Skip to main content
Log in

Invariance properties and conservation laws of perturbed fractional wave equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this research, the group formalism, invariance properties and conservation laws of the nonlinear perturbed fractional wave equation have been explored. The method used in this paper was first described by Lukashchuk (Commun Nonlinear Sci Numer Simul 68:147–159, 2019). He shows that when the order of fractional derivative in a fractional differential equation is nearly integers, it can be approximated to a perturbed integer-order differential equation with a small perturbation parameter. Perturbed and unperturbed symmetries are found, and some new solutions are computed by the symmetry operators of the equation. These solutions are obtained by the invariant transformations of the symmetries. Also one-dimensional optimal system is used to derive another exact solutions. Finally, the nonlinear self-adjointness concept is applied in order to find conservation laws with informal Lagrangians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.A. Baikov, R.K. Gazizov, N.H. Ibragimov, Perturbation methods in group analysis. J. Sov. Math. 55(1), 145–1490 (1991)

    Article  MATH  Google Scholar 

  2. E. Buckwar, Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227(1), 81–97 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Euler, N. Euler, A. Kohler, On the construction of approximate solutions for a multi-dimensional nonlinear heat equation. J. Phys. A Math. Gen. 27(6), 2083–2092 (1994)

    Article  ADS  MATH  Google Scholar 

  4. R.K. Gazizov, A.A. Kasatkin, S.Y. Lukashchuk, Continuous transformation groups of fractional differential equations. Vestnik USATU 9, 125–135 (2007)

    Google Scholar 

  5. N.H. Ibragimov, Nonlinear self-adjointness in constructing conservation laws, vol. 7. Archives of ALGA (2011)

  6. N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics (D. Reidel, Dordrecht, 1985)

    Book  MATH  Google Scholar 

  7. N.H. Ibragimov, V.F. Kovalev, Approximate and Renormgroup Symmetries. Nonlinear Physical Science, 1st edn. (Springer, New York, 2009).

    Book  MATH  Google Scholar 

  8. A.G. Johnpillai, A.H. Kara, Variational formulation of approximate symmetries and conservation laws. Int. J. Theor. Phys. 40(8), 1501–1509 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. A.G. Johnpillai, A.H. Kara, F.M. Mahomed, A basis of approximate conservation laws for PDEs with a small parameter. Int. J. Nonlinear Mech. 41(6–7), 830–837 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A.G. Johnpillai, A.H. Kara, F.M. Mahomed, Approximate Noether type symmetries and conservation laws via partial Lagrangians for PDEs with a small parameter. J. Comput. Appl. Math. 223(1), 508–518 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A.F. Kara, F.M. Mahomed, C.Z. Qu, Approximate potential symmetries for partial differential equations. J. Phys. A Math. Gen. 33, 6601–6613 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A.H. Kara, F.M. Mahomed, G. Unal, Approximate symmetries and conservation laws with applications. Int. J. Theor. Phys. 38(9), 2389–2399 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Habibi, E. Lashkarian, E. Dastranj, S.R. Hejazi, Lie symmetry analysis, conservation laws and numerical approximations of time-fractional Fokker-Planck equations for special stochastic process in foreign exchange markets. Physica A 513, 750–766 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. S.R. Hejazi, S. Hosseinpour, E. Lashkaian, Approximate symmetries, conservation laws and numerical solutions for a class of perturbed linear wave type system. Quaest. Math. 42(10), 1393–1409 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  16. G. Jumarie, Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51(9–10), 1367–1376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).

    MATH  Google Scholar 

  18. V. Kiryakova, Generalized fractional calculus and applications, in: Pitman Research Notes in Mathematics, vol. 301 (1994)

