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Abstract We study a class of single-degree-of-freedom oscillators whose restoring function
is affected by small nonlinearities and excited by stationary Gaussian stochastic processes. We
obtain, via the stochastic perturbation technique, approximations of the main statistics of the
steady state, which is a random variable, including the first moments, and the correlation and
power spectral functions. Additionally, we combine this key information with the principle
of maximum entropy to construct approximations of the probability density function of the
steady state. We include two numerical examples where the advantages and limitations of the
stochastic perturbation method are discussed with regard to certain general properties that
must be preserved.

1 Introduction

Many problems arising in physics and engineering lead to differential equations whose data
(initial/boundary conditions, forcing term and/or coefficients) must be set from experimen-
tal information that involves, what is usually termed, epistemic (or reducible) randomness
[1]. Although this type of uncertainty can possibly be reduced by improved measurements
or improvements in the modelling process, there is another uncertainty source often met in
mathematical modelling of real-world problems called aleatory (or irreducible) randomness,
which comes from the intrinsic variability of the phenomenon to be modelled. This approach
leads to formulate random/stochastic differential equations [2,3]. Apart from answering fun-
damental questions about existence, uniqueness, continuous dependence of the solution with
respect to model parameter or stability, solving a random differential equation means not
only to calculate, exact or approximately, its solution, which is a stochastic process, but also
to determine its main statistical information like the expectation or the variance. However, a
more ambitious goal is to calculate the finite distribution functions (usually termed the fidis)
of the solution, being the first probability density function the main fidis since by integration
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one can calculate any one-dimensional moment (so including the mean and the variance),
and also the probability that the solution lies within an interval of specific interest [2]. In
real-world applications of physics or engineering, this fact is a key point since it allows us
to calculate relevant information such as, for example, the probability that the position of an
oscillator lies within two specific values where it is under control, the probability of buckling
of a tower subject to extreme loads, etc.

In the realm of stochastic vibratory systems, many problems can be directly formulated
through differential equations of the form L[Y (t)] = Z(t), where L[·] is a linear operator and
Z(t) is a stochastic external source, which acts upon the system producing random vibrations.

For example, the model L[Y (t)] = Z(t), where L[Y (t)] := d2Y (t)
dt2

+ 2β
dY (t)

dt + ω2
0Y (t), has

been used, from the original contribution [4], to describe the effect on earthbound structures of
earthquake-type disturbances being Y (t) the relative horizontal displacement of, for example,
the roof of a building with respect to the ground [5]. Additionally, many vibratory systems
are described by nonlinear equations, say N [Y (t)] = Z(t), where the nonlinear operator is
defined in terms of a small perturbation ε, N [·; ε]. For example, in the case of the foregoing
model the following general equation

d2Y (t)

dt2 + 2β
dY (t)

dt
+ ω2

0(Y (t) + εh(Y (t))) = Z(t), t > 0, (1)

where h, that is independent of ε, is a nonlinear function of the unknown, and Y (t) has also
been extensively applied. In most contributions, the nonlinear term h has a polynomial form
[6]. For example, for h(Y (t)) = Y 3(t), model (1) corresponds to Duffing oscillator, which
physically models an elastic pendulum whose spring’s stiffness violates Hooke’s law [7].

The goal of this paper is to tackle the stochastic study of oscillators of form (1) in the
case that the nonlinear term h is a transcendental function using a polynomial approxima-
tion, based on Taylor’s expansions, and then to apply the stochastic perturbation method to
approximate the main statistical functions of the steady state. Afterwards, we take advantage
of the principle of maximum entropy (PME), in order to determine approximations of the
probability density function (p.d.f.) of the stationary solution. To conduct our study, we have
chosen a general form of the pendulum equation

d2Y (t)

dt2 + 2β
dY (t)

dt
+ ω2

0(Y (t) + ε sin(Y (t))) = Z(t), t > 0, (2)

where we will assume that β > 0, the external source, Z(t), is defined via zero-mean
Gaussian stationary stochastic process, which corresponds to an important case in the analysis
of vibratory systems [8,9]. In Sect. 2, we will obtain the main theoretical results throughout.
Afterwards, in Sect. 3, we perform a numerical analysis through two examples, with criticism
about the validity of the results obtained via the stochastic perturbation method. Conclusions
are drawn in Sect. 4.

2 Probabilistic analysis

This section is devoted to study, from a probabilistic standpoint, the steady state of model
(2). It is important to point out that the non-perturbated associated model

d2Y (t)

dt2 + 2β
dY (t)

dt
+ ω2

0Y (t) = Z(t), t > 0, (3)
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has a steady-state solution provided β > 0 and regardless of the value of ω2
0. For the sake

of completeness, in “Appendix A”, we discuss about this issue in the general setting that
Z(t) is a stationary Gaussian process and also in connection with the examples presented
later. Firstly, in Sect. 2.1, we will apply the stochastic perturbation method to approximate
its stationary solution, which is a random variable. Secondly, in Sect. 2.2, we will perform a
stochastic analysis addressed to obtain the main statistical functions of the stationary solution.
In particular, we will obtain the first one-dimensional moments and the correlation function.

2.1 Stochastic perturbation expansion

In the case of model (2), the method of perturbation consists in expanding the unknown,
Y (t), in terms of a formal power series of the perturbative parameter ε, which is assumed to
have a small value (|ε| � 1),

Y (t) =
∑

n≥0

Yn(t)ε
n, (4)

where the coefficients Yn(t) need to be determined. The idea of the perturbation method is
to impose that expansion (4) satisfies the nonlinear differential equation (2), which does not
have a closed-form solution, in order to obtain a set of exactly solvable equations whose
unknowns are the coefficients Yn(t). As this reasoning leads to an infinite cascade system
for Yn(t), in practice only a few terms of the expansion are considered, and so the method
provides an approximation of the solution. This technique is usually applied by truncating
expansion (4) to the first-order approximation

Ŷ (t) = Y0(t) + εY1(t), (5)

since as ε is small, the terms associated with higher powers (Yn(t)εn , n = 2, 3, . . .) in
the series expansion can usually be neglected. This fact determines the legitimacy of the
approximation only for a small range for the values of parameter ε, which is consistent with
the initial assumption that ε is a small parameter [10]. It is important to point out that, as
already reported in [2, Ch. 7], no proof is available to show that the stochastic process Y (t)
given in (4) converges in the mean square sense (or other probabilistic convergences), while
some restrictive convergence conditions have been established in the deterministic framework
[11]. Therefore, the convergence of Y (t) can be formulated in terms of strong hypotheses
about its sample behaviour, which, in practice, results in very restrictive assumptions. Based
on these facts, we here will apply the stochastic perturbation method by checking its validity
with regard that some important statistical properties are preserved.

