Skip to main content
Log in

Reaction–diffusion dynamics in an attractive stepwise-linear potential energy curve under the Gaussian-sink Action

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The reaction–diffusion dynamics through a Gaussian sink in the presence of an attractive stepwise-linear potential energy curve has been investigated. Exact dynamics has been evaluated for perfect absorption via a centrally placed point sink. An analytical form of the mean first passage time distribution has been provided. Moreover, the stability of a Brownian particle versus the noise intensity in the considered model system has been investigated. We have introduced the Fredholm integral method to solve the Smoluchowski equation in the Laplace domain, obtaining an exact semi-analytical solution for the linear potential energy curve with a general delocalized sink. The knowledge of the Greens function of the equation in the absence of a sink is required. We discuss the result by using Gaussian sink in two different physical contexts with finding different observables like average rate constant in electronic relaxation in solution and quantum yields in photosynthetic systems or doped molecular crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.C. Wade, R.R. Gabdoulline, S.K. Lüdemann, V. Lounnas, Proc. Natl. Acad. Sci. USA 95, 5942 (1998)

    Article  ADS  Google Scholar 

  2. D.R. Livesay, P. Jambeck, A. Rojnuckarin, S. Subramaniam, Biochemistry 42, 3464 (2003)

    Article  Google Scholar 

  3. M. Aldana, V. Dossetti, C. Huepe, V.M. Kenkre, H. Larralde, Phys. Rev. Lett. 98, 095702 (2007)

    Article  ADS  Google Scholar 

  4. L. Giuggioli, G. Abramson, V.M. Kenkre, R. Parmenter, T. Yates, J. Theor. Biol. 240, 126 (2006)

    Article  Google Scholar 

  5. A. Samanta, S.K. Ghosh, H. Sadhukhan, Chem. Phys. Lett. 168, 410 (1990)

    Article  ADS  Google Scholar 

  6. R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811, 265 (1985)

    Article  Google Scholar 

  7. B. Bagchi, G.R. Fleming, J. Phys. Chem. 94, 9 (1990)

    Article  Google Scholar 

  8. B. Bagchi, G.R. Fleming, D.W. Oxtoby, J. Chem. Phys. 78, 7375 (1983)

    Article  ADS  Google Scholar 

  9. S.A. Rice, Comprehensive Chemical Kinetics: Diffusion Limited Reactions (Elsevier Science Publishers, New York, 1985)

    Google Scholar 

  10. G. Wilemski, M. Fixman, J. Chem. Phys. 58, 4009 (1973)

    Article  ADS  Google Scholar 

  11. V.M. Kenkre, P.E. Parris, Phys. Rev. B 27, 3221 (1983)

    Article  ADS  Google Scholar 

  12. A. Szabo, G. Lamm, G.H. Weiss, J. Stat. Phys. 34, 225 (1984)

    Article  ADS  Google Scholar 

  13. K. Spendier, V.M. Kenkre, J. Phys. Chem. B 117, 15639 (2013)

    Article  Google Scholar 

  14. R. Saravanan, A. Chakraborty, Physica A 536, 120989 (2019)

    Article  MathSciNet  Google Scholar 

  15. M. Chase, K. Spendier, V.M. Kenkre, J. Phys. Chem. B 120, 3072 (2016)

    Article  Google Scholar 

  16. K.L. Sebastian, Phys. Rev. A 46, R1732 (1992)

    Article  ADS  Google Scholar 

  17. A. Samanta, S.K. Ghosh, J. Chem. Phys. 97, 9321 (1992)

    Article  ADS  Google Scholar 

  18. K. Spendier, S. Sugaya, V.M. Kenkre, Phys. Rev. E 88, 062142 (2013)

    Article  ADS  Google Scholar 

  19. A. Samanta, S.K. Ghosh, Phys. Rev. E 47, 4568 (1993)

    Article  ADS  Google Scholar 

  20. C. Samanta, Chem. Phys. Lett. 747, 137338 (2020)

    Article  Google Scholar 

  21. H. Sumi, R.A. Marcus, J. Chem. Phys. 84, 4894 (1986)

    Article  ADS  Google Scholar 

  22. W. Nadler, R.A. Marcus, J. Chem. Phys. 86, 3906 (1987)

    Article  ADS  Google Scholar 

