Skip to main content
Log in

Unsteady heat transfer of NEPCM during freezing in a channel

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Transient problem of freezing phenomena within a system including two wavy PCM layers has been analyzed in this research. Existence of three air cold flow duct among the PCM layers makes it possible to observe solidification of paraffin. The selected PCM is RT30 and Al2O3 nano-powders were added to remove the limitation of paraffin. Finite volume method was applied for simulation of this unsteady phenomenon, and to model turbulent flow of air, kɛ approach was selected. Verification with experimental article proves the nice accuracy of code. Concentration of alumina and amplitude of wavy layers were assumed as variable factor. At beginning of freezing, temperature of whole zones is 305.15 K and inlet air has temperature of 285.15 K. As paraffin solidifies, heat releases and makes air warmer. The worst state in view of time is a = 5 mm and φ = 0.04 which takes 19193 s to achieve full solidification. The minimum required time for freezing occurs at a = 20 mm and φ = 0.04 which takes 11479 s. At t = 150 s, augment of amplitude leads to 25.27% augmentation in solid fraction and 2.5% reduction in temperature. Also, at same time stage, adding nanoparticles makes temperature to reduce about 0.42% while solid fraction augments about 1.96%. With augment of amplitude, required time decreases about 36.71% and 35.82% when φ = 0 and 0.04, respectively. Freezing time declines about 5.49% with addition of nano-powders when a = 20 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Wang, A. Almarashi, Y.A. Al-Turki, N.H. Abu-Hamdeh, M.R. Hajizadeh, Y.-M. Chu, Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.115052

    Article  Google Scholar 

  2. C. Zuo, Q. Chen, L. Tian, L. Waller, A. Asundi, Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective. Opt. Lasers Eng. 71, 20–32 (2015). https://doi.org/10.1016/j.optlaseng.2015.03.006

    Article  Google Scholar 

  3. Y.-M. Chu, D. Yadav, A. Shafee, Z. Li, Q.-V. Bach, Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study. J. Mol. Liq. 319(1), 114121 (2020). https://doi.org/10.1016/j.molliq.2020.114121

    Article  Google Scholar 

  4. Z. Zhang, M. Liu, M. Zhou, J. Chen, Dynamic reliability analysis of nonlinear structures using a Duffing-system-based equivalent nonlinear system method. Int. J. Approx. Reason. 126, 84–97 (2020). https://doi.org/10.1016/j.ijar.2020.08.006

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Sheikholeslami, S.A. Farshad, Investigation of solar collector system with turbulator considering hybrid nanoparticles. Renew. Energy 171, 1128–1158 (2021). https://doi.org/10.1016/j.renene.2021.02.137

    Article  Google Scholar 

  6. Y.-M. Chu, M.R. Hajizadeh, Z. Li, Q.-V. Bach, Investigation of nano powders influence on melting process within a storage unit. J. Mol. Liq. 318(15), 114321 (2020). https://doi.org/10.1016/j.molliq.2020.114321

    Article  Google Scholar 

  7. C. Chen, X. Wang, Y. Wang, D. Yang, F. Yao, W. Zhang, B. Wang, G.A. Sewvandi, D. Yang, D. Hu, Additive manufacturing of piezoelectric materials. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202005141

    Article  Google Scholar 

  8. X. Zhao, B. Gu, F. Gao, S. Chen, Matching model of energy supply and demand of the integrated energy system in coastal areas. J. Coastal Res. 103(sp1), 983 (2020). https://doi.org/10.2112/SI103-205.1

    Article  Google Scholar 

  9. Y.-M. Chu, Z. Li, Q.-V. Bach, Application of nanomaterial for thermal unit including tube fitted with turbulator. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01587-5

    Article  Google Scholar 

  10. Z. Zhang, C. Luo, Z. Zhao, Application of probabilistic method in maximum tsunami height prediction considering stochastic seabed topography. Nat Hazards (2020). https://doi.org/10.1007/s11069-020-04283-3

    Article  Google Scholar 

  11. Y.-M. Chu, S. Bilal, M.R. Hajizadeh, Hybrid ferrofluid along with MWCNT for augmentation of thermal behavior of fluid during natural convection in a cavity. Math. Methods Appl. Sci. 2020, 1–12 (2020). https://doi.org/10.1002/mma.6937