On the other hand, to derive a solvable family of differential equations after applying the
perturbation method to model (2), we will also use a double approximation for the nonlinear
term sin(Y (t)). Specifically, we first apply a truncation of its Taylor’s series

sin(Y (t)) ≈
M∑

m=0

(−1)m

(2m + 1)! (Y (t))2m+1, (6)

and secondly, we approximate Y (t) using (5), i.e.

sin(Y (t)) ≈ sin(Ŷ (t)) ≈
M∑

m=0

(−1)m

(2m + 1)! (Y0(t) + εY1(t))
2m+1. (7)
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Substituting expansions (7) and (5) into (2), and equating terms with the same power of ε,
leads to the two following linear differential equations

ε0 : d2Y0(t)

dt2 + 2β
dY0(t)

dt
+ ω2

0Y0(t) = Z(t),

ε1 : d2Y1(t)

dt2 + 2β
dY1(t)

dt
+ ω2

0Y1(t) = ω2
0

(
M∑

m=0

(−1)m+1

(2m + 1)! (Y0(t))
2m+1

)
,

(8)

that can be solved in cascade. Although the method can be applied for any order of truncation
associated with the Taylor’s expansion (6), in practice the value of M is set when the approx-
imations obtained with M and M + 1 are very closed with reference to a prefixed error or
tolerance. In our subsequent analysis, we will consider M = 2 (that corresponds to a Taylor’s
approximation of order 5, sin(Y (t)) ≈ Y (t)− 1/3!(Y (t))3 + 1/5!(Y (t))5), since, as we shall
show later, the approximations of the main statistics of the solution stochastic process do not
significantly change with respect to M = 1 (that corresponds to a Taylor’s approximation
of order 3, sin(Y (t)) ≈ Y (t) − 1/3!(Y (t))3). Summarizing, we have performed a double
truncation. The first one, based on Taylor expansion for the nonlinear term (sin(Y (t))), and
the second one, when applying the stochastic perturbation expansion given in expression (5).
(This latter approximation is fixed in our analysis at order 1 in ε, as it is usually done in the
literature.) Notice that the order M of the Taylor truncation is independent of the order of
truncation applied for the perturbation method.

As previously indicated, we are interested in the stochastic analysis of the stationary
solution or steady state. Based upon the linear theory of Laplace transformation [12], the
solutions Y0(t) and Y1(t) are given by

Y0(t) =
∫ ∞

0
g(s)Z(t − s) ds, (9)

and

Y1(t) = ω2
0

M∑

m=0

∫ ∞

0
g(s)

(−1)m+1

(2m + 1)! (Y0(t − s))2m+1 ds, (10)

where for the underdamped case ( β2

ω2
0

< 1),

g(t) =
⎧
⎨

⎩

(
ω2

0 − β2
)− 1

2 e−βt sin

((
ω2

0 − β2
) 1

2 t

)
, if t > 0,

0, if t ≤ 0.

(11)

Physically this situation corresponds to the case that the oscillator approaches zero oscillating
about this value [13]. Finally, we point out that the integrals defining Y0(t) and Y1(t) in (9)
and (10) must be interpreted in the mean square sense [2, Ch. 4].

2.2 Constructing approximations of the first moments of the stationary solution

It is important to point out that the solution of model (2) is not Gaussian, so in order to
probabilistically describe the stationary solution, the approximations of the mean and the
variance (or more generally, the correlation) functions are not enough. This fact motivates
that this subsection is addressed to construct reliable approximations of higher moments of the
stationary solution [represented by the first-order approximation (5)]. This key information
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will be used in the next section to obtain approximations of the p.d.f., which in turns permits
to obtain any one-dimensional moment of the stationary solution.

Specifically, in the subsequent development we will compute any statistical moments of
odd order, E

[
(Ŷ (t))2i+1

]
, i = 0, 1, 2, . . ., the second-order moment, E

[
(Ŷ (t))2

]
, the corre-

lation function, ΓŶ Ŷ (τ ), the variance, V
[
Ŷ (t)

]
, and the spectral density function, SŶ(t)( f ).

As indicated in Sect. 1, we shall assume that the stochastic external source, Z(t), is a
stationary Gaussian stochastic process centred at the origin, i.e. E [Z(t)] = 0, being ΓZ Z (τ ),
its correlation function. Notice that the hypothesis E [Z(t)] = 0 is not restrictive since
otherwise we can work, without loss of generality, with the process Z̃(t) = Z(t)−E [Z(t)],
whose mean is null.

The mean of the first-order approximation is calculated taking the expectation operator in
(5) and using its linearity,

E
[
Ŷ (t)

] = E [Y0(t)] + εE [Y1(t)] . (12)

To computeE [Y0(t)], we take the expectation operator in (9), then we first apply the commu-
tation of the expectation and the mean square integral [2, Eq. (4.165), p. 104] and, secondly,
we use that E [Z(t)] = 0,

E [Y0(t)] = E

[∫ ∞

0
g(s)Z(t − s) ds

]
=
∫ ∞

0
g(s)E [Z(t − s)] ds = 0. (13)

To compute E [Y1(t)], we take the expectation operator in (10) (recall that we take M = 2)
and we again apply the commutation between the expectation and the mean square integral
as well as the integral representation of Y0(t) given in (9),

E [Y1(t)] = E

[
−ω2

0

∫ ∞

0
g(s)Y0(t − s) ds+ω2

0

3!
∫ ∞

0
g(s)(Y0(t − s))3 ds

−ω2
0

5!
∫ ∞

0
g(s)(Y0(t − s))5 ds

]

= −ω2
0

∫ ∞

0
g(s)

∫ ∞

0
g(s1)E [Z(t − s − s1)] ds1 ds

+ ω2
0

3!
∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)

∫ ∞

0
g(s3)

E [Z(t − s − s1)Z(t − s − s2)Z(t − s − s3)] ds3 ds2 ds1 ds

− ω2
0

5!
∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)

∫ ∞

0
g(s3)

∫ ∞

0
g(s4)

∫ ∞

0
g(s5)

E [Z(t − s − s1)Z(t − s − s2)

· Z(t − s − s3)Z(t − s − s4)Z(t − s − s5)] ds5 ds4 ds3 ds2 ds1 ds .

(14)

Now, observe that

E [Z(t − s − s1)Z(t − s − s2)Z(t − s − s3)Z(t − s − s4)Z(t − s − s5)] = 0,

since Z(t) is a zero-mean Gaussian process [2, Eq. (2.101), p. 28]. Then, from (14) one gets

E [Y1(t)] = 0. (15)

Substituting (15) and (13) into (12), one obtains

E
[
Ŷ (t)

] = E [Y0(t)] + εE [Y1(t)] = 0. (16)
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To obtain the second-order moment, E
[
(Ŷ (t))2

]
, we square expression (5), but retaining

up to the first-order approximation in the parameter ε,

E
[
(Ŷ (t))2] = E

[
(Y0(t))

2]+ 2εE [Y0(t)Y1(t)] . (17)

To calculate E
[
(Y0(t))2

]
, we substitute expression (9) and apply Fubini’s theorem,

E
[
(Y0(t))2

] = E

[(∫ ∞

0
g(s)Z(t − s) ds

)(∫ ∞

0
g(s1)Z(t − s1) ds1

)]

=
∫ ∞

0
g(s)

∫ ∞

0
g(s1)E [Z(t − s)Z(t − s1)] ds1 ds .