  23. A.M. Berezhkovskii, V.Y. Zitserman, Russ. J. Electrochem. 39, 53 (2003)

    Article  Google Scholar 

  24. N. Agmon, J.J. Hopfield, J. Chem. Phys. 78, 6947 (1983)

    Article  ADS  Google Scholar 

  25. N. Agmon, J.J. Hopfield, J. Chem. Phys. 79, 2042 (1983)

    Article  ADS  Google Scholar 

  26. N. Agmon, J.J. Hopfield, J. Chem. Phys. 80, 592 (1984)

    Article  ADS  Google Scholar 

  27. A.M. Berezhkovskii, V.Y. Zitserman, S.-Y. Shew, D.-Y. Yang, J. Kuo, S.-H. Lin, J. Chem. Phys. 107, 10539 (1997)

    Article  ADS  Google Scholar 

  28. A.M. Berezhkovskii, Y.A. D’yakov, V.Y. Zitserman, Russ. J. Phys. Chem. A 73, 286–297 (1999)

    Google Scholar 

  29. S. Lee, C.Y. Son, J. Sung, S. Chong, J. Chem. Phys. 134, 121102 (2011)

    Article  ADS  Google Scholar 

  30. M. Kim, C.H. Choi, S. Lee, J. Chem. Phys. 150, 214104 (2019)

    Article  ADS  Google Scholar 

  31. L.E. Reichl, A Modern Course in Statistical Physics (Wiley, Weinheim, 2009)

    MATH  Google Scholar 

  32. H. Risken, The Fokker–Planck Equation: Methods of Solution and Applications (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  33. A.D. Polyanin, A.V. Manzhirov, Handbook of Integral Equations (CRC Press, Cambridge, 1998)

    Book  MATH  Google Scholar 

  34. H.C. Wolf, Advances in Atomic and Molecular Physics, vol. 3 (Elsevier, Amsterdam, 1968), pp. 119–142

    Google Scholar 

  35. R.C. Powell, Z.G. Soos, J. Lumin. 11, 1 (1975)

    Article  Google Scholar 

  36. V.M. Kenkre, Exciton Dynamics in Molecular Crystals and Aggregates, Springer Tracts in Modern Physics (Vol. 94, Springer, Berlin, 1982), and references therein

  37. R.K. Clayton, R.K. Clayton, Photosynthesis: Physical Mechanisms and Chemical Patterns, vol. 4 (Cambridge University Press, Cambridge, 1980)

    Google Scholar 

  38. H. Sano, M. Tachiya, J. Chem. Phys. 71, 1276 (1979)

    Article  ADS  Google Scholar 

  39. S. Redner, D. Ben-Avraham, J. Phys. A Math. Gen. 23, L1169 (1990)

    Article  ADS  Google Scholar 

  40. R.A. Blythe, A.J. Bray, Phys. Rev. E 67, 041101 (2003)

    Article  ADS  Google Scholar 

  41. N.V. Agudov, B. Spagnolo, Phys. Rev. E 64, 035102(R) (2001)

    Article  ADS  Google Scholar 

  42. H.A. Kramers, Physica (Utrecht) 7, 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  43. P. Colet, F. De Pasquale, M. San Miguel, Phys. Rev. A 43, 5296 (1991)

    Article  ADS  Google Scholar 

  44. M. San-Miguel, R. Toral, in Instabilities and Nonequilibrium Structures, edited by E. Tirapegni and W. Zeller (Kluwer Academic Publishers, Dordrecht, 1997), Vol. VI

  45. I. Dayan, M. Gitterman, G.H. Weiss, Phys. Rev. A 46, 757 (1992)

    Article  ADS  Google Scholar 

  46. M. Gitterman, G.H. Weiss, J. Stat. Phys. 70, 107 (1993)

    Article  ADS  Google Scholar 

  47. J.M. Casado, M. Morillo, Phys. Rev. E 49, 1136 (1994)

    Article  ADS  Google Scholar 

  48. M.C. Mahato, A.M. Jayannavar, Mod. Phys. Lett. B 11, 815 (1997)

    Article  ADS  Google Scholar 

  49. M.C. Mahato, A.M. Jayannavar, Physica A 248, 138 (1998)

    Article  ADS  Google Scholar 

  50. D. Dan, M.C. Mahato, A.M. Jayannavar, Phys. Rev. E 60, 6421 (1999)

    Article  ADS  Google Scholar 

  51. R. Wackerbauer, Phys. Rev. E 58, 3036 (1998)

    Article  ADS  Google Scholar 

  52. R. Wackerbauer, Phys. Rev. E 59, 2872 (1999)

    Article  ADS  Google Scholar 

  53. A. Mielke, Phys. Rev. Lett. 84, 818 (2000)

    Article  ADS  Google Scholar 

  54. B. Spagnolo, D. Valenti, C. Guarcello, A. Carollo, D. Persano-Adorno, S. Spezia, N. Pizzolato, B. Di-Paolad, Chaos Soliton Fractals 81, 412–424 (2015)

