Skip to main content
Log in

High-field specific heat and entropy obtained from adiabatic temperature change

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Specific heat and entropy are relevant thermodynamic properties, which may be used as macroscopic probes to microscopic properties of materials under ambient conditions and under high applied fields. However, the measurement of specific heat under intense external fields can be a challenging task, as well as to obtain the entropy in the same conditions. Here, we describe a method to obtain high-field specific heat and entropy from measurements of specific heat under ambient conditions and direct temperature change induced by adiabatic field changes. We derive straightforward thermodynamic equations to calculate the specific heat and entropy, and our results agree satisfactorily with experimental data of specific heat under magnetic field, electric field, and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Here, we will consider pressure as a field of mechanical tension.

References

  1. K.A. Moler, D.J. Baar, J.S. Urbach, R. Liang, W.N. Hardy, A. Kapitulnik, Phys. Rev. Lett. 73, 2744 (1994)

    Article  ADS  Google Scholar 

  2. T. Gottschall, K.P. Skokov, R. Burriel, O. Gutfleisch, Acta Mater. 107, 1 (2016). (ISSN 1359-6454)

    Article  ADS  Google Scholar 

  3. T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch, Adv. Energy Mater. 9, 1901322 (2019)

    Article  Google Scholar 

  4. W.N. Lawless, Phys. Rev. B 14, 134 (1976)

    Article  ADS  Google Scholar 

  5. W.N. Lawless, Phys. Rev. B 16, 433 (1977)

    Article  ADS  Google Scholar 

  6. N. Novak, Z. Kutnjak, R. Pirc, EPL (Europhys. Lett.) 103, 47001 (2013)

    Article  ADS  Google Scholar 

  7. A. Demuer, C. Marcenat, J. Thomasson, R. Calemczuk, B. Salce, P. Lejay, D. Braithwaite, J. Flouquet, J. Low Temp. Phys. 120, 245 (2000)

    Article  ADS  Google Scholar 

  8. G. Knebel, M.-A. Méasson, B. Salce, D. Aoki, D. Braithwaite, J.P. Brison, J. Flouquet, J. Phys. Condens. Matter 16, 8905 (2004)

    Article  ADS  Google Scholar 

  9. J. Ledru, C. Imrie, J. Hutchinson, G. Höhne, Thermochim. Acta 446, 66 (2006)

    Article  Google Scholar 

  10. P. Lloveras, E. Stern-Taulats, M. Barrio, J.-L. Tamarit, S. Crossley, W. Li, V. Pomjakushin, A. Planes, L. Mañosa, N.D. Mathur et al., Nat. Commun. 6, 8801 (2015)

    Article  ADS  Google Scholar 

  11. V.K. Pecharsky, K.A. Gschneidner, J. Appl. Phys. 86, 565 (1999)

    Article  ADS  Google Scholar 

  12. V.K. Pecharsky, K.A. Gschneidner, A.O. Pecharsky, A.M. Tishin, Phys. Rev. B 64, 144406 (2001)

    Article  ADS  Google Scholar 

  13. Y. Kohama, C. Marcenat, T. Klein, M. Jaime, Rev. Sci. Instrum. 81, 104902 (2010)

    Article  ADS  Google Scholar 

  14. L. Mañosa, D. González-Alonso, A. Planes, M. Barrio, J.-L. Tamarit, I.S. Titov, M. Acet, A. Bhattacharyya, S. Majumdar, Nat. Commun. 2, 595 (2011)

    Article  ADS  Google Scholar 

  15. T. Toliński, K. Synoradzki, Intermetallics 47, 1 (2014)

    Article  Google Scholar 

  16. J.M. Bermúdez-García, M. Sánchez-Andújar, S. Castro-García, J. López-Beceiro, R. Artiaga, M.A. Señarís-Rodríguez, Nat. Commun. 8, 15715 (2017)

    Article  ADS  Google Scholar 

  17. A. Gràcia-Condal, E. Stern-Taulats, A. Planes, E. Vives, L. Mañosa, Phys. Status Solidi (b) 255, 1700422 (2018)

    Article  ADS  Google Scholar 

  18. D. Boldrin, E. Mendive-Tapia, J. Zemen, J.B. Staunton, T. Hansen, A. Aznar, J.-L. Tamarit, M. Barrio, P. Lloveras, J. Kim et al., Phys. Rev. X 8, 041035 (2018)

    Google Scholar 

  19. J.-H. Chen, A. Saleheen, P.W. Adams, D.P. Young, N. Ali, S. Stadler, J. Appl. Phys. 123, 145101 (2018)

    Article  ADS  Google Scholar 

  20. P. Lloveras, A. Aznar, M. Barrio, P. Negrier, C. Popescu, A. Planes, L. Mañosa, E. Stern-Taulats, A. Avramenko, N.D. Mathur et al., Nat. Commun. 10, 1803 (2019)

    Article  ADS  Google Scholar 

  21. G. Bäckström, R.G. Ross, Int. J. Thermophys. 6, 101 (1985). (ISSN 1572-9567)

    Article  ADS  Google Scholar 

  22. P. Ortiz-Serna, R. Díaz-Calleja, M.J. Sanchis, J. Appl. Polym. Sci. 128, 2269 (2013)

    Article  Google Scholar 

  23. S.Y. Dan’kov, A.M. Tishin, V.K. Pecharsky, K.A. Gschneidner, Phys. Rev. B 57, 3478 (1998)

    Article  ADS  Google Scholar 

  24. L. Tocado, E. Palacios, R. Burriel, J. Therm. Anal. Calorim. 84, 213 (2006)

    Article  Google Scholar 

  25. T.V. Christiaanse, O. Campbell, P.V. Trevizoli, S. Misra, D. van Asten, L. Zhang, P. Govindappa, I. Niknia, R. Teyber, A. Rowe, J. Phys. D Appl. Phys. 50, 365001 (2017)

    Article  ADS  Google Scholar 

  26. K. Engelbrecht, K.K. Nielsen, C.R.H. Bahl, C.P. Carroll, D. van Asten, J. Appl. Phys. 113, 173510 (2013)

    Article  ADS  Google Scholar 

  27. F. Guillou, H. Yibole, G. Porcari, L. Zhang, N.H. van Dijk, E. Brück, J. Appl. Phys. 116, 063903 (2014)

    Article  ADS  Google Scholar 

  28. X. Moya, E. Stern-Taulats, S. Crossley, D. González-Alonso, S. Kar-Narayan, A. Planes, L. Mañosa, N.D. Mathur, Adv. Mater. 25, 1360 (2013)

    Article  Google Scholar 

  29. N.M. Bom, E.O. Usuda, G.M. Guimarães, A.A. Coelho, A.M.G. Carvalho, Rev. Sci. Instrum. 88, 046103 (2017)

    Article  ADS  Google Scholar 

  30. N.M. Bom, W. Imamura, E.O. Usuda, L.S. Paixão, A.M.G. Carvalho, ACS Macro Lett. 7, 31 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Finance code 001, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Paixão.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 222 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paixão, L.S., Usuda, E.O., Imamura, W. et al. High-field specific heat and entropy obtained from adiabatic temperature change. Eur. Phys. J. Plus 136, 545 (2021). https://doi.org/10.1140/epjp/s13360-021-01538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01538-1

Navigation