Skip to main content
Log in

Asymptotic iteration method for the inverse power potentials

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The asymptotic iteration method (AIM) is used to accurately calculate the eigenvalues of the Schrödinger equation with the potential \(V(r)=-r^{-s}\), \(s\in (0,1),\) in arbitrary dimensions. The recently studied case, \(s=1/2\), is discussed in detail where we give a reason for non-polynomial solutions. Using AIM sequences, we develop a method to compute the coefficients of the series solution in this case. AIM applications for \(s=1/3,s=1/4\) and \(s=2/3\) are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Quigg, J.L. Rosner, Quantum mechanics with applications to quarkonium. Phys. Rep. 5(6), 167–235 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  2. F.M. Fernández, Accurate eigenvalues of the Schrödinger equation with the potential \(V(r)=V_0r^\alpha \). Phys. Scr. 94, 125219 (2019)

    Article  ADS  Google Scholar 

  3. F.M. Fernández, Q. Ma, R.H. Tipping, Tight upper and lower bounds for energy eigenvalues of the Schrödinger equation. Phys. Rev. A 3(9), 1605 (1989)

    Article  ADS  Google Scholar 

  4. F.M. Fernández, Q. Ma, R.H. Tipping, Eigenvalues of the Schrödinger equation via the Riccati-Padé method. Phys. Rev. A 4, 6149 (1989)

    Article  ADS  Google Scholar 

  5. W. Li, W. Dai, Exact solution of inverse-square-root potential \(V(x)=-\alpha /\sqrt{r}\). Ann. Phys. 373, 207–215 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. A.M. Ishkhanyan, Exact solution of the Schrödinger equation for the inverse square root potential \(V_0/\sqrt{r}\). Euro-phys. Lett. 112, 10006 (2015)

    Article  Google Scholar 

  7. A.M. Ishkhanyan, Schrödinger potentials solvable in terms of the general Heun functions. Ann. Phys. 388, 456–471 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A.M. Ishkhanyan, Exact solution of the Schrödinger equation for a short-range exponential potential with inverse square root singularity. Eur. Phys. J. Plus 133, 83 (2018)

    Article  Google Scholar 

  9. A. Ronveaux, Heuns Differential Equation (Oxford University Press, Oxford, 1995)

    Google Scholar 

  10. S. Slavyanov, W. Lay, Special Functions: A Unified Theory Based on Singularities (Oxford University Press, Oxford, 2000)

    MATH  Google Scholar 

  11. F.M. Fernández, Comment on: Exact solution of the inverse-square-root potential \(V(r)=-\alpha /\sqrt{r}\). Ann. Phys. 379, 83–85 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. H. Ciftci, R.L. Hall, N. Saad, Asymptotic iteration method for eigenvalue problems. J. Phys. A Math. Gen. 3(6), 11807–11816 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. C. Quigg, J.L. Rosner, Quantum mechanics with applications to quarkonium. Phys. Rep. 5(6), 167 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  14. U. Sukhatme, T. Imbo, Shifted 1N expansions for energy eigenvalues of the Schrödinger equation. Phys. Rev. D 2(8), 418 (1983)

    Article  ADS  Google Scholar 

  15. T. Imbo, A. Pagnamenta, U. Sukhatme, Energy eigenstates of spherically symmetric potentials using the shifted \(1/N\) expansion. Phys. Rev. D 2(9), 1669 (1984)

    Article  ADS  Google Scholar 

  16. S.A. Maluendes, F.M. Fernández, A.M. Mesón, E.A. Castro, Large-order shifted \(1/N\) expansions. Phys. Rev. D 3(4), 1835 (1986)

    Article  ADS  Google Scholar 

  17. L. Richard, Hall, Spectral geometry of power-law potentials in quantum mechanics. Phys. Rev. A 3(9), 5500 (1989)

    Google Scholar 

  18. H. Ciftci, E. Ateşer, H. Koru, The solution of the Schrödinger equation for the power-law potentials. J. Phys. A 3(6), 3821 (2003)

    Article  ADS  MATH  Google Scholar 

  19. R.L. Hall, Q.D. Katatbeh, Semiclassical energy formulae for power-law and log potentials in quantum mechanics. J. Phys. A 3(6), 7173–7184 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. K.R. Amlan, Calculation of the bound states of power-law and logarithmic potentials through a generalized pseudospectral method. J. Phys. G 3, 269 (2004)

    Google Scholar 

  21. L. Richard, Hall, A simple interpolation formula for the spectra of power-law and log potentials. J. Phys. G 2(6), 981–986 (2000)

    Google Scholar 

  22. O. Mustafa, T. Barakat, Nonrelativistic shifted-\(l\) expansion technique for three- and two-dimensional Schrödinger equation. Commun. Theor. Phys. 2(8), 257–264 (1997)

    Article  Google Scholar 

  23. L. Richard, Hall, Envelope theory in spectral geometry. J. Math. Phys. 3(4), 2779 (1993)

    MATH  Google Scholar 

  24. R.L. Hall, Q.D. Katatbeh, Semiclassical energy formulae for power-law and log potentials in quantum mechanics. J. Phys. A 36, 7173–7184 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. E.L. Ince, Ordinary Differential Equations (Dover Publications, New York, 1956)

