Skip to main content
Log in

A new model with solitary waves: solution, stability and quasinormal modes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We construct solitary wave solutions in a \(1+1\)-dimensional massless scalar (\(\phi \)) field theory with a specially chosen potential \(V(\phi )\). The equation governing perturbations about this solitary wave has an effective potential which is a simple harmonic well over a region, and a constant beyond. This feature allows us to ensure the stability of the solitary wave through the existence of bound states in the well, which can be found by semi-analytical methods. A further check on stability is performed through our search for quasi-normal modes (QNM) which are defined for purely outgoing boundary conditions. The time-domain profiles of the perturbations and the parametric variation of the QNM values are presented and discussed in some detail. Expectedly, a damped oscillatory temporal behaviour (ringdown) of the fluctuations is clearly seen through our analysis of the quasi-normal modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.E. Allen, The early history of solitons (solitary waves). Phys. Scr. 57, 436–441 (1998)

    Article  ADS  Google Scholar 

  2. R. Rajaraman, Solitons and Instantons (North Holland, Amsterdam, 1982)

    MATH  Google Scholar 

  3. F. Abdullaev, S. Darmanyan, P. Khabibullaev, J. Engelbrecht, Optical Solitons (Springer, New York, 2014)

    Google Scholar 

  4. Y. Song, X. Shi, C. Wu, D. Tang, H. Zhang, Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 6, 021313 (2019)

    Article  ADS  Google Scholar 

  5. Z. Chen, M. Segev, D.N. Christodoulides, Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75, 086401 (2012)

    Article  ADS  Google Scholar 

  6. J. Garriga, E. Verdaguer, Cosmic strings and Einstein–Rosen soliton waves. Phys. Rev. D 36, 2250 (1987)

    Article  ADS  Google Scholar 

  7. M. Hindmarsh, K. Rummukainen, D.J. Weir, New solutions for non-Abelian cosmic strings. Phys. Rev. Lett. 117, 251601 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Hivet, H. Flayac, D.D. Solnyshkov, D. Tanese, T. Boulier, D. Andreoli, E. Giacobino, J. Bloch, A. Bramati, G. Malpuech, A. Amo, Half-solitons in a polariton quantum fluid behave like magnetic monopoles. Nat. Phys. 8, 724–728 (2012)

    Article  Google Scholar 

  9. Y. Tanaka, Soliton in two-band superconductor. Phys. Rev. Lett. 88, 017002 (2001)

    Article  ADS  Google Scholar 

  10. A.A. Abrikosov, Nobel lecture: type-II superconductors and the vortex lattice. Rev. Mod. Phys. 76, 975 (2004)

    Article  ADS  Google Scholar 

  11. O.M. Auslaender, L. Luan, E.W.J. Straver, J.E. Hoffman, N.C. Koshnick, E. Zeldov, D.A. Bonn, R. Liang, W.N. Hardy, K.A. Moler, Mechanics of individual isolated vortices in a cuprate superconductor. Nat. Phys. 5, 35–39 (2009)

    Article  Google Scholar 

  12. T. Asselmeyer-Maluga, J. Kró, Dark Matter as gravitational solitons in the weak field limit. arXiv:2012.05358v1 [gr-qc] (2020)

  13. L.A. Ureña-López, Brief review on scalar field dark matter models. Front. Astron. Space Sci. 6, 47 (2019)

    Article  ADS  Google Scholar 

  14. E.W. Mielke, Soliton model of dark matter and natural inflation. J. Phys. Conf. Ser. 1208, 012012 (2019)

    Article  Google Scholar 

  15. R.H.J. Grimshaw, Solitary Waves in Fluids (WIT Press, New Forest, 2007).

    Book  MATH  Google Scholar 

  16. M.A. Helal, Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics. Chaos Solitons Fractals 13(9), 1917–1929 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. E.G. Galkina, B.A. Ivanov, Dynamic solitons in antiferromagnets (review article). Low Temp. Phys. 44, 618 (2018)

    Article  ADS  Google Scholar 

  18. C. Rebbi, G. Soliani, Solitons and Particles (World Scientific Publishing Co., Singapore, 1984).

    Book  MATH  Google Scholar 

  19. R.A. Pakula, Solitons and Quantum Behavior. arXiv:1612.00110 [quant-ph]

  20. S. Coleman, Aspects of Symmetry (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  21. D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(240), 422–443 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Sugiyama, Kink-antikink collisions in the two-dimensional \(\phi ^4\) model. Prog. Theor. Phys. 61(5), 1550–1563 (1979)

    Article  ADS  Google Scholar 

  23. M.A. Lohe, Soliton structures in \(P(\phi )_{2}\). Phys. Rev. D 20, 3120 (1979)

    Article  ADS  Google Scholar 

  24. D. Bazeia, E. Belendryasova, V.A. Gani, Scattering of kinks of the sinh-deformed \(\phi ^4\) model. Eur. Phys. J. C 78, 340 (2018)