(18)

Now, E [Z(t − s)Z(t − s1)] can be expressed in terms of the correlation function, ΓZ Z (·),
E [Z(t − s)Z(t − s1)] = ΓZ Z (t − s1 − (t − s)) = ΓZ Z (s − s1). Then, (18) writes

E
[
(Y0(t))

2] =
∫ ∞

0
g(s)

∫ ∞

0
g(s1)ΓZ Z (s − s1) ds1 ds . (19)

Observe that the correlation function is a deterministic function of a single variable, since
Z(t) is a stationary process. To calculate the term E [Y0(t)Y1(t)] in (17), we substitute the
expressions of Y0(t) and Y1(t) given in (9) and (10) (recall that we take M = 2) and apply
Fubini’s theorem,

E [Y0(t) Y1(t)] = E

[
Y0(t)

(
−ω2

0

∫ ∞

0
g(s)Y0(t − s) ds+ω2

0

3!
∫ ∞

0
g(s)(Y0(t − s))3 ds

−ω2
0

5!
∫ ∞

0
g(s)(Y0(t − s))5 ds

)]

=
∫ ∞

0
g(s)E

[
Y0(t)

(
−ω2

0Y0(t − s) + ω2
0

3! (Y0(t − s))3 − ω2
0

5! (Y0(t − s))5

)]
ds

= −ω2
0

∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)E [Z(t − s1)Z(t − s − s2)] ds2 ds1 ds

+ω2
0

3!
∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)

∫ ∞

0
g(s3)

∫ ∞

0
g(s4)

E [Z(t − s1)Z(t − s − s2)Z(t − s − s3)

· Z(t − s − s4)] ds4 ds3 ds2 ds1 ds

−ω2
0

5!
∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)

∫ ∞

0
g(s3)

∫ ∞

0
g(s4)

∫ ∞

0
g(s5)

∫ ∞

0
g(s6)

E [Z(t − s1)Z(t − s − s2)

· Z(t − s − s3)Z(t − s − s4)Z(t − s − s5)Z(t − s − s6)] ds6 ds5 ds4 ds3 ds2 ds1 ds .

(20)

Now, we express the expectations that appear in the above integrals in terms of the correlation
function, ΓZ Z (·), taking into account that Z(t) is stationary. For the first expectation, one
gets

E [Z(t − s1)Z(t − s − s2)] = ΓZ Z (s1 − s − s2). (21)

To calculate the other two expectations, we will apply the symmetry in the subindexes and the
Isserlis–Wick theorem [14], which provides a formula to express the higher-order moments
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of a zero-mean multivariate normal vector, say (Y1, . . . , Yn), in terms of its correlation matrix

E [Y1 · · · Yn] =
∑

p∈P2
n

∏

{i, j}∈p

E
[
YiY j

] =
∑

p∈P2
n

∏

{i, j}∈p

Γ (Yi , Y j ),

where Γ (Yi , Y j ) stands for the correlation of vector (Yi , Y j ). The sum is over all distinct
ways of partitioning the set of indexes {1, 2, . . . , n} into pairs {i, j} (the set of these pairs is
denoted by P2

n ), and the product is over these pairs. In our case, we apply this result taking
into account that Z(t) is a zero-mean stationary Gaussian process. To determine the second
expectation in (20), we will denote u1 = t − s1, u2 = t − s − s2, u3 = t − s − s3 and
u4 = t − s − s4 to facilitate the presentation of our computations

E

[
Z(t − s1)Z(t − s − s2)Z(t − s − s3)Z(t − s − s4)

]

= E [Z(u1)Z(u2)]E [Z(u3)Z(u4)]

+ E [Z(u1)Z(u3)]E [Z(u2)Z(u4)] + E [Z(u1)Z(u4)]E [Z(u2)Z(u3)]

= ΓZ Z (u2 − u1)ΓZ Z (u4 − u3) + ΓZ Z (u3 − u1)ΓZ Z (u4 − u2)

+ ΓZ Z (u4 − u1)ΓZ Z (u3 − u2)

= ΓZ Z (s1 − s − s2)ΓZ Z (s3 − s4) + ΓZ Z (s1 − s − s3)ΓZ Z (s2 − s4)

+ ΓZ Z (s1 − s − s4)ΓZ Z (s2 − s3).

Then, the second integral in (20) can be computed as
∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)

∫ ∞

0
g(s3)

∫ ∞

0
g(s4)

E [Z(t − s1)Z(t − s − s2)Z(t − s − s3)Z(t − s − s4)] ds4 ds3 ds2 ds1 ds

=
∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)

∫ ∞

0
g(s3)

∫ ∞

0
g(s4) (ΓZ Z (s1 − s − s2)ΓZ Z (s3 − s4)

+ ΓZ Z (s1 − s − s3)ΓZ Z (s2 − s4)

+ΓZ Z (s1 − s − s4)ΓZ Z (s2 − s3)) ds4 ds3 ds2 ds1 ds

= 3
∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)

∫ ∞

0
g(s3)

∫ ∞

0
g(s4)

ΓZ Z (s1 − s − s2)ΓZ Z (s3 − s4) ds4 ds3 ds2 ds1 ds . (22)

Notice that we have taken advantage of the symmetry of the correlation function, ΓZ Z (·), to
express the last multidimensional integral. The third expectation in (20) can be analogously
calculated

E

[
Z(t − s1)Z(t − s − s2)Z(t − s − s3)Z(t − s − s4)Z(t − s − s5)Z(t − s − s6)

]

= ΓZ Z (s1 − s − s2)ΓZ Z (s3 − s4)ΓZ Z (s5 − s6)

+ ΓZ Z (s1 − s − s2)ΓZ Z (s3 − s5)ΓZ Z (s4 − s6)

+ ΓZ Z (s1 − s − s2)ΓZ Z (s3 − s6)ΓZ Z (s4 − s5)

+ ΓZ Z (s1 − s − s3)ΓZ Z (s2 − s4)ΓZ Z (s5 − s6)

+ ΓZ Z (s1 − s − s3)ΓZ Z (s2 − s5)ΓZ Z (s4 − s6)

+ ΓZ Z (s1 − s − s3)ΓZ Z (s2 − s6)ΓZ Z (s4 − s5)

+ ΓZ Z (s1 − s − s4)ΓZ Z (s2 − s3)ΓZ Z (s5 − s6)

+ ΓZ Z (s1 − s − s4)ΓZ Z (s2 − s5)ΓZ Z (s3 − s6)
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+ ΓZ Z (s1 − s − s4)ΓZ Z (s2 − s6)ΓZ Z (s3 − s5)

+ ΓZ Z (s1 − s − s5)ΓZ Z (s2 − s3)ΓZ Z (s4 − s6)

+ ΓZ Z (s1 − s − s5)ΓZ Z (s2 − s4)ΓZ Z (s3 − s6)

+ ΓZ Z (s1 − s − s5)ΓZ Z (s2 − s6)ΓZ Z (s3 − s4)

+ ΓZ Z (s1 − s − s6)ΓZ Z (s2 − s3)ΓZ Z (s4 − s5)

+ ΓZ Z (s1 − s − s6)ΓZ Z (s2 − s4)ΓZ Z (s3 − s5)

+ ΓZ Z (s1 − s − s6)ΓZ Z (s2 − s5)ΓZ Z (s3 − s4). (23)

Then, substituting (22) and (23) into (20), and taking again the advantage of the symmetry of
the correlation function, ΓZ Z (·), to simplify the representation of the last multidimensional
integral, one obtains