    Article  ADS  Google Scholar 

  55. B. Spagnolo, C. Guarcello, L. Magazz, A. Carollo, D. Persano-Adorno, D. Valenti, Entropy 19, 20 (2017)

    Article  ADS  Google Scholar 

  56. D. Valenti, L. Magazzù, P. Caldara, B. Spagnolo, Phys. Rev. B 91, 235412 (2015)

    Article  ADS  Google Scholar 

  57. L. Serdukova, Chaos 26, 073117 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  58. A. Fiasconaro, D. Valenti, B. Spagnolo, Physica A 325, 136–143 (2003)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

One of the authors (C.S.) would like to thank the Indian Institute of Technology Mandi for Half-Time Research Assistantship (HTRA) fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Chinmoy Samanta contributed to methodology, writing—original draft preparation, visualization, investigation, supervision, and software. Aniruddha Chakraborty was involved in conceptualization, methodology, validation.

Corresponding author

Correspondence to Chinmoy Samanta.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they have no conflict of interest.

Availability of data and material

N/A

Code availability

N/A

Ethics approval

N/A

Consent to participate

N/A

Consent for publication

Publication is consented by all authors.

Appendix

Appendix

Determination of \(\mathcal {L}^{-1}\{\frac{e^{-\alpha \sqrt{1+ s}}}{s}\}\):

The classical inversion formula is

$$\begin{aligned} {} \mathcal {L}^{-1}[F(z)](t)=\frac{1}{2 \pi i}\int _{c-i \infty }^{c+i\infty }\mathrm{d}z F(z)e^{zt}=\frac{1}{2 \pi i}\int _{c-i \infty }^{c+i\infty }\mathrm{d}z\frac{e^{-\alpha \sqrt{1+ z}}}{z} e^{zt}\quad \alpha >0. \end{aligned}$$
(A1)
Fig. 13
figure 13

Schematic diagram of the Bromwich contour

To perform the above integration, we consider the Bromwich contour in Fig. 13 which contains branch points on the negative real axis due to \(\sqrt{1+z}\) term. From the residue theorem

$$\begin{aligned} \oint _{C} \mathrm{d}z\frac{e^{-\alpha \sqrt{1+ z}}}{z} e^{zt}= 2\pi i \sum \text {All residues}, \end{aligned}$$
(A2)

where C is a keyhole-type contour (Fig. 13) about the negative real axis. We have also defined \(\arg z \in (-\pi ,\pi ]\) so that we could avoid the branch cut, which exists in \(-1 \ge {Re}z >-\infty \). There are six parts of this contour, namely \(C_j\), \(j\in \{ 1,2,3,4,5,6\}\), as shown in Fig. 13. On \(C_4\), \(z=-1+\epsilon e^{i\theta }\), and thus, the integral vanishes for \(\epsilon \rightarrow 0\). Now, consider the integral on \(C_2\) and \(C_6\). Here, \(z=R e^{i \theta }\) (\(R\rightarrow \infty \)) and we get

$$\begin{aligned} \left[ \int _{C_2}+\int _{C_6}\right] \mathrm{d}z\frac{e^{-\alpha \sqrt{1+ z}}}{z} e^{zt}=\int _{\pi /2}^{\pi }f(\theta ) d\theta +\int _{-\pi }^{-\pi /2}f(\theta ) d\theta =0, \end{aligned}$$
(A3)

where \(f(\theta )\) is a function of the variable \(\theta \) as R is constant on these arcs. Then, we are left with the following by the Cauchy’s integral theorem with simple pole at \(z=0\):

$$\begin{aligned} \left[ \int _{C_3}+\int _{C_5}+\int _{C_1}\right] \mathrm{d}z\frac{e^{-\alpha \sqrt{1+ z}}}{z} e^{zt}=2\pi ie^{-\alpha }. \end{aligned}$$
(A4)