    Google Scholar 

  26. M.E.H. Ismail, N. Saad, The asymptotic iteration method revisited. J. Math. Phys. 6(1), 033501 (2020). https://doi.org/10.1063/1.5117143

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. F.M. Fernández, On the iterative method for eigenvalue problems. J. Phys. A Math. Gen. 37, 6173–6180 (2004)

    Article  ADS  MATH  Google Scholar 

  28. N. Saad, R.L. Hall, H. Ciftci, Criterion for polynomial solutions to a class of linear differential equations of second order. J. Phys. A Math. Gen. 3(8), 1147 (2005)

    MATH  Google Scholar 

  29. B. Champion, R.L. Hall, N. Saad, Asymptotic iteration method for singular potentials. Int. J. Mod. Phys. A 2(3), 1405 (2008)

    Article  ADS  MATH  Google Scholar 

  30. H. Ciftci, R.L. Hall, N. Saad, E. Dogu, Physical applications of second-order linear differential equations that admit polynomial solutions. J. Phys. A Math. Theor. 4(3), 415206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. H.T. Cho, J. Doukas, W. Naylor, A.S. Cornell, Quasinormal modes for doubly rotating black holes. Phys. Rev. D 8(3), 124034 (2011)

    Article  ADS  Google Scholar 

  32. I. Boztosun, D. Bonatsos, I. Inci, Analytical solutions of the Bohr Hamiltonian with the Morse potential. Phys. Rev. C 7(7), 044302 (2008)

    Article  ADS  Google Scholar 

  33. H. Ciftci, R.L. Hall, N. Saad, Iterative solutions to the Dirac equation. Phys. Rev. A 7(2), 022101 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  34. D. Mikulski, M. Molski, J. Konarski, Supersymmetry quantum mechanics and the asymptotic iteration method. J. Math. Chem. 4(6), 1356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. R.L. Hall, N. Saad, K.D. Sen, Soft-core Coulomb potentials and Heuns differential equation. J. Math. Phys. 5(1), 022107 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. R.L. Hall, N. Saad, K.D. Sen, Discrete spectra for confined and unconfined \(-a/r + b\, r^{2}\) potentials in d-dimensions. J. Math. Phys. 5(2), 092103 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. R.L. Hall, N. Saad, K.D. Sen, Spectral characteristics for a spherically confined \(-a/r + b\, r^{2}\) potential. J. Phys. A Math. Theor. 4(4), 185307 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. H.T. Cho, A.S. Cornell, J. Doukas, W. Naylor, Asymptotic iteration method for spheroidal harmonics of higher-dimensional Kerr-(A)dS black holes. Phys. Rev. D 8, 064022 (2009)

    Article  ADS  Google Scholar 

  39. Y.-Z. Zhang, Exact polynomial solutions of second order differential equations and their applications. J. Phys. A Math. Theor. 4(5), 065206 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. C.Y. Chen, F.L. Lu, D.S. Sun, S.H. Dong, The origin and mathematical characteristics of the Super-Universal Associated-Legendre polynomials. Commun. Theor. Phys. (Beijing) 6(2), 331–337 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. D.-S. Sun, Y. You, L. Fa-Lin, C.-Y. Chen and S.-H. Dong. The quantum characteristics of a class of complicated double ring-shaped non-central potential 8(9), 045002 (2014)

  42. C.Y. Chen, Y. You, F.L. Lu, D.S. Sun, S.H. Dong, Exact solutions to a class of differential equation and some new mathematical properties for the universal associated-Legendre polynomials. Appl. Math. Lett. 4, 90–96 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. C.Y. Chen, F.L. Lu, D.S. Sun, Y. You, S.H. Dong, Spin-orbit interaction for the double ring-shaped oscillator. Ann. Phys. 371, 183–198 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. H. Karayer, D. Demirhan, F. Büyükkiliç, Solution of Schrödinger equation for two different potentials using extended Nikiforov–Uvarov method and polynomial solutions of biconfluent Heun equation. J. Math. Phys. 5(9), 053501 (2018)

    Article  ADS  MATH  Google Scholar 

  45. J. Rovder, Zeros of the polynomial solutions of the differential equation \(x\, y^{\prime \prime } + (\beta _{0} + \beta _{1}\, x + \beta _{2}\, x^{2})\, y^{\prime } + (\gamma -n\,\beta _{2}\, x)\, y=0\). Mat. Căs. 2(4), 15 (1974)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewer for their constructive comments. Specific regarding the adoption of the criterion (18) that proved to much better approach that the criterion \(|\delta _{m+1}-\delta _m|<\varepsilon \) previous adopted by the present authors. Partial financial support of this work, under Grant No. GP249507 from the Natural Sciences and Engineering Research Council of Canada, is gratefully acknowledged [NS].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Saad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, R.L., Saad, N. Asymptotic iteration method for the inverse power potentials. Eur. Phys. J. Plus 136, 688 (2021). https://doi.org/10.1140/epjp/s13360-021-01647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01647-x

Navigation