Skip to main content
Log in

Analysis of the refugees’ drowning events:

the earthquakes’ statistics analogy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we explore the analogy between the refugees’ drownings in the sea and the earthquakes’ occurrences and focus on the aspect that characterizes the statistics of their spatial and temporal successions. The latter is shown to parallel the spatial distribution of consecutive drowning events with the difference that the former exhibits short-range behavior below \( \kappa = 4\,\mathrm{km}\) and it is characterized by scale-free statistics, as well as finite size scaling beyond \(\kappa = 4\,\mathrm{km}\), with a critical exponent \(\delta \approx 0.5\), falling within the range of the earthquakes’ \(\delta = 0.6 \pm 0.2\), while the distribution of events’ rates exhibits no similarity with that of the earthquakes. Finally, the events’ velocity distribution is also recovered. \(\kappa \) is suspected to be related to the range of mobile network’s coverage and thus effectively represents a cutoff in the ability of picking up signals on drownings in the sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data used in the paper are available for download at the following link: https://mailaub-my.sharepoint.com/:x:/g/personal/sn62_aub_edu_lb/ESVIF_Zdw3ROn5ypLKypk00BkdpjBL3X8rOanTB0rAZUMg?e=KPsnOV].

References

  1. R. Dendy, P. Helander, M. Tagger, Self-organised criticality in astrophysical accretion systems. Phys. Scripta 1999(T82), 133 (1999)

    Article  Google Scholar 

  2. P. Bak, C. Tang, Earthquakes as a self-organized critical phenomenon. J. Geophys. Res. Solid Earth 94(B11), 15635–15637 (1989)

    Article  Google Scholar 

  3. J. Davidsen, G. Kwiatek, Earthquake interevent time distribution for induced micro-, nano-, and picoseismicity. Phys. Rev. Lett. 110(6) (2013)

  4. A. Corral, Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes. Phys. Rev. Lett. 92(10) (2004)

  5. M.C. Stefanini, Spatio-temporal analysis of a complex landslide in the northern apennines (italy) by means of dendrochronology. Geomorphology 63(3–4), 191–202 (2004)

    Article  ADS  Google Scholar 

  6. J.A. Backer, J. Wallinga, Spatiotemporal analysis of the, ebola epidemic in west africa. PLoS Comput. Biol. 12(12), 2016 (2014)

    Google Scholar 

  7. Q. Huang, L. Hu, Q.-B. Liao, J. Xia, Q.-R. Wang, H.-J. Peng, Spatiotemporal analysis of the malaria epidemic in mainland china, 2004–2014. The Am. J. Trop. Med. Hyg. 97(2), 504–513 (2017)

    Article  Google Scholar 

  8. B.D. Malamud, G. Morein, D.L. Turcotte, Forest fires: an example of self-organized critical behavior. Science 281(5384), 1840–1842 (1998)

    Article  ADS  Google Scholar 

  9. H. Stanley, L. Amaral, S.V. Buldyrev, P. Gopikrishnan, V. Plerou, M. Salinger, Self-organized complexity in economics and finance. Proc. Nat. Acad. Sci. 99(suppl 1), 2561–2565 (2002)

    Article  ADS  Google Scholar 

  10. R.J. Wijngaarden, M.S. Welling, C.M. Aegerter, M. Menghini, Avalanches and self-organized criticality in superconductors. The Eur. Phys. J. B-Conden. Matter Complex Syst. 50(1–2), 117–122 (2006)

    Article  Google Scholar 

  11. J. Hesse, T. Gross, Self-organized criticality as a fundamental property of neural systems. Front. Syst. Neurosci. 8, 166 (2014)

    Article  Google Scholar 

  12. D.R. Chialvo, Emergent complex neural dynamics. Nat. Phys. 6(10), 744–750 (2010)

    Article  Google Scholar 

  13. C. Bedard, H. Kroeger, A. Destexhe, Does the 1/f frequency scaling of brain signals reflect self-organized critical states?. Phys. Rev. Lett. 97(11) (2006)

  14. H.J. Jensen, Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems, vol. 10 (Cambridge University Press, 1998)

  15. A.L. Goldberger, L.A. Amaral, J.M. Hausdorff, P.C. Ivanov, C.-K. Peng, H.E. Stanley, Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. 99(suppl 1), 2466–2472 (2002)

    Article  ADS  Google Scholar 

  16. D.L. Turcotte, Fractals and Chaos in Geology and Geophysics (Cambridge University Press, 1997)

  17. E.-J. Wagenmakers, S. Farrell, R. Ratcliff, Human cognition and a pile of sand: a discussion on serial correlations and self-organized criticality. J. Exp. Psychol. Gen. 134(1), 108 (2005)

    Article  Google Scholar 

  18. R. Ramos, R. Sassi, J. Piqueira, Self-organized criticality and the predictability of human behavior. New Ideas Psychol. 29(1), 38–48 (2011)

    Article  Google Scholar 

  19. T. Kron, T. Grund, Society as a self-organized critical system. Cybern. Human Know. 16(1–2), 65–82 (2009)

    Google Scholar 

  20. S. Galam, Sociophysics: a review of galam models. Int. J. Mod. Phys. C 19(03), 409–440 (2008)

    Article  ADS  Google Scholar 

  21. J. Davidsen, M. Paczuski, Analysis of the spatial distribution between successive earthquakes. Phys. Rev. Lett. 94(4) (2005)

  22. S. Najem, G. Faour, Debye-hückel theory for refugees’ migration. EPJ Data Sci. 7(1), 1–9 (2018)

    Article  Google Scholar 

  23. J.H. Ratcliffe, Aoristic signatures and the spatio-temporal analysis of high volume crime patterns. J. Quan. Criminol. 18(1), 23–43 (2002)

    Article  MathSciNet  Google Scholar 

  24. L. Alessandretti, P. Sapiezynski, S. Lehmann, and A. Baronchelli, “Multi-scale spatio-temporal analysis of human mobility,” PloS one, vol. 12, no. 2, 2017

  25. T. U. M. A. International Organization for Migration, “The central mediterranean route: Migrant fatalities january 2014 - july 2017.”

  26. M. Biggs, Strikes as forest fires: Chicago and paris in the late nineteenth century. Am. J. Sociol. 110(6), 1684–1714 (2005)

    Article  Google Scholar 

  27. H. Watt, M. Rice-Oxley, and D. Taylor, “Drowned, restrained, shot: how these migrants died for a better life,” Jun 2018

  28. L. Tondo, “Italian coastguard finds bodies of migrants who drowned at sea,” Oct 2019

  29. “Watch the med.”

  30. R. Bullock, “Great circle distances and bearings between two locations,” MDT, June, vol. 5, 2007

  31. G.M. Viswanathan, The Physics of Foraging: An Introduction to Random Searches and Biological Encounters (Cambridge University Press, 2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Najem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khederlarian, A., Grant, M., Halkort, M. et al. Analysis of the refugees’ drowning events:. Eur. Phys. J. Plus 136, 619 (2021). https://doi.org/10.1140/epjp/s13360-021-01616-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01616-4

Navigation