    Article  Google Scholar 

  12. Y. Liu, B. Zhang, Y. Feng, X. Lv, D. Ji, Z. Niu, Y. Yang, X. Zhao, Y. Fan, Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array. Appl. Sci. 10(7924), 7924 (2020). https://doi.org/10.3390/app10217924

    Article  Google Scholar 

  13. Y.-M. Chu, R. Kumar, Q.-V. Bach, Water-based nanofluid flow with various shapes of Al2O3 nanoparticles owing to MHD inside a permeable tank with heat transfer. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01609-2

    Article  Google Scholar 

  14. Z. Niu, B. Zhang, J. Wang, K. Liu, Z. Chen, K. Yang, Z. Zhou, Y. Fan, Y. Zhang, D. Ji, Y. Feng, The research on 220GHz multicarrier high-speed communication system. China Commun. 17(3), 131–139 (2020). https://doi.org/10.23919/JCC.2020.03.011

    Article  Google Scholar 

  15. M. Sheikholeslami, S.A. Farshad, Z. Ebrahimpour, Z. Said, Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: A review. J. Clean. Prod. 293, 126119 (2021). https://doi.org/10.1016/j.jclepro.2021.126119

    Article  Google Scholar 

  16. C. Zhao, J. Li, Equilibrium selection under the Bayes-based strategy updating rules. Symmetry (2020). https://doi.org/10.3390/sym12050739

    Article  Google Scholar 

  17. Y.-M. Chu, N.H. Abu-Hamdeh, B. Ben-Beya, M.R. Hajizadeh, Z. Li, Q.-V. Bach, Nanoparticle enhanced PCM exergy loss and thermal behavior by means of FVM. J Mol Liq Part B 320, 114457 (2020). https://doi.org/10.1016/j.molliq.2020.114457

    Article  Google Scholar 

  18. Z. Yang, P. Xu, W. Wei, G. Gao, N. Zhou, G. Wu, Influence of the crosswind on the pantograph arcing dynamics. IEEE Trans. Plasma Sci. 48(8), 2822–2830 (2020). https://doi.org/10.1109/TPS.2020.3010553

    Article  ADS  Google Scholar 

  19. B. Zhang, Z. Niu, J. Wang, D. Ji, T. Zhou, Y. Liu, Y. Feng, Y. Hu, J. Zhang, Y. Fan, Four-hundred gigahertz broadband multi-branch waveguide coupler. IET Microw. Antennas Propag. 14(11), 1175–1179 (2020). https://doi.org/10.1049/iet-map.2020.0090

    Article  Google Scholar 

  20. Y.-M. Chu, E. Abohamzeh, Q.-V. Bach, Thermal two-phase analysis of nanomaterial in a pipe with turbulent flow. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01576-8

    Article  Google Scholar 

  21. B. Zhang, D. Ji, D. Fang, S. Liang, Y. Fan, X. Chen, A novel 220-GHz GaN diode on-chip tripler with high driven power. IEEE Electron Device Lett. 40(5), 780–783 (2019). https://doi.org/10.1109/led.2019.2903430

    Article  ADS  Google Scholar 

  22. J. Hu, H. Zhang, Z. Li, C. Zhao, Z. Xu, Q. Pan, Object traversing by monocular UAV in outdoor environment. Asian J. Control (2020). https://doi.org/10.1002/asjc.2415

    Article  Google Scholar 

  23. H. Zhang, M. Sun, L. Song, J. Guo, L. Zhang, Fate of NaClO and membrane foulants during in-situ cleaning of membrane bioreactors: combined effect on thermodynamic properties of sludge. Biochem. Eng. J. 147, 146–152 (2019). https://doi.org/10.1016/j.bej.2019.04.016

    Article  Google Scholar 

  24. Y.-M. Chu, F. Salehi, M. Jafaryar, Q.-V. Bach, Simulation based on FVM for influence of nanoparticles on flow inside a pipe enhanced with helical tapes. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01583-9

    Article  Google Scholar 

  25. R. Deng, M. Li, S. Linghu et al., Research on calculation method of steam absorption in steam injection thermal recovery technology. Fresenius Environ. Bull. 30(05), 5362–5369 (2021)

    Google Scholar 

  26. R. Deng, M. Li, S. Linghu et al., Sensitivity analysis of steam injection parameters of steam injection thermal recovery technology. Fresenius Environ. Bull. 30(05), 5385–5394 (2021)