On \(C_3\), \(z=x e^{i\pi }\) (\(x \in (-\infty ,-1]\)), and then,

$$\begin{aligned} \sqrt{1+z}=\sqrt{-e^{i\pi }+x e^{i\pi }}=i\sqrt{x-1}. \end{aligned}$$
(A5)

Therefore, we could write the corresponding integral as

$$\begin{aligned} \int _{-\infty }^{-1}\mathrm{d}x \frac{e^{-i \alpha \sqrt{x-1}-xt}}{x}. \end{aligned}$$
(A6)

Similarly, \(z=x e^{-i\pi }\) (\(x \in [-1,-\infty )\)) for the integral on \(C_5\), and the integral could be written as

$$\begin{aligned} \int _{-1}^{-\infty }\mathrm{d}x \frac{e^{i \alpha \sqrt{x-1}-xt}}{x}. \end{aligned}$$
(A7)

By considering both the integral on \(C_3\) and \(C_5\), we may get

$$\begin{aligned} {} \begin{aligned}&\int _{-\infty }^{-1}\mathrm{d}x \frac{e^{-i \alpha \sqrt{x-1}-xt}}{x}+\int _{-1}^{-\infty }\mathrm{d}x \frac{e^{i \alpha \sqrt{x-1}-xt}}{x}\\&\quad = 2i\int _{1}^{\infty } \mathrm{d}x \frac{e^{-x t}}{x} \sin {(\alpha \sqrt{x-1})}\\&\quad =2i\int _{0}^{\infty } \mathrm{d}p \frac{e^{-(p+1) t}}{p+1} \sin {(\alpha \sqrt{p})}. \end{aligned} \end{aligned}$$
(A8)

In the last step, we parameterize by \(p=x-1\). We apply Feynman’s integral technique to find the last integral. Let’s consider

$$\begin{aligned} {} I(t)=\int _{0}^{\infty } \mathrm{d}p \frac{e^{-(p+1) t}}{p+1} \sin {(\alpha \sqrt{p})}. \end{aligned}$$
(A9)

Then,

$$\begin{aligned} \frac{\mathrm{d}I}{\mathrm{d}t}=-\int _{0}^{\infty } \mathrm{d}p e^{-(p+1) t}\sin {(\alpha \sqrt{p})} =-\frac{\sqrt{\pi }\alpha e^{-\frac{\alpha ^2}{4t}-t}}{2 t^{3/2}}. \end{aligned}$$
(A10)

Again we could solve for I(t) by integrating the above equation w.r.t the variable t, and after solving, we obtain

$$\begin{aligned} I(t)=\frac{\pi }{2}\left[ e^{-\alpha }\left( 1+ \text {Erf}\left[ \frac{\alpha }{2\sqrt{t}}-\sqrt{t}\right] \right) +e^\alpha \left( -1+ \text {Erf}\left[ \frac{\alpha }{2\sqrt{t}}+\sqrt{t}\right] \right) \right] + c(\alpha ). \end{aligned}$$
(A11)

In the above, \(c(\alpha )\) is an integral constant. By calculating I(0) from Eq. (A9) and putting \(t=0\) in Eq. (A11), we find that \(c(\alpha )=0\). Now, the integral in Eq. (A1) could be evaluated from the integral on \(C_1\) in the limit \(R\rightarrow \infty \). Thus, from Eqs. (A4) and (A8), we could find the inverse Laplace transform which is

$$\begin{aligned} \begin{aligned} \mathcal {L}^{-1}[F(z)](t)&=\lim _{R\rightarrow \infty } \frac{1}{2 \pi i} \int _{c-i R}^{c+i R}\mathrm{d}z\frac{e^{-\alpha \sqrt{1+ z}}}{z} e^{zt}\\&=\frac{1}{2}e^{-\alpha }\left[ \text {Erfc}\left[ \frac{\alpha }{2\sqrt{t}}-\sqrt{t}\right] + e^{\alpha }\text {Erfc}\left[ \frac{\alpha }{2\sqrt{t}}+\sqrt{t}\right] \right] . \end{aligned} \end{aligned}$$
(A12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, C., Chakraborty, A. Reaction–diffusion dynamics in an attractive stepwise-linear potential energy curve under the Gaussian-sink Action. Eur. Phys. J. Plus 136, 540 (2021). https://doi.org/10.1140/epjp/s13360-021-01524-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01524-7

Navigation