E [Y0(t)Y1(t)] = −ω2
0

∫ ∞
0

g(s)
∫ ∞

0
g(s1)

∫ ∞
0

g(s2)ΓZ Z (s1 − s − s2) ds2 ds1 ds

+ ω2
0

2

∫ ∞
0

g(s)
∫ ∞

0
g(s1)

∫ ∞
0

g(s2)

∫ ∞
0

g(s3)

∫ ∞
0

g(s4)

ΓZ Z (s1 − s − s2)ΓZ Z (s3 − s4) ds4 ds3 ds2 ds1 ds

− ω2
0

8

∫ ∞
0

g(s)
∫ ∞

0
g(s1)

∫ ∞
0

g(s2)

∫ ∞
0

g(s3)

∫ ∞
0

g(s4)

∫ ∞
0

g(s5)

∫ ∞
0

g(s6)ΓZ Z (s1 − s − s2)

· ΓZ Z (s3 − s4)ΓZ Z (s5 − s6) ds6 ds5 ds4 ds3 ds2 ds1 ds . (24)

So, substituting expressions (19) and (24) into (17), we obtain an explicit approximation of
the second-order moment for the approximation Ŷ (t),

E

[
(Ŷ (t))2

]
=
∫ ∞

0
g(s)

∫ ∞
0

g(s1)ΓZ Z (s − s1) ds1 ds

+ 2ε

(
− ω2

0

∫ ∞
0

g(s)
∫ ∞

0
g(s1)

∫ ∞
0

g(s2)ΓZ Z (s1 − s − s2) ds2 ds1 ds

+ ω2
0

2

∫ ∞
0

g(s)
∫ ∞

0
g(s1)

∫ ∞
0

g(s2)

∫ ∞
0

g(s3)

∫ ∞
0

g(s4)ΓZ Z (s1 − s − s2)

ΓZ Z (s3 − s4) ds4 ds3 ds2 ds1 ds

− ω2
0

8

∫ ∞
0

g(s)
∫ ∞

0
g(s1)

∫ ∞
0

g(s2)

∫ ∞
0

g(s3)

∫ ∞
0

g(s4)

∫ ∞
0

g(s5)

∫ ∞
0

g(s6)ΓZ Z (s1 − s − s2)

· ΓZ Z (s3 − s4)ΓZ Z (s5 − s6) ds6 ds5 ds4 ds3 ds2 ds1 ds

)
. (25)

Now, we compute the third-order moment of Ŷ (t), using the first-order approximation
with respect to the perturbative parameter ε,

E
[
(Ŷ (t))3] = E

[
(Y0(t))

3]+ 3εE
[
(Y0(t))

2Y1(t)
]
. (26)

By reasoning analogously as in the calculation of the foregoing statistical moments, we
obtain

123



Eur. Phys. J. Plus         (2021) 136:723 Page 9 of 23   723 

E
[
(Y0(t))

3] =
∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)E [Z(t − s)Z(t − s1)Z(t − s2)] ds2 ds1 ds = 0,

(27)

and

E
[
(Y0(t))

2Y1(t)
] =

∫ ∞

0
g(s)E

[
Y 2

0 (t)

(
−ω2

0Y0(t − s) + ω2
0

3! (Y0(t − s))3

−ω2
0

5! (Y0(t − s))5

)]
ds = 0. (28)

We here omit the details of these calculations since they are somewhat cumbersome and they
can easily inferred from our previous developments. Then, substituting (27) and (28) into
(26), we obtain

E
[
(Ŷ (t))3] = E

[
(Y0(t))

3]+ 3εE
[
(Y0(t))

2Y1(t)
] = 0.

In general, it can be straightforwardly shown that the statistical moments of odd order are
null,

E
[
(Ŷ (t))2n+1] = 0, n = 0, 1, 2, . . . (29)

The correlation function of Ŷ (t), using the approximation of first-order with respect to
the perturbative parameter ε, is given by

ΓŶ Ŷ (τ ) = E
[
Ŷ (t)Ŷ (t + τ)

] = E [Y0(t)Y0(t + τ)]

+ε (E [Y0(t)Y1(t + τ)] + E [Y1(t)Y0(t + τ)]) . (30)

The first term of (30) corresponds to the correlation function of Y0(t). It is determined, in
terms of the correlation function ΓZ Z (·), by applying Fubini’s theorem and the stationarity
of Z(t),

E [Y0(t)Y0(t + τ)] =
∫ ∞

0
g(s)

∫ ∞

0
g(s1)E [Z(t − s)Z(t + τ − s1)] ds1 ds

=
∫ ∞

0
g(s)

∫ ∞

0
g(s1)ΓZ Z (τ − s1 + s) ds1 ds .

(31)

The two last expectations on the right-hand side of (30), correspond to the cross-correlation
function of Y0(t) and Y1(t). They can be expressed explicitly in terms of the correlation
function ΓZ Z (·),
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E [Y0(t)Y1(t + τ)]

=
∫ ∞

0
g(s)E

[
Y0(t)

(
−ω2

0Y0(t + τ − s) + ω2
0

3! (Y0(t + τ − s))3

−ω2
0

5! (Y0(t + τ − s))5

)]
ds

= −ω2
0

∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)ΓZ Z (s1 + τ − s − s2) ds2 ds1 ds

+ ω2
0

2

∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)

∫ ∞

0
g(s3)

∫ ∞

0
g(s4)

ΓZ Z (s1 + τ − s − s2)ΓZ Z (s3 − s4) ds4 ds3 ds2 ds1 ds

− ω2
0

8

∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)

∫ ∞

0
g(s3)

∫ ∞

0
g(s4)

∫ ∞

0
g(s5)

∫ ∞

0
g(s6)

ΓZ Z (s1 + τ − s − s2)

· ΓZ Z (s3 − s4)ΓZ Z (s5 − s6) ds6 ds5 ds4 ds3 ds2 ds1 ds (32)

and

E [Y1(t)Y0(t + τ)]

=
∫ ∞

0
g(s)E

[
Y0(t + τ)

(
−ω2

0Y0(t − s) + ω2
0

3! (Y0(t − s))3 − ω2
0

5! (Y0(t − s))5

)]
ds

= −ω2
0

∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)ΓZ Z (s1 − τ − s − s2) ds2 ds1 ds

+ ω2
0

2

∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)

∫ ∞

0
g(s3)

∫ ∞

0
g(s4)

ΓZ Z (s1 − τ − s − s2)ΓZ Z (s3 − s4) ds4 ds3 ds2 ds1 ds

− ω2
0

8

∫ ∞

0
g(s)

∫ ∞

0
g(s1)

∫ ∞

0
g(s2)

∫ ∞

0
g(s3)

∫ ∞

0
g(s4)

∫ ∞

0
g(s5)

∫ ∞

0
g(s6)

ΓZ Z (s1 − τ − s − s2)

· ΓZ Z (s3 − s4)ΓZ Z (s5 − s6) ds6 ds5 ds4 ds3 ds2 ds1 ds . (33)

From expressions (31)–(33), we observe that the correlation function, ΓŶ Ŷ (τ ), given by
(30), only depends on the difference τ between two different instants, t and t + τ (as it
has been anticipated in the notation in (30)). This fact together with E

