Skip to main content
Log in

Analysis of entropy generation and thermal–hydraulic of various plate-pin fin-splitter heat recovery systems using Al2O3/H2O nanofluid

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

An analysis of the second law of thermodynamics was performed for Al2O3/H2O nanofluid in different plate-pin fin-splitter heat sinks in the present study. The square pin fins with rectangular, arched, and wavy splitters behind them were inserted inside the plate-fin heat sink. We investigated the effects of nanofluid, volume fraction of nanoparticles, Reynolds number, splitter shape, pin width, and splitter length on the heat transfer, fluid flow, thermal, frictional entropy generation rates or irreversibilities, the sensitivity analysis, and Bejan number inside the plate-pin fin-splitter heat sink. The nanofluid was simulated using a two-phase mixture model. The numerical results were validated with both empirical correlations and experimental data. The results indicate that the thermal performance is improved by about 15% for pure water, and the f factor is reduced by about 0.6% using rectangular splitters behind pin fins. Also, Nu is increased by about 25% with the simultaneous use of 2% vol. Al2O3/H2O nanofluid and a rectangular splitter. It is increased more by using arched splitters compared to rectangular and wavy splitters. The rectangular, arched, and wavy splitters generate up to 39.34%, 42.36%, and 38.61% lower thermal entropy generation than the smooth heat sink, respectively. Among splitter geometries, the arched splitters have the highest amount of frictional entropy generation. The thermal irreversibility is increased by about 71% and 43.2%, and the frictional irreversibility is reduced by about 4.1% and 0.3% with reduced pin width and splitter length in the plate-pin fin-rectangular splitter heat sink, respectively. The use of nanofluid reduces thermal irreversibility and increases frictional irreversibility. By increasing the volume fraction of nanoparticles from 0.5 to 3%, the thermal irreversibility is reduced by about 63.3%. Thus, the frictional irreversibility is increased by about 6.8% in the plate-pin fin-arched splitter heat sink. Moreover, the results show that thermal performance and thermal irreversibility are sensitive to changes in the pin width, splitter length, Re, and nanofluid volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A c :

Cross-sectional area of the inlet minichannel (m2)

A t :

Total heat transfer area (m2)

Be :

Bejan number

C p :

Specific heat capacity (J/kg K)

D h :

Hydraulic diameter (m)

f :

Darcy friction factor

h :

Heat transfer coefficient (W/m2 K)

H b :

Base height (m)

H ch :

Minichannel height (m)

H p :

Pin height (m)

L ch :

Minichannel length (m)

L s :

Splitter length (m)

Nu :

Nusselt number

PEC :

Performance evaluation criteria

Q :

Heat transfer rate (W)

Re :

Reynolds number

\(S^{\prime\prime\prime}_{g}\) :

Irreversibility rate (W/m3 K)

T :

Temperature (K)

u m :

Mass average velocity (m/s)

W ch :

Minichannel width (m)

W p :

Pin width (m)

xyz :

Coordinates

ρ :

Density (kg/m3)

µ :

Dynamic viscosity (kg/m s)

k :

Thermal conductivity (W/m K)

φ :

Nanoparticles volume fraction (%

Avg :

Average

f :

Base fluid

fr :

Frictional

in :

Inlet

LMTD :

Logarithmic mean temperature difference

m :

Mixture of nanoparticle and base fluid (nanofluid)

out :

Outlet

p :

Nanoparticle

th :

Thermal

t :

Total

W :

Wall

References

  1. S.V. Garimella, A.S. Fleischer, J.Y. Murthy, A. Keshavarzi, R. Prasher, C. Patel, S.H. Bhavnani, R. Venkatasubramanian, R. Mahajan, Y. Joshi, Thermal challenges in next-generation electronic systems. IEEE Trans. Components Packag. Technol. 31, 801–815 (2008)

    Article  Google Scholar 

  2. Y. Alihosseini, M. Zabetian Targhi, M.M. Heyhat, N. Ghorbani, Effect of a micro heat sink geometric design on thermo-hydraulic performance: A review, Applied Thermal Engineering 170 (2020) 114974.