    Article  ADS  Google Scholar 

  25. A.R. Gomes, F.C. Simas, K.Z. Nobrega, P.P. Avelino, False vacuum decay in kink scattering. JHEP 10, 192 (2018)

    Article  ADS  MATH  Google Scholar 

  26. V.A. Gani, V. Lensky, M.A. Lizunova, Kink excitation spectra in the \((1+1)\)-dimensional \(\phi ^8\) model. JHEP 08, 147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Alonso-Izquierdo, Reflection, transmutation, annihilation, and resonance in two-component kink collisions. Phys. Rev. D 97, 045016 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. V.A. Gani, A.M. Marjaneh, A. Askari, E. Belendryasova, D. Saadatmand, Scattering of the double sine-Gordon kinks. Eur. Phys. J. C 78, 345 (2018)

    Article  ADS  Google Scholar 

  29. A.R. Gomes, R. Menezes, J.C.R.E. Oliveira, Highly interactive kink solutions. Phys. Rev. D 86(2), 025008 (2012)

    Article  ADS  Google Scholar 

  30. V.A. Gani, A.E. Kudryavtsev, M.A. Lizunova, Kink interactions in the (1+ 1)-dimensional \(\phi ^6\) model. Phys. Rev. D 89(12), 125009 (2014)

    Article  ADS  Google Scholar 

  31. E. Belendryasova, V.A. Gani, Scattering of the \(\phi ^8\) kinks with power-law asymptotics. Commun. Nonlinear Sci. Numer. Simul. 67, 414 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. D. Bazeia, A.R. Gomes, K.Z. Nobrega, F.C. Simas, Kink scattering in a hybrid model. Phys. Lett. B 793, 26–32 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. A. Demirkaya, R. Decker, P.G. Kevrekidis, I.C. Christov, A. Saxena, Kink dynamics in a parametric \(\phi ^6\) system: a model with controllably many internal modes. JHEP 12, 71 (2017)

    Article  ADS  MATH  Google Scholar 

  34. D.K. Campbell, J.F. Schonfeld, C.A. Wingate, Resonance structure in kink-antikink interactions in \(\phi ^4\) theory. Physica D 9(1–2), 1–32 (1983)

    Article  ADS  Google Scholar 

  35. A. Halavanau, T. Romanczukiewicz, Ya.. Shnir, Resonance structures in coupled two-component \(\phi ^4\) model. Phys. Rev. D 86, 085027 (2012)

    Article  ADS  Google Scholar 

  36. J.G.F. Campos, A. Mohammadi, Quasinormal modes in kink excitations and kink-antikink interactions: a toy model. Eur. Phys. J. C 80, 352 (2020)

    Article  ADS  Google Scholar 

  37. P. Dorey, T. Romanczukiewicz, Resonant kink–antikink scattering through quasinormal modes. Phys. Lett. B 779, 117 (2018)

    Article  ADS  Google Scholar 

  38. C.V. Vishveshwara, Scattering of gravitational radiation by a Schwarzschild black hole. Nature 227, 936 (1970)

    Article  ADS  Google Scholar 

  39. C.V. Vishveshwara, Stability of the Schwarzschild metric. Phys. Rev. D 1, 2870 (1970)

    Article  ADS  Google Scholar 

  40. K.D. Kokkotas, B.G. Schmidt, Quasi-normal modes of stars and black holes. Living Rev. Relativ. 2, 2 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. R.A. Konoplya, A. Zhidenko, Quasinormal modes of black holes: from astrophysics to string theory. Rev. Mod. Phys. 83, 793 (2011)

    Article  ADS  Google Scholar 

  42. V. Cardoso, Quasinormal modes and gravitational radiation in black hole spacetimes, Ph.D. thesis, [gr-qc]arXiv:0404093[gr-qc] (2003)

  43. D.W.L. Sprung, H. Wu, J. Martorell, Poles, bound states, and resonances illustrated by the square well potential. Am. J. Phys. 64, 136 (1996)

    Article  ADS  Google Scholar 

  44. D. Bindel, M. Zworski, Theory and computation of resonances in 1-D scattering. http://www.cs.cornell.edu/~bindel/cims/resonant1d/

  45. S. Jenks, On the pole structure of the S-matrix for a square potential well. http://www.physics.drexel.edu/~jenks/Pole Structure.pdf