[
Ŷ (t)

] = 0 (see
(16)) allows us to say that the first-order approximation, Ŷ (t), given in (5) and obtained
via the perturbation technique, is a stationary stochastic process. Additionally, it is clear
that the covariance function of the steady state coincides with the correlation function, i.e.
Cov

[
Ŷ (t1), Ŷ (t2)

] = ΓŶ Ŷ (τ ), where τ = |t1 − t2| and, also the variance matches the
second-order moment, which in turn can be calculated evaluating the correlation function at
the origin,

V
[
Ŷ (t)

] = E
[
Ŷ (t)2] = ΓŶ Ŷ (0). (34)
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From the correlation function, ΓŶ Ŷ (τ ), it is straightforward to also determine the power
spectral density function (or simply, the power spectrum) of Ŷ (t)

SŶ(t)( f ) =
∫ ∞

−∞
e−i f τ ΓŶ Ŷ (τ )dτ, (35)

here, i = √−1 is the imaginary unit and f is the angular frequency. Observe that, SŶ(t)( f )

is the Fourier transform of the correlation function of Ŷ (t). This function plays a key role to
describe the distribution of power into frequency components composing a signal represented
via stationary stochastic process [15].

3 Numerical examples

In the previous section, we have obtained approximations of the main statistical moments of
the steady state of problem (2). In this section, we combine this key information, together with
the PME technique, to construct approximations of the p.d.f. of the stationary solution. We will
show two examples where important stochastic processes play the role of the external source,
Z(t), in problem (2). In the first example, we will take as Z(t) the white Gaussian noise,
while in the second one, the Ornstein–Uhlenbeck stochastic process will be considered. Since
the validity of perturbation method is restricted to small values of the perturbative parameter
ε, the numerical experiments are carried out with criticism to this key point taking into
account that the numerical approximations must retain certain universal properties such as
the positivity of even-order statistical moments (for any stochastic process) and the symmetry
of the correlation and power spectral functions; the correlation function reaches its maximum
value at the origin and the positivity of the spectral function, in the case of stationary stochastic
processes. Of course, additional properties about other statistical functions could also be
added to further check the consistency of the numerical results obtained via the stochastic
perturbation method.

For the sake of completeness, down below we revise the main definitions and results
about the PME method and the power spectral function that will be used throughout the two
numerical examples.

As detailed in [16], the PME is an efficient method to determine the p.d.f., fY (y), of a
random variable, say Y , constrained by the statistical information available (domain, expecta-
tion, variance, symmetry, kurtosis, etc.) on Y . The method consists in determining fY (y) such
that it maximizes the so-called Shannon’s entropy (also referred to as differential entropy),
which is given by S { fY } = − ∫ y2

y1
fY (y) log( fY (y)) dy, subject to a number of constraints,

which are usually defined by the N first moments, say an , n = 1, 2, . . . , N , of the random
variable Y together with the normalization condition,

∫ y2
y1

fY (y) dy = 1. In this context, the

admissible set of solutions is then defined by A = { fY : [y1, y2] −→ R : ∫ y2
y1

yn fY (y) dy =
an, n = 0, 1, . . . , N }. Notice that n = 0 corresponds to the normalization condition (i.e. the
integral of the p.d.f. is one) and that the rest of the restrictions are defined by the statistical
moments, E

[
Yn
] = an , n = 1, 2, . . . , N . It can be seen, by applying the functional version

of Lagrange multipliers associated with A, that

fY (y) = 1[y1,y2](y) e−∑N
i=0 λi yi , 1[y1,y2](y) =

{
1, y ∈ [y1, y2],
0, y /∈ [y1, y2]. (36)
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In practice, the Lagrange multipliers, λi , i = 0, 1, . . . , N , are determined by numerically
solving the following system of N + 1 nonlinear equations defined by the constraints

∫ y2

y1

yn1[y1,y2](y) e−∑N
i=0 λi yi dy = an, n = 0, 1, . . . , N . (37)

In words, the PME method selects, among all the p.d.f.’s that satisfy the constraints given
by the available statistical information, the one that maximizes the Shannon or differential
entropy as a measure of randomness. This can be naively interpreted as looking for the p.d.f.
which maximizes the uncertainty from the minimal quantity of information [16].

In the examples, we will also calculate the power spectral density function SŶ(t)( f ) defined

in (35). Using the Euler identity eix = cos(x) + i sin(x), it is easy to check that, for any
stationary process, the power spectral density is an even function,

SŶ(t)( f ) =
∫ ∞

−∞
cos( f τ)ΓŶ Ŷ (τ )dτ = 2

∫ ∞

0
cos( f τ)ΓŶ Ŷ (τ )dτ = SŶ(t)(− f ). (38)

This property is also fulfilled by the correlation function, ΓŶ Ŷ (τ ) = ΓŶ Ŷ (−τ) [2, Ch. 3].
Moreover, the correlation function reaches its maximum at the origin, i.e. |ΓŶ Ŷ (τ )| ≤ ΓŶ Ŷ (0)

[2, Ch. 3], while it can be proved that the power spectral function is non-negative, SŶ(t)( f ) ≥ 0
[15]. To reject the possible spurious approximations obtained via the stochastic perturbation
method, we will check in our numerical experiments whether all these properties are pre-
served. We will also take advantage of the approximations of the power spectral density
and of the correlation function to obtain the two following important parameters associated
with a stationary stochastic process, the noise intensity (D) and the correlation time (τ̂ ),
respectively, defined by

D =
∫ ∞

0
ΓŶ Ŷ (τ )dτ = 1

2
SŶ(t)(0), τ̂ =

∫∞
0 ΓŶ Ŷ (τ )dτ

ΓŶ Ŷ (0)
= D

ΓŶ Ŷ (0)
. (39)

Notice that the value of D comes from evaluating SŶ(t)( f ) at f = 0 in (38). So, the noise
intensity is defined as the area beneath the correlation function ΓŶ Ŷ (τ ), while the correlation
time is a standardized noise intensity [17]. The parameters D and τ̂ indicate how strongly
the stochastic process is correlated over the time.

In both examples, the numerical results that we shall show correspond to third-order
Taylor’s approximations of the nonlinear term sin(Y (t)) in (7), since we have checked that
no significant differences are obtained using fifth-order Taylor’s approximations.