    Google Scholar 

  27. C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, Q. Chen, High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci. Rep. 7(1), 7622–7654 (2017). https://doi.org/10.1038/s41598-017-06837-1

    Article  ADS  Google Scholar 

  28. Y.-M. Chu, Q.-V. Bach, Application of TiO2 nanoparticle for solar photocatalytic oxidation system. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01614-5

    Article  Google Scholar 

  29. M. Sheikholeslami, M. Jafaryar, A. Shafee, H. Babazadeh, Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J. Clean. Prod. 261, 121206 (2020)

    Article  Google Scholar 

  30. B.H. Li, Y. Liu, A.M. Zhang et al., A survey on blocking technology of entity resolution. J. Comput. Sci. Technol. 35, 769–793 (2020). https://doi.org/10.1007/s11390-020-0350-4

    Article  Google Scholar 

  31. Z. Dai, J. Xie, Z. Chen, S. Zhou, J. Liu, W. Liu, Z. Xi, X. Ren, Improved energy storage density and efficiency of (1−x)Ba0.85Ca0.15Zr0.1Ti0.9O3-xBiMg2/3Nb1/3O3 lead-free ceramics. Chem. Eng. J. 410, 128341 (2021). https://doi.org/10.1016/j.cej.2020.128341

    Article  Google Scholar 

  32. F. Li, A. Almarashi, M. Jafaryar, M.R. Hajizadeh, Y.-M. Chu, Melting process of nanoparticle enhanced PCM through storage cylinder incorporating fins. Powder Technol. 381, 551–560 (2021)

    Article  Google Scholar 

  33. L.-W. Fan, Z.-Q. Zhu, M.-J. Liu, A similarity solution to unidirectional solidification of nano-enhanced phase change materials (NePCM) considering the mushy region effect. Int. J. Heat Mass Transf. 86, 478–481 (2015)

    Article  Google Scholar 

  34. A.A. Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, A.T. Mohammad, Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy Build. 68, 33–41 (2014)

    Article  Google Scholar 

  35. M. Yang, C. Li, L. Luo, R. Li, Y. Long, Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling. Int. Commun. Heat Mass Transf. 125, 105317 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105317

    Article  Google Scholar 

  36. M. Liu, Z. Xue, H. Zhang, Y. Li, Dual-channel membrane capacitive deionization based on asymmetric ion adsorption for continuous water desalination. Electrochem. Commun. 125, 106974 (2021). https://doi.org/10.1016/j.elecom.2021.106974

    Article  Google Scholar 

  37. Y.-M. Chu, M.B. Almusawi, M.R. Hajizadeh, S.-W. Yao, Q.-V. Bach, Hybrid nanomaterial treatment within a permeable tank considering irreversibility. Int. J. Mod. Phys. C (2020). https://doi.org/10.1142/S0129183121500613

    Article  Google Scholar 

  38. J. Hu, M. Wang, C. Zhao, Q. Pan, C. Du, Formation control and collision avoidance for multi-UAV systems based on Voronoi partition. Sci. China Technol. Sci. 63(1), 65–72 (2020). https://doi.org/10.1007/s11431-018-9449-9

    Article  ADS  Google Scholar 

  39. X. Zuo, M. Dong, F. Gao, S. Tian, The modeling of the electric heating and cooling system of the integrated energy system in the coastal area. J. Coastal Res. 103(sp1), 1022 (2020). https://doi.org/10.2112/SI103-213.1

    Article  Google Scholar 

  40. M. Sun, B. Hou, S. Wang, Q. Zhao, L. Zhang, L. Song, H. Zhang, Effects of NaClO shock on MBR performance under continuous operating conditions. Environ. Sci. Water Res. Technol. 7(2), 344–396 (2021). https://doi.org/10.1039/d0ew00760a

    Article  Google Scholar 

  41. J. Zhang, W. Wu, C. Li, M. Yang, Y. Zhang, D. Jia, Y. Hou, R. Li, H. Cao, H.M. Ali, Convective heat transfer coefficient model under nanofluid minimum quantity lubrication coupled with cryogenic air grinding Ti–6Al–4V. Int. J. Precis. Eng. Manuf. Green Technol. (2020). https://doi.org/10.1007/s40684-020-00268-6