  46. D.J. Griffiths, Introduction to Quantum Mechanics, 2nd edn. (McGraw-Hill, New York, 1992), pp. 78–82

    Google Scholar 

  47. F. Schwabl, Quantum Mechanics, 4th edn, pp. 71–75, 81–86

  48. P.D. Roy, J. Das, S. Kar, Quasi-normal modes in a symmetric triangular barrier. Eur. Phys. J. Plus 134, 571 (2019)

    Article  Google Scholar 

  49. P. Boonserm, M. Visser, Quasi-normal frequencies: key analytic results. JHEP 1103, 073 (2011)

    Article  ADS  MATH  Google Scholar 

  50. S. Kar, S.N. Minwalla, D. Mishra, D. Sahdev, Resonances in the transmission of massless scalar waves in a class of wormholes. Phys. Rev. D 51(4), 1632 (1994)

    Article  ADS  Google Scholar 

  51. W. Chen, D.L. Mills, Gap solitons and the nonlinear optical response of superlattices. Phys. Rev. Lett. 58, 160 (1987)

    Article  ADS  Google Scholar 

  52. K. Rapedius, H.J. Korsch, Barrier transmission for the one-dimensional nonlinear Schrödinger equation: resonances and transmission profiles. Phys. Rev. A 77, 063610 (2008)

    Article  ADS  Google Scholar 

  53. S. Chandrasekhar, S. Detweiler, The quasi-normal modes of the Schwarzschild black hole. Proc. R. Soc. Lond. A 344, 441 (1975)

    Article  ADS  Google Scholar 

  54. S. Aneesh, S. Bose, S. Kar, Gravitational waves from quasinormal modes of a class of Lorentzian wormholes. Phys. Rev. D 97, 124004 (2018)

    Article  ADS  Google Scholar 

  55. P.D. Roy, S. Aneesh, S. Kar, Revisiting a family of wormholes: geometry, matter, scalar quasinormal modes and echoes. Eur. Phys. J. C 80, 850 (2020)

    Article  ADS  Google Scholar 

  56. H.P. Nollert, About the significance of quasinormal modes of black holes. Phys. Rev. D 53, 4397 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Surajit Basak thanks Centre for Theoretical Studies, IIT Kharagpur, India, for informal visits during 2019 when this work was initiated and carried out. He also thanks his present host, P. Piekarz, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland, for allowing him to use his present address, in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poulami Dutta Roy.

Appendix A: Variation of QNMs with parameters

Appendix A: Variation of QNMs with parameters

In this appendix, we discuss the dependence of the QNM frequencies on the parameters of the potential. Such an analysis will help us in appreciating the confined harmonic potential \(U(x')\) as an independent, discontinuous potential with its parameters not necessarily obeying the solitary wave criteria. This independent study could be of use in scenarios where a similar potential may arise. We note that the potential \(U(x')\) involves parameters: \(\alpha \) and \( L'\), which are independent if we do not demand its solitary wave connect. Hence, we may vary them freely and see how the QNM frequencies get affected. In Fig. 8, we show how the spectrum of the QNMs obtained differs when we vary each parameter separately.

Fig. 8
figure 8

\(Im(\omega ')\) vs \(Re(\omega ')\) plotted for different parameter values

\(\bullet \) In Fig. 8a, we observe the effect of variation of \(\alpha \) on the QNMs. The value of \(\alpha \) determines the depth of the potential well. One must keep in mind while choosing the parameters that we are allowed to take only those values obeying \(\alpha (\alpha L'^2-1) < 1\). ( This guarantees that the nature of the confined harmonic oscillator potential is preserved.) As \(\alpha \) increases, the well becomes narrow and the imaginary part of the QNM frequency increases.

  • Changing the magnitude of discontinuity or jump at \(x'= \pm L'\) also affects the QNM spectrum as observed in Fig. 8a. If we go to lower values of \(\alpha \), the well becomes shallower, while its width (\(2L'\)) remains fixed, which results in a larger discontinuity. Hence, we see that small values of \(\alpha \) correspond to lower values of \(\omega '_i\).

  • When \(L'\) is varied, i.e. the width of the potential increases (see Fig. 8b), the imaginary part of QNM decreases. For very large \(L'\), the imaginary part will keep on getting smaller. Finally, for \(L'\rightarrow \infty \) the well vanishes leaving a constant potential with no interesting features.

In general, we find the lower modes to remain almost unaffected by a change of the parameters. Also, the real part of QNMs remain nearly same under parameter variation, whereas it is the imaginary part which shows the effect. Working in dimensionful variables would lead to the introduction of \(V_0\) (in inverse length squared units) in the potential. Changing the magnitude of \(V_0\) with the other parameters kept fixed will affect the discontinuity. Hence, increasing \(V_0\) or decreasing \(\alpha \) will have the same effect on the QNM spectrum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, S., Dutta Roy, P. & Kar, S. A new model with solitary waves: solution, stability and quasinormal modes. Eur. Phys. J. Plus 136, 618 (2021). https://doi.org/10.1140/epjp/s13360-021-01544-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01544-3

Navigation