Example 1 Let us consider as external source the stochastic process Z(t) = ξ(t), where ξ(t)
is a white Gaussian noise, i.e. is a stationary Gaussian stochastic process with zero mean,
E [Z(t)] = 0, and flat power spectral density, SZ(t)( f ) = N0

2 , for all f . Then, its correlation

function is given by ΓZ Z (τ ) = N0
2 δ(τ ), where δ(τ ) is the Dirac delta function. We will take

the following data for the parameters involved in model (2), ω0 = 1, β = 5
100 and N0 = 1

100
(that satisfy the conditions of “Appendix A”, so ensuring the existence of the steady-state
solution), so the nolinear random oscillator is formulated by

d2Y (t)

dt2 + 1

10

dY (t)

dt
+ Y (t) + ε sin(Y (t)) = ξ(t), t > 0. (40)

We will now take advantage of the results derived in Sect. 2.2, to calculate the following
statistical information of the first-order approximation, Ŷ (t), obtained via the perturbation
method and given in (5): (1) the moments up to order 3, i.e. E

[
(Ŷ (t))i

]
, i = 1, 2, 3; (2) the
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Table 1 Comparison between stochastic perturbation method and Kloeden–Platen–Schurz algorithm for
different values of ε with regard to the approximations of the mean and the standard deviation (sd) of the
steady state. Example 1

Perturbation method Kloeden–
Platen–Schurz
(1000 simula-
tions)

Kloeden–
Platen–Schurz
(10,000 simu-
lations)

ε = 0 Mean 0 0.00135 0.00027

sd 0.15811 0.16031 0.15873

ε = 0.01 Mean 0 0.00009 −0.00028

SD 0.15733 0.15419 0.15732

ε = 0.1 Mean 0 0.00022 −1.806 · 10−6

SD 0.15010 0.14933 0.14992

ε = 0.5 Mean 0 −3.124 · 10−7 0.00006

SD 0.11249 0.12931 0.12954

ε = 1 Mean 0 0.00028 0.00010

SD 0.01762 0.11646 0.11267

variance, V
[
Ŷ (t)

]
, and (3) the correlation function, ΓŶ Ŷ (τ ). We will use this information

to compute approximations, first of the p.d.f. of Ŷ (t), using the PME, and, secondly, of the
spectral density function of Ŷ (t).

From expression (29), in particular, we know that E
[
Ŷ (t)

]
and E

[
(Ŷ (t))3

]
are null. For

the second-order moment, E
[
(Ŷ (t))2

]
, using expression (25) we obtain

E
[
(Ŷ (t))2] = 1

40
− 12641

512000
ε.

This value is also the variance sinceE
[
Ŷ (t)

] = 0. On the other hand, asE
[
(Ŷ (t))2

]
is always

positive, we can obtain the following bound for the perturbative parameter, ε < 1.01258.
Although this value bounds the validity of the perturbation method, down below we show
that is a conservative bound.

To this end, we will compare the mean and standard deviation (sd) of Ŷ (t) obtained via
the perturbation method and the ones computed by Kloeden–Platen–Schurz algorithm [3].
The results are shown in Table 1. We can observe that both approximations are accurate for
ε = 0 (which corresponds to the linearization of model (2)), ε = 0.01 and ε = 0.1. But
significant differences in the standard deviation are revealed for ε = 0.5 and ε = 1.

According to expressions (30)–(33), the approximation of the correlation function is given
by

ΓŶ Ŷ (τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e−τ/20
(

399 (5107200 + 12641ε(−399 + 10τ)) cos
( √

399τ
20

)
+ √

399(5107200 − 12641ε(599 + 3990τ)) sin
( √

399τ
20

))

81510912000
, if τ > 0,

−
eτ/20

(
399(−5107200 + 12641ε(399 + 10τ)) cos

( √
399τ
20

)
+ √

399(5107200 + 12641ε(−599 + 3990τ)) sin
( √

399τ
20

))

81510912000
, if τ < 0,

1

40
− 12641

512000
ε, if τ = 0.

(41)
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(a)

(b) (c)

Fig. 1 Correlation function ΓŶ Ŷ (τ, ε) of Ŷ (t). a and b: 2D representation of ΓŶ Ŷ (τ, ε) for fixed values of
ε. c: 3D representation of ΓŶ Ŷ (τ, ε) for ε ∈ [0, 0.1]. Example 1

Notice that, in full agreement with expression (34), it is satisfied that

E
[
(Ŷ (t))2] = V

[
Ŷ (t)

] = ΓŶ Ŷ (0) = 1

40
− 12641

512000
ε.

In Fig. 1, we show the graphical representation of the correlation function, ΓŶ Ŷ (τ ), plotted
from the expression (41) and using different values of the perturbative parameter ε. To
emphasize this dependence on the parameter ε, hereinafter we will denote this function by
ΓŶ Ŷ (τ, ε). In Fig. 1a, we observe that the approximations of the ΓŶ Ŷ (τ, ε) deteriorate as
ε increases in full agreement with the results obtained in Table 1. The deterioration of the
approximations as ε increases can also be confirmed by checking that the general property
|ΓŶ Ŷ (τ )| ≤ ΓŶ Ŷ (0) for the correlation function [18] does not fulfil for ε = 0.5 and ε = 1
(see Fig. 1a). In contrast, for smaller values of ε = 0, 0.01, 0.1} this property holds. Notice
that the correlation function for ε = 0 and ε = 0.01 is quite similar, as expected. For the
sake of clarity, we have plotted these results in Fig. 1b. Finally, in Fig. 1c we show ΓŶ Ŷ (τ, ε)

as a surface varying (τ, ε) ∈ [−20, 20] × [0, 0.1].
Now, we compute the approximation of the p.d.f., fŶ (t)(y), of the steady state, using the

PME. Therefore, according to the PME the p.d.f. is sought in the form

fŶ (t)(y) = e−1−λ0−λ1 y−λ2 y2−λ3 y3
,

where in our case, λ0, λ1, λ2 and λ3 are determined numerically solving system (37) with
a0 = 1, a1 = 0, a2 = 1

40 − 12641
512000ε. In Table 2, we show the values of λ0, λ1, λ2 and λ3 and

the corresponding domain [y1, y2] for the following values of the perturbative parameter ε ∈
{0, 0.01, 0.1}. The domain has been determined using the Bienaymé–Chebyshev inequality
[μ−kσ,μ+kσ ] (in our case μ = 0) with k = 10. This guarantees the 99% of the probability
is contained in the above interval [μ − kσ,μ + kσ ] regardless of the distribution of the
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Table 2 Values for λi , i ∈ {0, 1, 2, 3} and the domain [y1, y2] obtained via the PME method, for ε ∈
{0, 0.01, 0.1}. Example 1

ε = 0 ε = 0.01 ε = 0.1

λ0 −1.92550119 −1.93046362 −1.977491823

λ1 1.16917582 · 10−8 2.28178507 · 10−8 1.72829555 · 10−10

λ2 19.9999999 20.19948570 22.19159320

λ3 −8.23925883 · 10−8 −3.07272453 · 10−7 −5.17949495 · 10−9

[y1, y2] [−1.581138, 1.581138] [−1.573311, 1.573311] [−1.501034, 1.501034]

Fig. 2 Approximate p.d.f., fŶ (t)(y), of steady state, Ŷ (t), for ε ∈ {0, 0.01, 0.1}. Example 1

corresponding random variable [14]. In Fig. 2, we compare the graphical representations of
the p.d.f, fŶ (t)(y). From them, we can observe that the plots are quite similar.

To complete our numerical analysis, in Fig. 3 we show a graphical representation of the
power spectral density for ε ∈ {0, 0.01, 0.1}. We observe that the approximation obtained via
the stochastic perturbation method is able to retain the properties of symmetry and positivity
of the power spectral density for ε ∈ {0, 0.01}; however, positivity begins to slightly fail for
ε = 0.1, therefore restricting the validity of the results provided by the stochastic perturbation
method. In Table 3, the noise intensity (D) and the correlation time (τ̂ ) have been calculated
for ε ∈ {0, 0.01}.

