Skip to main content
Log in

Annealing temperature effect to optimize the optical properties of SnS thin films

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The influence of annealing temperature in the range 400–550 nm on the SnS thin films, synthesized via thermal evaporation method, is investigated. The structure of tin sulfide annealed films is examined through X-ray diffraction (XRD), revealing crystalline nature with the orthorhombic structure of the main peak (111) at 2θ = 31.38Ǻ. Micro-strain and dislocation density are decreased as the annealing temperature increased. The optical energy gap of these films is computed using the data of transmittance, reflectance, and absorption spectra over a wavelength range of 300–1200 nm. The energy gap decreases with increasing annealing temperature: Egdir = 1.77 to 1.62 eV and Egind = 1.21 to 1.08 eV. The volume and surface energy loss function increased as the annealing increased. In addition, the real and imaginary inter-band transition strength was calculated using dielectric constants. Optical conductivity (σopt) and penetration depth of light (δdp) depend on wavelength calculated using absorption coefficient: (σopt) = 2.4 × 1011 to 0.9 × 1011 Ω−1.m−1 at 2.25 eV and δdp = 0.04 to 0.006 at 1050 nm, respectively. The skin depth of these films provides a cut-off wavelength at ≈ 600 nm. Besides, the skin depth of these films decreases as annealing temperature increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors' comment: All data included in this manuscript are available upon request by contacting the corresponding author.]

References

  1. J.B. Li, V. Chawla, B.M. Clemens, Adv. Mater. 24, 720 (2012). https://doi.org/10.1002/adma.201103470

    Article  Google Scholar 

  2. P.P. Choi, O.C. Miredin, R. Wuerz, Surf. Interface Anal. 44, 386 (2012). https://doi.org/10.1002/sia.4948

    Article  Google Scholar 

  3. J.J. Scragg, P.J. Dale, D. Colombara, L.M. Peter, ChemPhysChem 13, 3035 (2012). https://doi.org/10.1002/cphc.201200067

    Article  Google Scholar 

  4. L. Grenet, S. Bernardi, D. Kohen, C. Lepoittevin, S. Noel, N. Karst, A. Brioude, S. Perraud, H. Mariette, Sol. Energy Mat. & Sol. Cells 101, 11 (2012). https://doi.org/10.1016/j.solmat.2012.02.016

    Article  Google Scholar 

  5. G.H. Tariq, K. Hutchings, Ghulam Asghar, D. W. Lane, M. Anis-UR, Journal of Ovonic Research 10, 247 (2014).

  6. M. Ganchev, P. Vitanov, M. Sendova-Vassileva, G. Popkirov, H. Dikov, J. Phys: Conf. Ser. 682, 012019 (2016). https://doi.org/10.1088/1742-6596/682/1/012019

    Article  Google Scholar 

  7. K.T. Ramakrishna Reddy, N. Koteswara Reddy, R.W. Miles, Sol. Energy Mater. Sol. Cells 90, 3041 (2006). https://doi.org/10.1016/j.solmat.2006.06.012

    Article  Google Scholar 

  8. Alexandros Stavrinadis, Jason M Smith, Christopher A Cattley, Andrew G Cook, Patrick S Grant and Andrew A R Watt, Nanotechnology 21, 185202 (2010). https://doi.org/10.1088/0957-4484/21/18/185202

  9. S. M. Ahmed, L. A. Latif, A. KH. Salim, Journal of Basrah Researches (Sciences), 37, 3A/15 (2011).

  10. E. Guneri, F. Gode, C. Ulutas, F. Kirmizigul, G. Altindemir, C. Gumus, Chalcogenide Lett. 7, 685 (2010)

    Google Scholar 

  11. J. Henry, K. Mohanraj, S. Kannan, S. Barathan, G. Sivakumar, J. Exp. Nanosci. 10, 78 (2015). https://doi.org/10.1080/17458080.2013.788226

    Article  Google Scholar 

  12. Maria Safonova, Padmanabhan Pankajakshy Karunakaran Nair, Enn Mellikov, Rebeca Aragon, Karin Kerm, Revathi Naidu, Valdek Mikli, and Olga Volobujeva, Proceedings of the Estonian Academy of Sciences,64, 488 (2015). https://doi.org/10.3176/proc.2015.4.04

  13. A.S. Salwa, A. Salem, Optik 196, 163140 (2019). https://doi.org/10.1016/j.ijleo.2019.163140

    Article  ADS  Google Scholar 

  14. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001)

    Google Scholar 

  15. Farah J. Hamood, Qunoot M. hadi, Khalid Haneen Abass, Musaab Khudhur Mohammed, International Journal of Engineering & Technology 7, 296 (2018).

