Skip to main content
Log in

Nonclassical correlations in two-qubit Ising model with an arbitrary magnetic field: Local quantum Fisher information and local quantum uncertainty

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate the nonclassical correlations via local quantum Fisher information (LQFI), local quantum uncertainty (LQU) and logarithmic negativity for the two-qubit Ising model under a magnetic field in an arbitrary direction. The nonclassical correlations of LQFI, LQU and LN are explicitly derived when the magnetic field is perpendicular to the direction of the two-qubit Heisenberg Ising model. While when the magnetic field has an arbitrary direction, they are investigated numerically. The closed forms of the LQFI and LQU confirm the inequality between the quantum Fisher information and skew information, where the LQFI is always greater than or equal to the LQU, and both of them show very similar behavior with different amplitudes. It is found that when the system is in its ground state, the LQFI and LQU have the same closed form which can be used in calculating the LN. The dependence of the nonclassical correlations on the direction of the magnetic field is investigated with the effects of the magnitude of the applied magnetic field and the spin interaction coupling. The phenomenon of sudden change for the LQFI and LQU and the sudden death and sudden birth of the entanglement depend on the temperature and the magnitude of the applied magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002

  2. S. Bell John, On the Einstein Podolsky Rosen paradox. Phys. Physique Fizika 1(3), 195 (1964)

    Article  MathSciNet  Google Scholar 

  3. F. Werner Reinhard, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  4. Vlatko Vedral, Quantum entanglement. Nature Phys. 10(4), 256 (2014)

    Article  ADS  Google Scholar 

  5. B.P. Lanyon, M. Barbieri, M.P. Almeida, A.G. White, Experimental quantum computing without entanglement. Phys. Rev. Lett. 101(20), 458 (2008)

    Article  Google Scholar 

  6. Animesh Datta, Guifre Vidal, Role of entanglement and correlations in mixed-state quantum computation. Phys. Revi. A 75(4), 043210 (2007)

    ADS  MathSciNet  Google Scholar 

  7. Harold Ollivier, Wojciech H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  8. Shunlong Luo, Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77(2), 022301 (2008)

    Article  ADS  Google Scholar 

  9. Yu. Guo, Non-commutativity measure of quantum discord. Scientif. Rep. 6, 25241 (2016)

    Article  ADS  Google Scholar 

  10. A. Ferraro, L. Aolita, D. Cavalcanti, F.M. Cucchietti, A. Acin, Almost all quantum states have nonclassical correlations. Phys. Rev. A 81(5), 052318 (2010)

    Article  ADS  Google Scholar 

  11. Borivoje Dakić, Vlatko Vedral, Časlav Brukner, Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105(19), 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  12. P. Wigner Eugene, M. Yanase Mutsuo, Information contents of distributions, in Particles and fields. part ii: foundations of quantum mechanics. ed. by I. Part (Springer, New York, 1997), pp. 452–460

    Chapter  Google Scholar 

  13. Davide Girolami, Tommaso Tufarelli, Gerardo Adesso, Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110(24), 240402 (2013)

    Article  ADS  Google Scholar 

  14. A.-B.A. Mohamed, N. Metwally, Non-classical correlations based on skew information for an entangled two qubit-system with non-mutual interaction under intrinsic decoherence. Annal. Phys. 381, 137–150 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. J.S. Sales, W.B. Cardoso, A.T. Avelar, N.G. de Almeida, Dynamics of nonclassical correlations via local quantum uncertainty for atom and field interacting into a lossy cavity QED. Phys. A: Statist. Mech. Appl. 443, 399–405 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A.-B.A. Mohamed, H.-A. Hessian, H. Eleuch, Robust correlations in a dissipative two-qubit system interacting with two coupled fields in a non-degenerate parametric amplifier. Quantum Inf. Process. 18(10), 327 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ajoy Sen, Debasis Sarkar, Amit Bhar, Local quantum uncertainty in two-qubit separable states: a case study. Quantum Inf. Process. 15(1), 233–243 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. L. Cheng-Cheng, Y. Liu, Probing quantum coherence, uncertainty, steerability of quantum coherence and quantum phase transition in the spin model. Quantum Inf. Process. 16(5), 138 (2017)