  3. G.L. Tsai, H.Y. Li, C.C. Lin, Effect of the angle of inclination of a plate shield on the thermal and hydraulic performance of a plate-fin heat sink. Int. Commun. Heat Mass Transfer 37, 364–371 (2010)

    Article  Google Scholar 

  4. A.A Awais, M.H. Kim, Experimental and numerical study on the performance of a minichannel heat sink with different header geometries using nanofluids, Applied Thermal Engineering 171 (2020) 115125.

  5. A. Heidarshenas, Z. Azizi, S.M. Peyghambarzadeh, S. Sayyahi, Experimental investigation of heat transfer enhancement using ionic liquid-Al2O3 hybrid nanofluid in a cylindrical microchannel heat sink, Applied Thermal Engineering 191 (2021) 116879.

  6. B. Freegah, A.A. Hussain, A.H. Falih, H. Towsyfyan, CFD analysis of heat transfer enhancement in plate-fin heat sinks with fillet profile: investigation of new designs, Thermal Science and Engineering Progress 17 (2020) 100458.

  7. K. Nilpueng, H.S. Ahn, D.W. Jerng, S. Wongwises, Heat transfer and flow characteristics of sinusoidal wavy plate fin heat sink with and without crosscut flow control. Int. J. Heat Mass Transf. 137, 565–572 (2019)

    Article  Google Scholar 

  8. G.V. Kewalramani, G. Hedau, S.K. Saha, A. Agrawal, Study of laminar single phase frictional factor and Nusselt number in In-line micro pin-fin heat sink for electronic cooling applications. Int. J. Heat Mass Transf. 138, 796–808 (2019)

    Article  Google Scholar 

  9. M. Bahiraei, S. Heshmatian, M. Goodarzi, H. Moayedi, CFD analysis of employing a novel ecofriendly nanofluid in a miniature pin fin heat sink for cooling of electronic components: Effect of different configurations. Adv. Powder Technol. 30, 2503–2516 (2019)

    Article  Google Scholar 

  10. Z. Khattak, H. Muhammad Ali, Air cooled heat sink geometries subjected to forced flow: A critical review, International Journal of Heat and Mass Transfer 130 (2019) 141–161.

  11. T. Ambreen, A. Saleem, C.W. Park, Pin-fin shape-dependent heat transfer and fluid flow characteristics of water- and nanofluid-cooled micropin-fin heat sinks: Square, circular and triangular fin cross-sections, Applied Thermal Engineering 158 (2019) 113781.

  12. P. Bhandari, Y.K. Prajapati, Thermal performance of open microchannel heat sink with variable pin fin height, International Journal of Thermal Sciences 159 (2021) 106609.

  13. D. Sahel, L. Bellahcene, A. Yousfi, A. Subasi, Numerical investigation and optimization of a heat sink having hemispherical pin fins, International Communications in Heat and Mass Transfer 122 (2021) 105133.

  14. Y. Yan, T. Zhao, Z. He, Z. Yang, L. Zhang, Numerical investigation on the characteristics of flow and heat transfer enhancement by micro pin-fin array heat sink with fin-shaped strips, Chemical Engineering & Processing: Process Intensification 160 (2021) 108273.

  15. J.S. Lee, S.Y. Yoon, B. Kim, H. Lee, M.Y. Ha, J.K. Min, A topology optimization based design of a liquid-cooled heat sink with cylindrical pin fins having varying pitch, International Journal of Heat and Mass Transfer 172 (2021) 121172.