  16. S.S. Hegde, A.G. Kunjomana, P. Murahari, B.K. Prasad, K. Ramesh, Surfaces and Interfaces 10, 78 (2018). https://doi.org/10.1016/j.surfin.2017.12.003

    Article  Google Scholar 

  17. G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34 (2018). https://doi.org/10.1080/14786435608238074

    Article  ADS  Google Scholar 

  18. Narjes Kabiri Samani, Zahra Dehghani Tafti, Hojjat Amrollahi Bioki, Mahmood Borhani Zarandi, Shirin Shayegh, Optik 131, 231 (2017). http://dx.doi.org/https://doi.org/10.1016/j.ijleo.2016.08.129

  19. V. Ganesh, H.Y. Zahran, I.S. Yahia, Mohd Shkir, S. AlFaify, Optical Materials, 62, 184 (2016). http://dx.doi.org/https://doi.org/10.1016/j.optmat.2016.09.069

  20. J. Tauc (ed.), Amorphous and Liquid Semiconductors (Plenum, New York, 1976)

    Google Scholar 

  21. M. Venkata Veera Prasad, K. Thyagarajan, B. Rajesh Kumar, International Journal of Scientific Research in Physics and Applied Sciences .7, 182 (2019). https://doi.org/10.26438/ijsrpas/v7i3.182189

  22. D. Sahoo, P. Priyadarshini, A. Aparimita, D. Alagarasan, R. Ganesan, S. Varadharajaperumal, R. Naik, RSC Adv. 10, 26675 (2020). https://doi.org/10.1039/d0ra04763e

    Article  ADS  Google Scholar 

  23. H. Langhals, Chem. Phys. Lett. 150, 321 (1988). https://doi.org/10.1016/0009-2614(88)80050-2

    Article  ADS  Google Scholar 

  24. D.L. W, et al., Electric and optical polymer system, Marcel Dekker INC, USA, 1998

  25. J.N. Zemel, J.D. Jensen, R.B. Schoolar, Phys. Rev. A 140, 330 (1965). https://doi.org/10.1103/PhysRev.140.A330

    Article  ADS  Google Scholar 

  26. M.M. Abdel-Aziz, I.S. Yahia, L.A. Wahab, M. Fadel, M.A. Afifi, Appl. Surf. Sci. 252, 8163 (2006). https://doi.org/10.1016/j.apsusc.2005.10.040

    Article  ADS  Google Scholar 

  27. R.J. Bell, M.A. Ordal, R.W. Alexender, Appl. Opt. 24, 4493 (1985). https://doi.org/10.1364/AO.24.004493

    Article  ADS  Google Scholar 

  28. M.Y. Han, H. Huang, C.H. Chew, L.M. Gan, X.J. Zhang, W. Ji, Large, Large. J. Phys. Chem. B 102, 1884 (1998). https://doi.org/10.1021/jp972877z

    Article  Google Scholar 

  29. M. De Crescenzi, M.N. Piancastelli, Electron Scattering and Related Spectroscopies (World Scientific Singapore, Singapore, 1996)

  30. R.H. French, H. Mullejans, D.J. Jones, J. Am. Ceram. Soc. 81, 2549 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02660.x

    Article  Google Scholar 

  31. R.H. French, J. Am. Ceram. Soc. 83, 2117 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01527.x

    Article  Google Scholar 

  32. M. Mohamed, E.R. Shaaban, M.N. Abd-elSalam, A.Y. Abdel- Latief, S.A. Mahmoud, M.A. Abdel-Rahim, Optik (Stuttg) 178, 1302 (2019). https://doi.org/10.1016/j.ijleo.2018.10.103

  33. K. Ali, F.M. Abdel-Rahim, J. Alloys Compd. 561, 284 (2013). https://doi.org/10.1016/j.jallcom.2013.01.197

    Article  Google Scholar 

  34. S.S. Fouad, I.M. El-Radaf, P. Sharma, J. Alloys Compd. 757, 124 (2018). https://doi.org/10.1016/j.jallcom.2018.05.033

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Salwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salwa, A.S., Abd El-sadek, M.S. Annealing temperature effect to optimize the optical properties of SnS thin films. Eur. Phys. J. Plus 136, 696 (2021). https://doi.org/10.1140/epjp/s13360-021-01676-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01676-6

Navigation