Example 2 In this second example, let us consider the Ornstein–Uhlenbeck stochastic pro-
cess to play the role of the external source, Z(t). So, it is defined as the stationary solution
of the Langevin equation

dZ(t)

dt
+ αZ(t) = σ

dW (t)

dt
, α > 0,

whereW (t) is the Wiener process [3]. Notice that α > 0 is a necessary and sufficient condition
to have a stationary solution. Z(t) satisfies the hypotheses so that the stochastic perturbation
method can be applied, i.e. is a zero-mean stationary Gaussian stochastic process, being
ΓZ Z (τ ) = σ 2 e−α|τ | its correlation function. We take the following values for the parameters
in Eq. (2), ω0 = 1, β = 1/100, σ = 1/100 and α = 1/2 (thus, according to “Appendix A”,
it ensures the existence of the steady-state solution). So, in this case, the nonlinear random
oscillator is given by
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Fig. 3 Power spectral density of the approximation solution Ŷ (t), SŶ (t)( f ), for ε ∈ {0, 0.01, 0.1}. Example
1

Table 3 Values for D and τ̂ , defined in (39), for ε ∈ {0, 0.01}. Example 1

ε = 0 ε = 0.01

D 0.0025 0.00245062

τ̂ 0.1 0.0990026

d2Y (t)

dt2 + 1

50

dY (t)

dt
+ Y (t) + ε sin(Y (t)) = Z(t), t > 0. (42)

We will now apply the same steps as in Example 1 to obtain approximations of the main
statistical functions of the approximate stochastic solution Ŷ (t). First, we will determine the
three first statistical moments. From expression (29), E

[
Ŷ (t)

]
and E

[
Ŷ 3(t)

]
are null. For

the second-order moment, E
[
Ŷ 2(t)

]
, using expression (17) we obtain

E
[
Ŷ 2(t)

] = 13

6300
− 465955883861

126023688000000
ε. (43)

From this expression, we can obtain a rough bound for ε, since E
[
Ŷ 2(t)

]
> 0. In this case,

ε < 0.558098. To check that our second-order moment approximation is consistent, we will
compare it with the random linear oscillator obtained when ε → 0 [2, Example 7.2],

d2Y (t)

dt2 + 1

50

dY (t)

dt
+ Y (t) = Z(t), t > 0.

Notice that, according to (34), expression (43) is also the variance of Ŷ (t), V
[
Ŷ (t)

]
.

In Fig. 4, we can observe that for t large enough (corresponding in the limit as t → ∞ to
the steady state), the second-order moment of the random linear equation approaches to our
approximation for ε = 0. Observe in the plot that the E

[
Y 2(t)

] → 0.00206349 ≈ 13
6300 as

t → ∞, in accordance with (43).

Once we have obtained the mean, E
[
Ŷ (t)

]
and the standard deviation (sd),

√
V
[
Ŷ (t)

]
,

of Ŷ (t) via the perturbation method, we compare them with the ones computed by the
Kloeden–Platen–Schurz algorithm. The results are shown in Table 4. We can observe that
both approximations are accurate for ε ∈ {0, 0.01, 0.1}; however, significant differences in
the standard deviation are shown for ε = 0.5, thus showing the perturbation method does
not provide acceptable approximations.
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Fig. 4 Comparison of second-order moments between linear and nonlinear random oscillator for small values
of ε and t large (corresponding to the steady state). Example 2

Table 4 Comparison of the mean and the standard deviation (sd) between the stochastic perturbation method
and the Kloeden–Platen–Schurz algorithm for different values of ε. Example 2

Perturbation method Kloeden–Platen–
Schurz (1000
simulations)

Kloeden–Platen–
Schurz (10,000
simulations)

ε = 0 Mean 0 −0.01267 −0.01283

SD 0.04542 0.04422 0.04447

ε = 0.01 Mean 0 0.00737 0.00725

SD 0.04501 0.04437 0.04394

ε = 0.1 Mean 0 −0.00265 −0.00222

SD 0.04115 0.04081 0.04083

ε = 0.5 Mean 0 −0.00626 −0.00643

SD 0.01465 0.03234 0.03246

The approximation of the correlation function, ΓŶ Ŷ (τ ), using (30) together with expres-
sions (31)–(33), is given by

ΓŶ Ŷ (τ ) =

⎧
⎪⎪⎨

⎪⎪⎩

f1(τ ), if τ < 0,

f2(τ ), if τ > 0,

13

6300
− 465955883861

126023688000000
ε, if τ = 0,

(44)
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where

f1(τ ) = − eτ/100

298974181793219856000000

(
19286265625 e

49τ
100 (1585962845ε−992186496)

+√
1111 sin

(
3
√

1111τ

100

)
(317192569(28243342050τ − 3197833091)ε

+ 466418810254320000)

+1111 cos

(
3
√

1111τ

100

)
(317192569(22036350τ + 3050020523)ε

−538069558062960000)) (45)

and

f2(τ ) = e− τ
2

298974181793219856000000

(
1111 cos

(
3
√

1111τ

100

)
(317192569(22036350τ

− 3050020523)ε + 538069558062960000)

+ e
49τ
100

(√
1111 sin

(
3
√

1111τ

100

)
(466418810254320000

−317192569(28243342050τ + 3197833091)ε))

−19286265625(1585962845ε − 992186496)) .

(46)

Then, we can check that property (34) holds.
In Fig. 5, we show the graphical representations of the correlation function, given by

expression (44), for different values of the perturbative parameter ε. First, in Fig. 5a, we can
observe that for ε = 0.1 and 0.2 the property |ΓŶ Ŷ (τ )| ≤ ΓŶ Ŷ (0) is not fulfilled, so showing
the perturbation method does not provide reliable approximations for such values of ε. For
the other values of ε, we have represented the correlation function (see Fig. 5b). One observes
that ΓŶ Ŷ (τ, ε) for ε ∈ {0, 0.01} are quite similar. Finally, in Fig. 5c we show ΓŶ Ŷ (τ, ε) as a
surface varying (τ, ε) ∈ [−20, 20] × [−0.01, 0.01].

Now, we will obtain the approximation of the p.d.f. in the form fŶ (t)(y)

= e−1−λ0−λ1 y−λ2 y2−λ3 y3
using the PME. The values of λ0, λ1, λ2 and λ3 are shown in

Table 5 together with the domain [y1, y2] for the following values of the perturbative param-
eter ε ∈ {0, 0.01, 0.1}. As in Example 1, the intervals [y1, y2] have been computed using the
Bienaymé–Chebyshev inequality.

In Fig. 6, we compare the graphical representations of the p.d.f., fŶ (t)(y). From them, we
can observe that the approximations are very similar.