  16. S. Bhattacharyya, B. Souayeh, A. Banerjee, R. Sarkar, M. Rahimi-Gorji, H.M. Nguyen, Numerical analysis of micro-pin-fin heat sink cooling in the mainboard chip of a CPU. The European Physical Journal Plus 135, 432 (2020)

    Article  ADS  Google Scholar 

  17. T. Ambreen, M.H. Kim, Effect of fin shape on the thermal performance of nanofluid-cooled micro pin-fin heat sinks. Int. J. Heat Mass Transf. 126, 245–256 (2018)

    Article  Google Scholar 

  18. M.W. Alam, S. Bhattacharyya, B. Souayeh, K. Dey, F. Hammami, M. Rahimi-Gorji, R. Biswas, CPU heat sink cooling by triangular shape micro-pin-fin: Numerical study, International Communications in Heat and Mass Transfer 112 (2020) 104455.

  19. D.M. Mate (‘‘D M Mate”), V.T. Tale (‘‘V T Tale”), Effects of pin fin arrangement its heat transfer characteristics on performance of heat sink, Materials Today: Proceedings 43 (2021) 2377–2382.

  20. X. Wang, M. Chen, D. Tate, H. Rahimi, S. Zhang, Numerical investigation on hydraulic and thermal characteristics of micro latticed pin fin in the heat sink, International Journal of Heat and Mass Transfer 149 (2020) 119157.

  21. A.V. Baranyuk, Yu.E. Nikolaenko, V.A. Rohachov, A.M. Terekh, P.G. Krukovskiy, Investigation of the flow structure and heat transfer intensity of surfaces with split plate finning. Therm. Sci. Eng. Progress 11, 28–39 (2019)

    Article  Google Scholar 

  22. X.L. Yu, Q.K. Feng, Q.P. Liu, Research on the heat transfer and flow performance of a composite heat sink. J Xi’an Jiaotong Univ. 37, 670–673 (2003)

    Google Scholar 

  23. X.L. Yu, Q.K. Feng, J.M. Feng, Research on thermal performance of plate-pin fin heat sink. J Xi’an Jiaotong Univ. 38, 1114–1118 (2004)

    Google Scholar 

  24. X. Yu, J. Feng, Q. Feng, Q. Wang, Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink. Appl. Therm. Eng. 25, 173–182 (2005)

    Article  Google Scholar 

  25. M.A. Alfellag, H.E. Ahmed, ASh. Kherbeet, Numerical simulation of hydrothermal performance of minichannel heat sink using inclined slotted plate-fins and triangular pins. Appl. Therm. Eng. 164, 114509 (2020)

    Article  Google Scholar 

  26. S.M. Hoi, A.L. Teh, E.H. Ooi, I.M.L. Chew, J.J. Foo, Plate-fin heat sink forced convective heat transfer augmentation with a fractal insert. Int. J. Therm. Sci. 142, 392–406 (2019)

    Article  Google Scholar 

  27. H.Y. Li, C.L. Chen, S.M. Chao, G.F. Liang, Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators. Int. J. Heat Mass Transf. 67, 666–677 (2013)

    Article  Google Scholar 

  28. M. Karami, S. Tashakor, A. Afsari, M. Hashemi-Tilehnoee, Effect of the baffle on the performance of a micro pin fin heat sink. Therm. Sci. Eng. Progress 14, 100417 (2019)

    Article  Google Scholar 

  29. P. Li, D. Guo, X. Huang, Heat transfer enhancement in microchannel heat sinks with dual split cylinder and its intelligent algorithm based fast optimization. Appl. Therm. Eng. 171, 115060 (2020)

    Article  Google Scholar 

  30. W. Yuan, J. Zhao, C.P. Tso, T. Wu, W. Liu, T. Ming, Numerical simulation of the thermal hydraulic performance of a plate pin fin heat sink. Appl. Therm. Eng. 48, 81–88 (2012)

    Article  Google Scholar 

  31. Z. Soleymani, M. Rahimi, M. Gorzin, Y. Pahamli, Performance analysis of hotspot using geometrical and operational parameters of a microchannel pin–fin hybrid heat sink. Int. J. Heat Mass Transf. 159, 120141 (2020)

    Article  Google Scholar 

  32. R.A.S. Chakraborty, Effect of shape and arrangement of micro-structures in a microchannel heat sink on the thermo-hydraulic performance. Appl. Therm. Eng. 190, 116755 (2021)

