Skip to main content
Log in

Spectral quasi-linearization and irreversibility analysis of magnetized cross fluid flow through a microchannel with two different heat sources and Newton boundary conditions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Fluid flow in a microchannel with heat transport effects can be seen in various applications such as micro heat collectors, mechanical–electromechanical systems, electronic device cooling, micro-air vehicles, and micro-heat exchanger systems. However, little is known about the consequence of internal heat source modulations on the flow of fluids in a microchannel. Therefore, in this work, the heat transfer of a magnetized cross fluid is carried out in a micro-channel subjected to two different heat source modulations. Entropy production analysis is also performed. The mathematical model consists of a cross fluid model. In addition, the effects of Joule heating, external magnetism, and the boundary conditions of Newton's heating are also examined. Determinant equations are constructed under steady-state conditions and parameterized using dimensionless variables. The numerical spectral quasi-linearization (SQLM) method was developed to interpret the Bejan number, entropy production, temperature, and velocity profiles. It is established that the power-law index of the cross fluid reduces the magnitude of the entropy production, velocity, and thermal field in the entire microchannel region. Furthermore, a larger Weissenberg number is capable of producing greater entropy, velocity, and thermal fields throughout the microchannel region. The variation in temperature distribution is more noticeable for the ESHS aspect than the THS aspect. The values of the pressure gradient parameter and the Eckert number must be kept high for maximum heat transport of the cross fluid. The entropy production of the cross fluid increases significantly with the physical aspects of Joule heating and convection heating in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Abbreviations

\(T_{1}\) :

Ambient temperature

\(Be\) :

Bejan number

\(Bi\) :

Biot number

\(h\) :

Channel width

\(E_{0}\) :

The characteristic entropy generation rate

\(L\) :

Characteristic temperature ratio

\(m\) :

Exponential index

\(h_{1} ,h_{2}\) :

Convective heat transfer coefficients

\(N_{v}\) :

Dissipative irreversibility

\(Ec\) :

Eckert number

\(Ns\) :

Entropy generation rate

\(T\) :

Fluid temperature

\(Q_{E}\) :

ESHS parameter

\(Q_{t}\) :

ESHS parameter

\(B_{0}\) :

Magnetic field strength

\({\mathbb{Q}}_{E}\) :

Coefficient of exponential heat source

\(N_{h}\) :

Heat transfer irreversibility

\(T_{2}\) :

Hot fluid temperature

\(\Gamma\) :

Material fluid parameter

\(Pr\) :

Prandtl number

\(p\) :

Pressure

\({\mathbb{Q}}_{T}\) :

Coefficient of thermal heat source

\(Re\) :

Reynolds number

\(cp\) :

Specific heat

\(k\) :

Thermal conductivity

\(n\) :

Power-law index

\(u\) :

Velocity component

\(f\) :

Dimensionless velocity component

\(\sigma\) :

Electric conductivity

\(\rho\) :

Fluid density

\(v_{0}\) :

Velocity of suction/injection

\(\mu\) :

Dynamic viscosity

\(\eta\) :

Dimensionless space variable

\(\theta\) :

Dimensionless temperature

2 :

Lower plate

1 :

Upper plate

References

  1. R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids (Wiley, New York, 1987)

    Google Scholar 

  2. R.B. Bird, Useful non-Newtonian models. Annu. Rev. Fluid Mech. 8, 13–34 (1976)

    Article  ADS  Google Scholar 

  3. I.A. Hassanien, A.A. Abdullah, R.S.R. Gorla, Flow and heat transfer in a power-law fluid over a non-isothermal stretching sheet. Math. Comput. Modell. 28, 105–116 (1998)

    Article  Google Scholar 

  4. S. Matsuhisa, R.B. Bird, Analytical and numerical solutions for laminar flow of the non-Newtonian Ellis fluid. AIChE J. 11, 588–595 (1965)

    Article  Google Scholar 

  5. A.W. Sisko, The flow of lubricating greases. Ind. Eng. Chem. 50, 1789–1792 (1958)

    Article  Google Scholar 

  6. M.M. Cross, Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. J. Colloid Sci. 20, 417–437 (1965)

    Article  Google Scholar 

  7. H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier Science, Amsterdam, 1989)

    MATH  Google Scholar 

  8. M.P. Escudier, I.W. Gouldson, A.S. Pereira, F.T. Pinho, R.J. Poole, On the reproducibility of the rheology of shear-thinning liquids. J. Nonnewton. Fluid Mech. 97(2–3), 99–124 (2001)

    Article  Google Scholar 

  9. M. Khan, M. Manzur, M. ur Rahman, On axisymmetric flow and heat transfer of Cross fluid over a radially stretching sheet. Results Phys. 7, 3767–3772 (2017)