    Article  Google Scholar 

  42. M. Sheikholeslami, M. Jafaryar, Z. Said, A.I. Alsabery, H. Babazadeh, A. Shafee, Modification for helical turbulator to augment heat transfer behavior of nanomaterial via numerical approach. Appl. Therm. Eng. 182, 115935 (2021). https://doi.org/10.1016/j.applthermaleng.2020.115935

    Article  Google Scholar 

  43. M. Sui, C. Li, W. Wu, M. Yang, H.M. Ali, Y. Zhang, D. Jia, Y. Hou, R. Li, H. Cao, Temperature of grinding carbide with castor oil-based MoS2 nanofluid minimum quantity lubrication. J. Therm. Sci. Eng. Appl. 13(5), 51001 (2021). https://doi.org/10.1115/1.4049982

    Article  Google Scholar 

  44. J. Li, W.H. Alawee, M.J.H. Rawa, H.A. Dhahad, Y.-M. Chu, A. Issakhov, N.H. Abu-Hamdeh, M.R. Hajizadeh, Heat recovery application of nanomaterial with existence of turbulator. J. Mol. Liq. 326, 115268 (2021). https://doi.org/10.1016/j.molliq.2020.115268

    Article  Google Scholar 

  45. Y. Wang, C. Li, Y. Zhang, M. Yang, B. Li, D. Jia, Y. Hou, C. Mao, Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. J. Clean. Prod. 127, 487–499 (2016). https://doi.org/10.1016/j.jclepro.2016.03.121

    Article  Google Scholar 

  46. Y. Yang, H. Chen, X. Zou, X.L. Shi, W.D. Liu, L. Feng, G. Suo, X. Hou, X. Ye, L. Zhang, C. Sun, Flexible carbon-fiber/semimetal Bi nanosheet arrays as separable and recyclable plasmonic photocatalysts and photoelectrocatalysts. ACS Appl. Mater. Interfaces. 12(22), 24845–24854 (2020). https://doi.org/10.1021/acsami.0c05695

    Article  Google Scholar 

  47. X. Zhang, Y. Zhang, Experimental study on enhanced heat transfer and flow performance of magnetic nanofluids under alternating magnetic field. Int. J. Therm. Sci. 164, 106897 (2021). https://doi.org/10.1016/j.ijthermalsci.2021.106897

    Article  Google Scholar 

  48. X. Yan, X. Huang, Y. Chen, Y. Liu, L. Xia, T. Zhang, H. Lin, D. Jia, B. Zhong, G. Wen, Y. Zhou, A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance. Carbon 174, 662–672 (2021). https://doi.org/10.1016/j.carbon.2020.11.044

    Article  Google Scholar 

  49. Y. Zhang, C. Li, D. Jia, D. Zhang, X. Zhang, Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. Int. J. Mach. Tools Manuf. 99, 19–33 (2015). https://doi.org/10.1016/j.ijmachtools.2015.09.003

    Article  Google Scholar 

  50. T. Gao, C. Li, Y. Zhang, M. Yang, D. Jia, T. Jin, Y. Hou, R. Li, Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol. Int. 131, 51–63 (2019). https://doi.org/10.1016/j.triboint.2018.10.025

    Article  Google Scholar 

  51. R. Elbahjaoui, H. El Qarnia, Thermal analysis of nanoparticle-enhanced phase change material solidification in a rectangular latent heat storage unit including natural convection. Energy Build. 153, 1–17 (2017)

    Article  Google Scholar 

  52. X. Jin, H. Hu, X. Shi, X. Zhang, Energy asymmetry in melting and solidifying processes of PCM. Energy Convers. Manage. 106, 608–614 (2015)

    Article  Google Scholar 

  53. L. Li, H. Yu, X. Wang, S. Zheng, Thermal analysis of melting and freezing processes of phase change materials (PCMs) based on dynamic DSC test. Energy Build. 130, 388–396 (2016)

    Article  Google Scholar 

  54. Z. Duan, Q. Yin, C. Li, L. Dong, X. Bai, Y. Zhang, M. Yang, D. Jia, R. Li, Z. Liu, Milling force and surface morphology of 45 steel under different Al2O3 nanofluid concentrations. Int. J. Adv. Manuf. Technol. 107(3–4), 1277–1296 (2020). https://doi.org/10.1007/s00170-020-04969-9