    Article  Google Scholar 

  33. P.R. Chauhan, R. Kumar, R.S. Bharj, Optimization of the circular microchannel heat sink under viscous heating effect using entropy generation minimization method. Therm. Sci. Eng. Progress 13, 100365 (2019)

    Article  Google Scholar 

  34. H. Abbassi, Entropy generation analysis in a uniformly heated microchannel heat sink. Energy 32, 1932–1947 (2007)

    Article  Google Scholar 

  35. B. Das, A. Giri, Second law analysis of an array of vertical plate-finned heat sink undergoing mixed convection. Int. Commun. Heat Mass Transf. 56, 42–49 (2014)

    Article  Google Scholar 

  36. L. Zhu, J. Yu, Optimization of heat sink of thermoelectric cooler using entropy generation analysis. Int. J. Therm. Sci. 118, 168–175 (2017)

    Article  Google Scholar 

  37. L.E. Paniagua-Guerra, B. Ramos-Alvarado, Efficient hybrid microjet liquid cooled heat sinks made of photopolymer resin: thermo-fluid characteristics and entropy generation analysis. Int. J. Heat Mass Transf. 146, 118844 (2020)

    Article  Google Scholar 

  38. Z. Jian-hui, Y. Chun-xin, Z. Li-na, Minimizing the entropy generation rate of the plate-finned heat sinks using computational fluid dynamics and combined optimization. Appl. Therm. Eng. 29, 1872–1879 (2009)

    Article  Google Scholar 

  39. L. Chen, A. Yang, Z. Xie, F. Sun, Constructal entropy generation rate minimization for cylindrical pin fin heat sinks. Int. J. Therm. Sci. 111, 168–174 (2017)

    Article  Google Scholar 

  40. P. Li, D. Guo, X. Huang, Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink. Int. J. Heat Mass Transf. 146, 118846 (2020)

    Article  Google Scholar 

  41. Z. Shi, T. Dong, Entropy generation and optimization of laminar convective heat transfer and fluid flow in a microchannel with staggered arrays of pin fin structure with tip clearance. Energy Convers. Manag. 94, 493–504 (2015)

    Article  Google Scholar 

  42. A. Shalchi-Tabrizi, H.R. Seyf, Analysis of entropy generation and convective heat transfer of Al2O3 nanofluid flow in a tangential micro heat sink. Int. J. Heat Mass Transf. 55, 4366–4375 (2012)

    Article  Google Scholar 

  43. Y.L. Zhai, G.D. Xia, X.F. Liu, J. Wang, Characteristics of entropy generation and heat transfer in double-layered micro heat sinks with complex structure. Energy Convers. Manag. 103, 477–486 (2015)

    Article  Google Scholar 

  44. J.M. Cruz-Duarte, A. Garcia-Perez, I.M. Amaya-Contreras, C.R. Correa-Cely, Designing a microchannel heat sink with colloidal coolants through the entropy generation minimisation criterion and global optimisation algorithms. Appl. Therm. Eng. 100, 1052–1062 (2016)

    Article  Google Scholar 

  45. A.A. Alfaryjat, A. Dobrovicescu, D. Stanciu, Influence of heat flux and Reynolds number on the entropy generation for different types of nanofluids in a hexagon microchannel heat sink. Chin. J. Chem. Eng. 27, 501–513 (2019)

    Article  Google Scholar 

  46. H. Shen, G. Xie, C.C. Wang, Thermal performance and entropy generation of novel X-structured double layered microchannel heat sinks. J. Taiwan Inst. Chem. Eng. 111, 90–104 (2020)

    Article  Google Scholar 

  47. S.E. Razavi, B. Osanloo, R. Sajedi, Application of splitter plate on the modification of hydro-thermal behavior of PPFHS. Appl. Therm. Eng. 80, 97–108 (2015)

    Article  Google Scholar 

  48. R. Sajedi, B. Osanloo, F. Talati, M. Taghilou, Splitter plate application on the circular and square pin fin heat sinks. Microelectron. Reliab. 62, 91–101 (2016)