To complete our numerical example, we have calculated graphical representations of
the power spectral density, SŶ (t)( f ), of the Ŷ (t). In Fig. 7, we show two plots. Panel left
corresponds to ε ∈ {0, 0.01}, and panel right to ε ∈ {0, 0.001}. We observe that the property
of symmetry breaks down when ε increases, while positivity is retained. In Table 6, D and τ̂

have been calculated for ε ∈ {0, 0.001}.
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(b)

(a)

(c)

Fig. 5 Correlation function ΓŶ Ŷ (τ, ε) of Ŷ (t). a and b: 2D representation of ΓŶ Ŷ (τ, ε) for fixed values of
ε. c: 3D representation of ΓŶ Ŷ (τ, ε) for ε ∈ [−0.01, 0.01]. Example 2

Table 5 Values of λi , i = {0, 1, 2, 3} and the domain [y1, y2] obtained via PME, for ε = 0 and 0.01. Example
2

ε = 0 ε = 0.01

λ0 −3.17273924 −3.181779485

λ1 −1.282642481 · 10−11 2.017945566 · 10−10

λ2 2.423076923 · 102 246.7285778

λ3 1.474799603 · 10−9 −2.2037993478 · 10−8

[y1, y2] [−0.454256, 0.454256] [−0.450168, 0.450168]

4 Conclusions

In this paper, we have studied a class of stochastic nonlinear oscillators, whose nonlinear
term is defined via a transcendental function. We have assumed that the oscillator is excited
by a zero-mean stationary Gaussian process. Since the nonlinear term is affected by a small
parameter, to conduct our probabilistic analysis, we have approximated the nonlinear term
using a Taylor’s polynomial, and then, we have applied the stochastic perturbation method
to obtain the main statistical moments of the stationary solution. After this theoretical anal-
ysis, we have carried out numerical examples where the stochastic excitation is driven by
two important stochastic processes, the Gaussian white noise and the Ornstein–Uhlenbeck
processes. Since a key point when applying the perturbation method is the accuracy of the
approximations in terms of the size of the perturbative parameter, from the numerical results
obtained in the two examples, we have performed a critical analysis checking whether some
important general properties of the statistics associated with the stationary solution are cor-
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Fig. 6 P.d.f. of Ŷ (t), fŶ (t)(y), for ε = 0 and 0.01. Example 2

Fig. 7 Power spectral density, SŶ (t)( f ), of Ŷ (t). Panel left: ε ∈ {0, 0.01}. Panel right: ε ∈ {0, 0.001}.
Example 2

Table 6 Values for D and τ̂ , defined in (39), for ε ∈ {0, 0.001}. Example 2

ε = 0 ε = 0.001

D 0.0002 0.0001996

τ̂ 0.0969231 0.0969031

rectly preserved. To better checking the accuracy of the approximations of the mean and the
standard deviation via the perturbation method, we have compared them with the ones calcu-
lated by means of an accurate numerical scheme, showing good agreement for certain sizes
of the perturbative parameter. This comparative analysis includes the linear case obtained
when the perturbative parameter is null. In this limit case, the results are also fully consistent.
Summarizing, our study shows, by means of a class of stochastic nonlinear oscillators, that the
double approximation Taylor-perturbation method is able to approximate the statistics of the
stationary solution. Additionally, we have taken advantage of the above computed statistics,
in combination with the principle of maximum entropy, to construct reliable approximations
of the density of the steady state. Our analysis has been performed with criticism with regard
to the size of the perturbative parameter, as required when applying the stochastic pertur-
bation method. Our approach can be useful to study other stochastic nonlinear oscillators
whose small perturbations affect a transcendental functions with the additional advantage of
computing the density of the stationary solution. In our future works, we plan to tackle this
type of problems for other stochastic nonlinear oscillators that have not been analysed yet.
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A Appendix: Existence of the steady-state solution

Notice that the linearized equation associated with (2) is

d2Y (t)

dt2 + 2β
dY (t)

dt
+ ω2

0Y (t) = Z(t),

and using the classical change of variable Y = (Y1(t), Y2(t))
 = (Y (t), dY (t)
dt )
 can be

written as

dY(t)

dt
=
(

0 1
−ω2

0 −2β

)
Y(t) +

(
0
1

)
Z(t), (47)

i.e.

dY(t) =
(

0 1
−ω2

0 −2β

)
Y(t)dt +

(
0
1

)
Z(t)dt. (48)

In the case that Z(t) = ξ(t) is the white noise (a zero mean, Gaussian and stationary process),
i.e. ξ(t) = Ẇ (t) (W (t) is the Wiener process), equation (48) writes

dY(t) =
(

0 1
−ω2

0 −2β

)
Y(t)dt +

(
0
1

)
Ẇ (t)dt,

dY(t) =
(

0 1
−ω2

0 −2β

)
Y(t)dt +

(
0
1

)
dW (t),

it is well known that it has a stationary or steady-state solution if the real parts of the eigen-
values of matrix

F =
(

0 1
−ω2

0 −2β

)

are negative (in other words, F is a Hurwitz matrix). Assuming β > 0, it is easy to check
that this condition fulfils since the spectrum os F is given by

σ(F) =
{
λ1 = −β +

√
β2 − ω2

0, λ2 = −β −
√

β2 − ω2
0

}
,
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and Re(λ1) = Re(λ2) = −β < 0 (Re(·) denotes the real part). Observe that in the under-
damped case (β2/ω2

0 < 1), λ1 and λ2 are complex conjugate. This fact is used in Example 1
where β = 1

20 > 0 to guarantee the existence of the steady-state solution. In the more general
case that Z(t) in (47) is such that satisfies a state-space stochastic differential equation (SDE)
of the form

dZ(t) = r1Z(t)dt + r2dW (t), (49)

model (47) together with (49) can be written as
⎧
⎨

⎩

dY1(t) = Y2(t)dt,
dY2(t) = −ω2

0Y1(t)dt − 2βY2(t)dt + Z(t)dt,
dZ(t) = r1Z(t)dt + r2dW (t).

(50)

This system is of the form

dỸ(t) = F̃Ỹ(t)dt + G̃dW (t), (51)

where

Ỹ(t) =
⎛

⎝
Y1(t)
Y2(t)
Z(t)

⎞

⎠ , F̃ =
⎛

⎝
0 1 0

−ω2
0 −2β 1

0 0 r1

⎞

⎠ , G̃ =
⎛

⎝
0
0
r2

⎞

⎠ . (52)

The well-known results about the existence of a steady-state solution of Itô SDEs then apply
to study the larger dimensional system (50) [or equivalently (51) and (52)]. As a consequence,
it is enough to check that the real parts of all the eigenvalues of matrix F̃ are negative. In this
case,

σ(F̃) =
{
λ1 = r1, λ2 = −β +

√
β2 − ω2

0, λ3 = −β −
√

β2 − ω2
0

}
.

Hence, since β > 0, it is sufficient that r1 < 0. Notice that in Example 2, Z(t) is the
Ornstein–Uhlenbeck process and r1 = −α < 0 (since α > 0), so the existence of the steady
state is also guaranteed. Finally, it is interesting to point out that in the general case that Z(t)
is a (zero mean) stationary Gaussian process (like the white noise and Ornstein–Uhlenbeck
processes in Examples 1 and 2, respectively), it is possible to use state-space representations
of form (51) to reduce a (stationary) Gaussian process-driven ordinary differential equation
of the form

dY(t)

dt
= FY(t) + GZ(t),

as (47) into a larger-dimensional ordinary differential equation driven by white noise, i.e. a
linear Itô SDE. This can be done when the spectral density of the covariance function of Z(t)
is a rational function.
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