    Article  Google Scholar 

  55. X. Wang, C. Li, Y. Zhang, W. Ding, M. Yang, T. Gao, H. Cao, X. Xu, D. Wang, Z. Said, S. Debnath, Vegetable oil-based nanofluid minimum quantity lubrication turning: academic review and perspectives. J. Manuf. Process. 59, 76–97 (2020). https://doi.org/10.1016/j.jmapro.2020.09.044

    Article  Google Scholar 

  56. X. Chen, D. Wang, T. Wang, Z. Yang, X. Zou, P. Wang, W. Luo, Q. Li, L. Liao, W. Hu, Z. Wei, Enhanced photoresponsivity of a GaAs nanowire metal-semiconductor-metal photodetector by adjusting the fermi level. ACS Appl. Mater. Interfaces 11(36), 33188–33193 (2019). https://doi.org/10.1021/acsami.9b07891

    Article  Google Scholar 

  57. X. Zhang, Y. Zhang, Heat transfer and flow characteristics of Fe3O4–water nanofluids under magnetic excitation. Int. J. Therm. Sci. (2021). https://doi.org/10.1016/j.ijthermalsci.2020.106826

    Article  Google Scholar 

  58. D. Yadav, Y.-M. Chu, Z. Li, Examination of the nanofluid convective instability of vertical constant throughflow in a porous medium layer with variable gravity. Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-01700-2

    Article  Google Scholar 

  59. Z. Chen, H. Zhang, X. He, G. Fan, X. Li, Z. He, G. Wang, L. Zhang, Fabrication of cellulosic paper containing zeolitic imidazolate framework and its application in removal of anionic dye from aqueous solution. BioResources 16(2), 2644–2654 (2021). https://doi.org/10.15376/biores.16.2.2644-2654

    Article  Google Scholar 

  60. L. Zhang, M. Zhang, S. You, D. Ma, J. Zhao, Z. Chen, Effect of Fe3+ on the sludge properties and microbial community structure in a lab-scale A2O process. Sci. Total Environ. 780, 146505 (2021). https://doi.org/10.1016/j.scitotenv.2021.146505

    Article  ADS  Google Scholar 

  61. H. Li, J. Tang, Y. Kang, H. Zhao, D. Fang, X. Fang, R. Chen, Z. Wei, Optical properties of quasi-type-II structure in GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires. Appl. Phys. Lett. 113(23), 233104 (2018). https://doi.org/10.1063/1.5053844

    Article  Google Scholar 

  62. X. Li, P. Yu, X. Niu, H. Yamaguchi, D. Li, Non-contact manipulation of nonmagnetic materials by using a uniform magnetic field: experiment and simulation. J. Magn. Magn. Mater. 497, 165957 (2020). https://doi.org/10.1016/j.jmmm.2019.165957

    Article  Google Scholar 

  63. P.-Y. Xiong, A. Almarashi, H.A. Dhahad, W.H. Alawee, A.M. Abusorrah, A. Issakhov, N.H. Abu-Hamdeh, A. Shafee, Y.-M. Chu, Nanomaterial transportation and exergy loss modeling incorporating CVFEM. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.115591

    Article  Google Scholar 

  64. O.K. Yagci, M. Avci, Aydin, Melting and solidification of PCM in a tube-in-shell unit: Effect of fin edge lengths’ ratio. J. Energy Storage 24, 100802 (2019)

    Article  Google Scholar 

  65. J.M. Mahdi, E.C. Nsofor, Solidification of a PCM with nanoparticles in triplex-tube thermal energy storage system. Appl. Therm. Eng. 108, 596–604 (2016)

    Article  Google Scholar 

  66. C. Nie, S. Deng, J. Liu, Effects of fins arrangement and parameters on the consecutive melting and solidification of PCM in a latent heat storage unit. J. Energy Storage 29, 101319 (2020)

    Article  Google Scholar 

  67. M. Sun, L. Yan, L. Zhang, L. Song, J. Guo, H. Zhang, New insights into the rapid formation of initial membrane fouling after in-situ cleaning in a membrane bioreactor. Process Biochem. 1991(78), 108–113 (2019). https://doi.org/10.1016/j.procbio.2019.01.004