    Article  ADS  Google Scholar 

  10. T. Hayat, M.I. Khan, M. Tamoor, M. Waqas, A. Alsaedi, Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface. Results Phys. 1(7), 1824–1827 (2017)

    Article  ADS  Google Scholar 

  11. M. Manzur, M. Khan, M. ur Rahman, Mixed convection heat transfer to cross fluid with thermal radiation: effects of buoyancy assisting and opposing flows. Int. J. Mech. Sci. 138, 515–523 (2018)

    Article  Google Scholar 

  12. M. Mustafa, A. Sultan, M. Rahi, Pressure-driven flow of Cross fluid along a stationary plate subject to binary chemical reaction and Arrhenius activation energy. Arab. J. Sci. Eng. 44(6), 5647–5655 (2019)

    Article  Google Scholar 

  13. M. Khan, M. Manzur, Boundary layer flow and heat transfer of Cross fluid over a stretching sheet, 2016, arXiv preprint arXiv:1609.01855.

  14. S. Hina, A. Shafique, M. Mustafa, Numerical simulations of heat transfer around a circular cylinder immersed in a shearthinning fluid obeying Cross model. Phys. A 15(540), 123184 (2020)

    Article  Google Scholar 

  15. M. Shahzad, M. Ali, F. Sultan, W.A. Khan, Z. Hussain, Computational investigation of magneto-cross fluid flow with multiple slip along wedge and chemically reactive species. Results Phys. 1(16), 102972 (2020)

    Article  Google Scholar 

  16. S.K. Kim, Forced convection heat transfer for the fully developed laminar flow of the cross fluid between parallel plates. J. Nonnewton. Fluid Mech. 1(276), 104226 (2020)

    Article  MathSciNet  Google Scholar 

  17. A.J. Chamkha, A.M. Rashad, T. Armaghani, M.A. Mansour, Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu– water nanofluid. J Therm Anal Calorim 132(2), 1291–1306 (2018)

    Article  Google Scholar 

  18. S.A. Mehryan, M. Izadi, A.J. Chamkha, M.A. Sheremet, Natural convection and entropy generation of a ferrofuid in a square enclosure under the efect of a horizontal periodic magnetic feld. J Mol Liq. 263, 510–525 (2018)

    Article  Google Scholar 

  19. H. Shamsabadi, S. Rashidi, J.A. Esfahani, Entropy generation analysis for nanofuid fow inside a duct equipped with porous bafes. J Therm Anal Calorim. 135(2), 1009–1019 (2019)

    Article  Google Scholar 

  20. S.M. Seyyedi, A.S. Dogonchi, D.D. Ganji, M. Hashemi-Tilehnoee, Entropy generation in a nanofuid-flled semi-annulus cavity by considering the shape of nanoparticles. J Therm Anal Calorim. 138(2), 1607–1621 (2019)

    Article  Google Scholar 

  21. M. Madhu, B. Mahanthesh, N.S. Shashikumar, S.A. Shehzad, S.U. Khan, B.J. Gireesha, Performance of second law in Carreau fluid flow by an inclined microchannel with radiative heated convective condition. Int. Commun. Heat Mass Transf. 117, 104761 (2020)

    Article  Google Scholar 

  22. S.A. Shehzad, N.S. Macha Madhu, B.J. Shashikumar, B.M. Gireesha, Thermal and entropy generation of non-Newtonian magneto-Carreau fluid flow in microchannel. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09706-8

    Article  Google Scholar 

  23. S.A. Shehzad, B. Mahanthesh, B.J. Gireesha, N.S. Shashikumar, M. Madhu, Brinkman- Forchheimer slip flow subject to exponential space and thermal-dependent heat source in a microchannel utilizing SWCNT and MWCNT nanoliquids. Heat Transfer-Asian Res. 48(5), 1688–1708 (2019)

    Article  Google Scholar 

  24. R.E. Bellman, R.E. Kalaba, Quasi Linearization and Nonlinear Boundary-Value Problems (Elsevier, New York, 1965)

    MATH  Google Scholar 

  25. S.S. Motsa, A new spectral local linearization method for nonlinear boundary layer flow problems. J. Appl. Math. 2013, 423628 (2013)

    MathSciNet  MATH  Google Scholar 

  26. L.N. Trefethen, Spectral Methods in MATLAB, SIAM, 2000, p 10

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through research groups program under grant number R.G.P-1/128/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael Al-Kouz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Kouz, W., Reddy, C.S., Alqarni, M.S. et al. Spectral quasi-linearization and irreversibility analysis of magnetized cross fluid flow through a microchannel with two different heat sources and Newton boundary conditions. Eur. Phys. J. Plus 136, 645 (2021). https://doi.org/10.1140/epjp/s13360-021-01625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01625-3

Navigation