  19. E. Lashkarian, S.R. Hejazi, E. Dastranj, Conservation laws of \((3+\alpha )\)-dimensional time-fractional diffusion equation. Comput. Math. Appl. 75(3), 740–754 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Lashkarian, S.R. Hejazi, Group analysis of the time fractional generalized diffusion equation. Physica A 479, 572–579 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. E. Lashkarian, S.R. Hejazi, Exact solutions of the time fractional nonlinear Schrödinger equation with two different methods. Math. Methods Appl. Sci. 41(7), 2664–2672 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. E. Lashkarian, S.R. Hejazi, N. Habibi, A. Motamednezhad, Symmetry properties, conservation laws, reduction and numerical approximations of timefractional cylindrical-Burgers equation. Commun. Nonlinear Sci. Numer. Simul. 67, 176–191 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. S.Y. Lukashchuk, Conservation laws for time-fractional subdiffusion and diffusion-wave equations. Nonlinear Dyn. 80(1–2), 791–802 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. S.Y. Lukashchuk, Constructing conservation laws for fractional order integro-differential equations. Theor. Math. Phys. 184(2), 1049–1066 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. S.Y. Lukashchuk, Approximate conservation laws for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 68, 147–159 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S.Y. Lukashchuk, Approximation of ordinary fractional differential equations by differential equations with a small parameter, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki 27(4), 515–531 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. F.M. Mahomed, C.Z. Qu, Approximate conditional symmetries for partial differential equations. J. Phys. A Math. Gen. 33(2), 343–356 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. F. Mainardy, Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models (Imperial College Press, Singapore, 2010).

    Book  Google Scholar 

  29. J.J. Mao, S.F. Tian, T.T. Zhang, X.J. Yan, Lie symmetry analysis, conservation laws and analytical solutions for chiral nonlinear Schrödinger equation in (2 + 1)-dimensions. Nonlinear Anal. Model. Control 25(3), 358–377 (2020)

    MathSciNet  MATH  Google Scholar 

  30. P.J. Olver, Application of Lie Groups to Differential Equations (Springer, New York, 1986).

    Book  MATH  Google Scholar 

  31. M.S. Osman, Multiwave solutions of time-fractional (2+1)-dimensional Nizhnik–Novikov–Veselov equations. Pramana J. Phys. 88(4), 67–75 (2017)

    Article  ADS  Google Scholar 

  32. L.V. Ovsiannikov, On optimal systems of subalgebras. Doklady Math. 48(3), 645–649 (1994)

    MathSciNet  Google Scholar 

  33. L.V. Ovsiannikov, Group Analysis of Differential Equations (Academic Press, New York, 1982)

    MATH  Google Scholar 

  34. J. Patera, P. Winternitz, Subalgebras of real three- and four-dimensional Lie algebras. J. Math. Phys. 18(7), 1449–1458 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Academic Press, New York, 1999).

    MATH  Google Scholar 

  36. C. Qin, S.F. Tian, L. Zou, T.T. Zhang, Lie symmetry analysis, conservation laws and exact solutions of fourth-order time fractional Burgers equation. J. Appl. Anal. Comput. 8(6), 1727–1746 (2018)

    MathSciNet  MATH  Google Scholar 

  37. J. Sabatier, O.P. Agrawal, J.A.T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (Springer, Dordrecht, 2007).

    Book  MATH  Google Scholar 

  38. S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Sci. Publishers, London, 1993).

    MATH  Google Scholar 

  39. R. Sahadevan, T. Bakkyaraj, Invariant analysis of time fractional generalized Burgers and Korteweg–de Vries equations. J. Math. Anal. Appl. 393(2), 341–347 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. V.K. Srivastava, M.K. Awasthi, M. Tamsir, RDTM solution of Caputo time fractional-order hyperbolic telegraph equation. AIP Adv. 3, 032142 (2013)

    Article  ADS  Google Scholar 

  41. S.F. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation. Appl. Math. Lett. 100, 106056 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. X.B. Wang, S.F. Tian, C.Y. Qin, T.T. Zhang, Lie symmetry analysis, conservation laws and analytical solutions of a time-fractional generalized KdV-type equation. J. Nonlinear Math. Phys. 24(4), 516–530 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Y. Zhou, J. Wang, L. Zhang, Basic Theory of Fractional Differential Equations (World Scientific Publishing Company, London, 2016).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Reza Hejazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashkarian, E., Motamednezhad, A. & Hejazi, S.R. Invariance properties and conservation laws of perturbed fractional wave equation. Eur. Phys. J. Plus 136, 615 (2021). https://doi.org/10.1140/epjp/s13360-021-01595-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01595-6

Navigation