    Article  ADS  MATH  Google Scholar 

  19. Shunlong Luo, Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91(18), 458 (2003)

    Article  Google Scholar 

  20. S. Luo, Y. Wigner, Skew information vs quantum Fisher information. Proc. Am. Math. Soc. 132(3), 885–890 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Sunho, L. Longsuo, K. Asutosh, J. Wu, Characterizing nonclassical correlations via local quantum Fisher information. Phys. Rev. A 97(3), 032326 (2018)

    Article  MathSciNet  Google Scholar 

  22. A. Slaoui, L. Bakmou, M. Daoud, R. Ahl Laamara, A comparative study of local quantum Fisher information and local quantum uncertainty in Heisenberg XY model. Phys. Lett. A 383(19), 2241–2247 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. N. Canosa, R. Rossignoli, Separability conditions and limit temperatures for entanglement detection in two-qubit heisenberg x y z models. Phys. Rev. A 69(5), 052306 (2004)

    Article  ADS  Google Scholar 

  24. Z. Guo-Feng, L. Shu-Shen, Thermal entanglement in a two-qubit heisenberg x x z spin chain under an inhomogeneous magnetic field. Phys. Rev. A 72(3), 034302 (2005)

    Article  ADS  Google Scholar 

  25. G.L. Kamta, A.F. Starace, Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg xy chain. Phys. Rev. Lett. 88(10), 107901 (2002)

    Article  ADS  Google Scholar 

  26. M. Asoudeh, V. Karimipour, Thermal entanglement of spins in an inhomogeneous magnetic field. Phys. Rev. A 71(2), 022308 (2005)

    Article  ADS  Google Scholar 

  27. J.M. Liu, Y. Peng-Fei, J.G. Cai, G.T. Shen, Thermal entanglement of a two-qubit Heisenberg xyz model with an in-plane magnetic field. Chin. J. Phys. 47(4), 574–585 (2009)

    Google Scholar 

  28. F.-L. Zhang, M.-L. Liang, J.-H. Zhang, Influence of arbitrary magnetic field on entanglement in Heisenberg xxz model. Opt. Commun. 275(1), 268–273 (2007)

    Article  ADS  Google Scholar 

  29. G.L. Kamta, A.Y. Istomin, A.F. Starace, Thermal entanglement of two interacting qubits in a static magnetic field. Eur. Phys. J. D 44(2), 389–400 (2007)

    Article  ADS  Google Scholar 

  30. D. Gunlycke, V.M. Kendon, V. Vedral, S. Bose, Thermal concurrence mixing in a one-dimensional ising model. Phys. Rev. A 64(4), 042302 (2001)

    Article  ADS  Google Scholar 

  31. Hailin Huang, Entanglement and optimal dense coding in spin chain with an arbitrary magnetic field. Int. J. Theor. Phys. 48(12), 3491–3497 (2009)

    Article  MATH  Google Scholar 

  32. H.-L. Huang, Quantum teleportation via a two-qubit Ising Heisenberg chain with an arbitrary magnetic field. Int. J. Theor. Phys. 50(1), 70–79 (2011)

    Article  MATH  Google Scholar 

  33. J. Karthik, S. Auditya, Entanglement, avoided crossings, and quantum chaos in an ising model with a tilted magnetic field. Phys. Rev. A 75(2), 022304 (2007)

    Article  ADS  Google Scholar 

  34. F. Terzis Andreas, Entanglement in a two-qubit ising model under a site-dependent external magnetic field. Phys. Lett. A 333(5–6), 438–445 (2004)

    Article  ADS  MATH  Google Scholar 

  35. F. Terzis Andreas, A. Petros, Thermal quantum discord and classical correlations in a two-qubit ising model under a site-dependent magnetic field. Quantum Inf. Process. 11(6), 1931–1950 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  36. R. Islam, E.E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, G.-D. Lin, L.-M. Duan, Wangc C-C. Joseph, J.K. Freericks et al., Onset of a quantum phase transition with a trapped ion quantum simulator. Nature Commun 2(1), 1–6 (2011)