    Article  Google Scholar 

  49. E. Hosseinirad, M. Khoshvaght-Aliabadi, F. Hormozi, Effects of splitter shape on thermal–hydraulic characteristics of plate-pin–fin heat sink (PPFHS). Int. J. Heat Mass Transf. 143, 118586 (2019)

    Article  Google Scholar 

  50. V. Bianco, O. Manca, S. Nardini, Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. Int. J. Therm. Sci. 29, 3632–3642 (2009)

    Google Scholar 

  51. R. Lotfi, Y. Saboohi, A.M. Rashidi, Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches. Int. Commun. Heat Mass Transf. 37, 74–78 (2010)

    Article  Google Scholar 

  52. M. Hejazian, M.K. Moraveji, A. Beheshti, Comparative study of Euler and mixture models for turbulent flow of Al2O3 nanofluid inside a horizontal tube. Int. Commun. Heat Mass Transf. 52, 152–158 (2014)

    Article  Google Scholar 

  53. M. Manninen, V. Taivassalo, S. Kallio, On the mixture model for multiphase flow. VTT Publ. 288, 3–67 (1996)

    Google Scholar 

  54. L. Schiller, A. Naumann, A drag coefficient correlation. Z. Ver. Deutsch. Ing. 77, 318–320 (1935)

    Google Scholar 

  55. W.M. Kays, A.L. London, Compact Heat Exchangers, 3rd edn. (Kreiger Publishing, Melbourne, 1984).

    Google Scholar 

  56. F. Zhou, I. Catton, Numerical evaluation of flow and heat transfer in plate-pin fin heat sinks with various pin cross-sections. Numer. Heat Transf. Part A 60, 107–128 (2011)

    Article  ADS  Google Scholar 

  57. M. Bahiraei, S. Heshmatian, M. Keshavarzi, A decision-making based method to optimize energy efficiency of ecofriendly nanofluid flow inside a new heat sink enhanced with flow distributor. Powder Technol. 342, 85–98 (2019)

    Article  Google Scholar 

  58. O. Mahian et al., A review of entropy generation in nanofluid flow. Int. J. Heat Mass Transf. 65, 514–532 (2013)

    Article  Google Scholar 

  59. A. Bejan, J. Kestin, Entropy generation through heat and fluid flow. American Society of Mechanical Engineers Digital Collection; 1983.

  60. N.R. Kuppusamy, H.A. Mohammed, C.W. Lim, Numerical investigation of trapezoidal grooved microchannel heat sink using nanofluids. Thermochim. Acta 573, 39–56 (2013)

    Article  Google Scholar 

  61. H.C. Brinkman, The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–581 (1952)

    Article  ADS  Google Scholar 

  62. R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1, 187–191 (1962)

    Article  Google Scholar 

  63. D.A. Drew, S.L. Passman, Theory of Multicomponent Fluids (Springer, Berlin, 1999).

    Book  MATH  Google Scholar 

  64. S.M. Yang, W.Q. Tao, Heat Transfer, 3rd edn. (Higher Education Press, Beijing, 1998).

    Google Scholar 

  65. C.J. Ho, W.C. Chen, An experimental study on thermal performance of Al2O3/water nanofluid in a minichannel heat sink. Appl. Therm. Eng. 50, 516–522 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brain Pool Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Science and ICT (NRF-2020H1D3A2A01104062). This work was also supported by the National Research Foundation of Korea (NRF) grant, which is funded by the Korean government (MSIT) (No. 2020R1A5A8018822).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javad Abolfazli Esfahani or Kyung Chun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinirad, E., Esfahani, J.A., Hormozi, F. et al. Analysis of entropy generation and thermal–hydraulic of various plate-pin fin-splitter heat recovery systems using Al2O3/H2O nanofluid. Eur. Phys. J. Plus 136, 552 (2021). https://doi.org/10.1140/epjp/s13360-021-01540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01540-7

Navigation