection equation

∂t c + u∂x c = D∂2
x c (23)

Introducing the dimensionless variables T̃ = t D/L2, C = c/�c and X = x/L , it can be
rewritten as

∂T̃ C + Pe ∂XC = ∂2
XC, (24)

where we have introduced the Peclet number as Pe = uL/D, with the boundary conditions
C(0) = 1 and C(1) = 0. (We remind the reader that u is the mean velocity.) In the case of
steady-state transport, the equation reduces to

∂XC = 1

Pe
∂2
XC, (25)

Fig. 5 The ratio of the diffusive
to advective currents as a function
of Peclet number, Pe (Eq. (29)).
The biological range, shown in
orange, extends from Pe = 0 to
Pe = 0.75 (see Eq. (17))
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which has the solution

C(X) = ePe − ePeX

ePe − 1
. (26)

The diffusive and advective fluxes leaving the upper cell are

jdiff = −D∂x c(x) |x=0= �cD

L

Pe

ePe − 1
, and (27)

jadv = u�c. (28)

Lastly, the ratio of the diffusive to advective current is found as

Idiff

Iadv
= 1

ePe − 1
, (29)

which only depends on the Peclet number. From Eq. (17), the Peclet numbers relevant for
the biological system are between Pe = 0 and Pe = 0.75, shown in orange in Fig. 5. This
corresponds to either the diffusive current being larger than the advective current (Pe → 0)
or the two being more or less equally important (Idiff/Iadv = 1 for Pe ≈ 0.7).
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2. K. Sokołowska, P. Sowiński, Symplasmic Transport in Vascular Plants (Springer, Berlin, 2013)
3. W.J. Nicolas, M.S. Grison, S. Trépout, A. Gaston, M. Fouché, F.P. Cordelières, K. Oparka, J. Tilsner,

L. Brocard, E.M. Bayer, Architecture and permeability of post-cytokinesis plasmodesmata lacking cyto-
plasmic sleeves. Nat. Plants 3(7), 17082 (2017)

4. R.F. Evert, Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure,
Function, and Development (Wiley, London, 2006)

5. R.E. Sager, J.-Y. Lee, Plasmodesmata at a glance. J. Cell Sci. 131(11), (2018)
6. A. Paterlini, Uncharted routes: exploring the relevance of auxin movement via plasmodesmata. Biol.

Open 9(11), bio055541 (2020)
7. J.R. Blake, On the hydrodynamics of plasmodesmata. J. Theor. Biol. 74(1), 33–47 (1978)
8. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon Press, Oxford, 1975)
9. K. Park, J. Knoblauch, K. Oparka, K.H. Jensen, Controlling intercellular flow through mechanosensitive

plasmodesmata nanopores. Nat. Commun. 10(1), 1–7 (2019)
10. B. Ding, R. Turgeon, M.V. Parthasarathy, Substructure of freeze-substituted plasmodesmata. Protoplasma

169(1–2), 28–41 (1992)
11. M. Guthold, W. Liu, E. Sparks, L. Jawerth, L. Peng, M. Falvo, R. Superfine, R.R. Hantgan, S.T. Lord,

A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers. Cell
Biochem. Biophys. 49(3), 165–181 (2007)

12. I. Pineda, G. Chacón-Acosta, L. Dagdug, Diffusion coefficients for two-dimensional narrow asymmetric
channels embedded on flat and curved surfaces. Eur. Phys. J. Spec. Topics 223(14), 3045–3062 (2014)

13. X. Yang, C. Liu, Y. Li, F. Marchesoni, P. Hänggi, H. Zhang, Hydrodynamic and entropic effects on
colloidal diffusion in corrugated channels. Proc. Natl. Acad. Sci. 114(36), 9564–9569 (2017)

14. P.S. Nobel, Physicochemical and Environmental Plant Physiology (Academic Press, London, 1999)
15. I. Dreyer, N. Uozumi, Potassium channels in plant cells. FEBS J. 278(22), 4293–4303 (2011)
16. K.H. Jensen, K. Berg-Sørensen, H. Bruus, N.M. Holbrook, J. Liesche, A. Schulz, M.A. Zwieniecki, T.

Bohr, Sap flow and sugar transport in plants. Rev. Mod. Phys. 88(3), 035007 (2016)
17. E. Lauga, M. Brenner, H.A. Stone, Microfluidics: the no-slip boundary condition, in Springer Handbook

of Experimental Fluid Mechanics, ed. by C. Tropea, A.L. Yarin, J.F. Foss (Springer, Berlin, 2007), pp.
1219–1240

18. S. Gravelle, L. Joly, F. Detcheverry, C. Ybert, C. Cottin-Bizonne, L. Bocquet, Optimizing water perme-
ability through the hourglass shape of aquaporins. Proc. Natl. Acad. Sci. 110(41), 16367–16372 (2013)

19. F. Lea, A. Tadros, CVI. Flow of water through a circular tube with a central core and through rectangular
tubes. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 11(74), 1235–1247 (1931)

123



Eur. Phys. J. Plus         (2021) 136:872 Page 15 of 15   872 

20. T.J. Ross-Elliott, K.H. Jensen, K.S. Haaning, B.M. Wager, J. Knoblauch, A.H. Howell, D.L. Mullendore,
A.G. Monteith, D. Paultre, D. Yan et al., Phloem unloading in arabidopsis roots is convective and regulated
by the phloem-pole pericycle. eLife 6, e24125 (2017)

21. J. Liesche, A. Schulz, Modeling the parameters for plasmodesmal sugar filtering in active symplasmic
phloem loaders. Front. Plant Sci. 4, 207 (2013)

22. B. Terry, A. Robards, Hydrodynamic radius alone governs the mobility of molecules through plasmod-
esmata. Planta 171(2), 145–157 (1987)

23. W.S. Peters, K.H. Jensen, H.A. Stone, M. Knoblauch, Plasmodesmata and the problems with size: inter-
preting the confusion. J. Plant Physiol. 257, 153341 (2020)

24. W.M. Deen, Hindered transport of large molecules in liquid-filled pores. AIChE J. 33(9), 1409–1425
(1987)

25. S. Marbach, D.S. Dean, L. Bocquet, Transport and dispersion across wiggling nanopores. Nat. Phys.
14(11), 1108–1113 (2018)

26. E.E. Deinum, B.M. Mulder, Y. Benitez-Alfonso, From plasmodesma geometry to effective symplasmic
permeability through biophysical modelling. eLife 8, e49000 (2019)

27. Y. Aboelkassem, Pumping flow model in a microchannel with propagative rhythmic membrane contrac-
tion. Phys. Fluids 31(5), 051902 (2019)

28. R. Sankarasubramanian, W.N. Gill, Taylor diffusion in laminar flow in an eccentric annulus. Int. J. Heat
Mass Transf. 14(7), 905–919 (1971)

29. D.C. Guell, R. Cox, H. Brenner, Taylor dispersion in conduits of large aspect ratio. Chem. Eng. Commun.
58(1–6), 231–244 (1987)

123


	Diffusion and flow across shape-perturbed plasmodesmata nanopores in plants
	Abstract
	1 Introduction
	2 Results
	2.1 Morphology of shape-perturbed plasmodesmata nanopores
	2.2 Transport properties
	2.2.1 Diffusion
	2.2.2 Advection
	2.2.3 Relative importance of advection and diffusion

	2.3 The impact of shape fluctuations on selectivity

	3 Discussion and conclusion
	Acknowledgements
	A Thermal model of desmotubule displacement
	B Coupled advection and diffusion
	References