    Article  Google Scholar 

  37. K. Kim, S. Korenblit, R. Islam, E.E. Edwards, M.S. Chang, C. Noh, H. Carmichael, G.D. Lin, L.M. Duan, Wang CC. Joseph et al., Quantum simulation of the transverse ising model with trapped ions. New J. Phys. 13(10), 105003 (2011)

    Article  ADS  Google Scholar 

  38. Simon Jonathan, S. Bakr Waseem, R. Ma, T.M. Eric, M. Preiss Philipp, G. Markus, Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472(7343), 307–312 (2011)

    Article  Google Scholar 

  39. Petar Jurcevic, Ben P. Lanyon, Philipp Hauke, Cornelius Hempel, Peter Zoller, Rainer Blatt, Christian F. Roos, Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature 511(7508), 202–205 (2014)

    Article  ADS  Google Scholar 

  40. P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A.V. Gorshkov, C. Monroe, Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511(7508), 198–201 (2014)

    Article  ADS  Google Scholar 

  41. Helstrom Carl W, Quantum detection and estimation theory. 1976

  42. M. Kay Steven, Fundamentals of Statistical Signal Processing (Prentice Hall PTR, New Jersey, 1993)

    MATH  Google Scholar 

  43. M.G. Genoni, Optical phase estimation in the presence of phase diffusion. Phys. Rev. Lett. 106(15), 153603 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  44. François Chapeau-Blondeau, Optimizing qubit phase estimation. Phys. Rev. A 94(2), 022334 (2016)

    Article  ADS  Google Scholar 

  45. Luca Pezzé, Augusto Smerzi, Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102(10), 100401100401 (2009)

    Article  MathSciNet  Google Scholar 

  46. Rivas Ángel, Luis Alfredo (Metrological resolution and nonclassicality in linear and nonlinear detection schemes, Technical Report, 2010)

  47. Nan Li, Shunlong Luo, Entanglement detection via quantum Fisher information. Phys. Rev. A 88(1), 014301 (2013)

    Article  ADS  Google Scholar 

  48. Davide Girolami, M. Souza Alexandre, G. Vittorio, T. Tommaso, G. Filgueiras Jefferson, S. Sarthour Roberto, O. Soares-Pinto Diogo, S. Oliveira Ivan, A. Gerardo, Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112(21), 210401 (2014)

    Article  ADS  Google Scholar 

  49. Bera Manabendra N, Role of quantum correlation in metrology beyond standard quantum limit. arXiv preprint arXiv:1405.5357, 2014

  50. Vidal Guifré, F. Werner Reinhard, Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)

    Article  Google Scholar 

  51. Yu. Ting, J.H. Eberly, Sudden death of entanglement. Science 323(5914), 598–601 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. J. Maziero, L. CCeleri, R.M. Serra, V. Vedral, Classical and quantum correlations under decoherence. Phys. Rev. A 80(4), 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  53. X. Jin-Shi, X. Xiao-Ye, C.-F. Li, C.-J. Zhang, X.-B. Zou, G.-C. Guo, Experimental investigation of classical and quantum correlations under decoherence. Nature Commun. 1(1), 1–6 (2010)

    ADS  Google Scholar 

  54. J.-M. Gong, Q. Tang, Y.-H. Sun, Q. Lin, Enhancing the geometric quantum discord in the Heisenberg XX chain by Dzyaloshinsky-Moriya interaction. Phys. B: Condensed Matter 461, 70–74 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported financially by the Academy of Scientific Research and Technology (ASRT), Egypt, Grant No 6667, ASRT is the 2nd affiliation of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Abdelghany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelghany, R.A., Mohamed, AB.A., Tammam, M. et al. Nonclassical correlations in two-qubit Ising model with an arbitrary magnetic field: Local quantum Fisher information and local quantum uncertainty. Eur. Phys. J. Plus 136, 680 (2021). https://doi.org/10.1140/epjp/s13360-021-01649-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01649-9

Navigation