    Article  Google Scholar 

  68. H. Zhang, W. Guan, L. Zhang, X. Guan, S. Wang, Degradation of an organic dye by bisulfite catalytically activated with iron manganese oxides: the role of superoxide radicals. ACS Omega 5(29), 18007–18012 (2020). https://doi.org/10.1021/acsomega.0c01257

    Article  Google Scholar 

  69. K. Zhang, Q. Huo, Y.Y. Zhou, H.H. Wang, G.P. Li, Y.W. Wang, Y.Y. Wang, Textiles/metal–organic frameworks composites as flexible air filters for efficient particulate matter removal. ACS Appl. Mater. Interfaces. 11(19), 17368–17374 (2019). https://doi.org/10.1021/acsami.9b01734

    Article  Google Scholar 

  70. P.-Y. Xiong, A. Almarashi, H.A. Dhahad, W.H. Alawee, A. Issakhov, Y.-M. Chu, Nanoparticles for phase change process of water utilizing FEM. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116096

    Article  Google Scholar 

  71. K. Zhang, Z. Yang, X. Mao, X.L. Chen, H.H. Li, Y.Y. Wang, Multifunctional textiles/metal−organic frameworks composites for efficient ultraviolet radiation blocking and noise reduction. ACS Appl. Mater. Interfaces. 12(49), 55316–55323 (2020). https://doi.org/10.1021/acsami.0c18147

    Article  Google Scholar 

  72. X. Li, Y. Feng, B. Liu, D. Yi, X. Yang, W. Zhang, G. Chen, Y. Liu, P. Bai, Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. J. Alloys Compd. 788, 485–494 (2019). https://doi.org/10.1016/j.jallcom.2019.02.223

    Article  Google Scholar 

  73. J. Jiang, Z.Y. Peng, M. Ye, Y.B. Wang, X. Wang, W. Bao, Thermal effect of welding on mechanical behavior of high-strength steel. J. Mater. Civ. Eng. (2021). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003837

    Article  Google Scholar 

  74. X. Yang, Q. Li, E. Lu, Z. Wang, X. Gong, Z. Yu, Y. Guo, L. Wang, Y. Guo, W. Zhan, J. Zhang, O.R.N. Lab, ORNL, O. R. T. U. , Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat. Commun. 10(1), 1611 (2019). https://doi.org/10.1038/s41467-019-09662-4

    Article  ADS  Google Scholar 

  75. J. Hu, H. Zhang, L. Liu, X. Zhu, C. Zhao, Q. Pan, Convergent multiagent formation control with collision avoidance. IEEE Trans. Rob. 36(6), 1805–1818 (2020). https://doi.org/10.1109/TRO.2020.2998766

    Article  Google Scholar 

  76. M.A. Hamdan, I. Al-Hinti, Analysis of heat transfer during the melting of a phase-change material. Appl. Therm. Eng. 24(13), 1935–1944 (2004)

    Article  Google Scholar 

  77. R.P. Singh, S.C. Kaushik, D. Rakshit, Solidification behavior of binary eutectic phase change material in a vertical finned thermal storage system dispersed with graphene nano-plates. Energy Convers. Manag. 171, 825–838 (2018)

    Article  Google Scholar 

  78. A. Sathishkumar, V. Kumaresan, R. Velraj, Solidification characteristics of water based graphene nanofluid PCM in a spherical capsule for cool thermal energy storage applications. Int. J. Refrig. 66, 73–83 (2016)

    Article  Google Scholar 

  79. S. Preet, B. Bhushan, T. Mahajan, Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM). Sol. Energy 155, 1104–1120 (2017)

    Article  ADS  Google Scholar 

  80. M. Sheikholeslami, S.A. Farshad, Z. Said, Analyzing entropy and thermal behavior of nanomaterial through solar collector involving new tapes. Int. Commun. Heat Mass Transf. 123, 105190 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105190

    Article  Google Scholar 

  81. A.D. Brent, V.R. Voller, K.J. Reid, Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer. Heat Transf. 13, 297–318 (1988)

    Article  ADS  Google Scholar 

  82. F.L. Tan, S.F. Hosseinizadeh, J.M. Khodadadi, L. Fan, Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int. J. Heat Mass Transf. 52, 3464–3472 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Ali Rothan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rothan, Y.A. Unsteady heat transfer of NEPCM during freezing in a channel. Eur. Phys. J. Plus 136, 660 (2021). https://doi.org/10.1140/epjp/s13360-021-01658-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01658-8

Navigation