Skip to main content
Log in

Coherent states in the symmetric gauge for graphene under a constant perpendicular magnetic field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work we describe semiclassical states in graphene under a constant perpendicular magnetic field by constructing coherent states in the Barut–Girardello sense. Since we want to keep track of the angular momentum, the use of the symmetric gauge and polar coordinates seemed the most logical choice. Different classes of coherent states are obtained by means of the underlying algebra system, which consists of the direct sum of two Heisenberg–Weyl algebras. The most interesting cases are a kind of partial coherent states and the coherent states with a well-defined total angular momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Hawrylak, Phys. Rev. Lett. 71, 3347 (1993)

    Article  ADS  Google Scholar 

  2. L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Rep. Prog. Phys. 64, 701 (2001)

    Article  ADS  Google Scholar 

  3. A.V. Madhav, T. Chakraborty, Phys. Rev. B 49, 8163 (1994)

    Article  ADS  Google Scholar 

  4. H.-Y. Chen, V. Apalkov, T. Chakraborty, Phys. Rev. Lett. 98, 186803 (2007)

    Article  ADS  Google Scholar 

  5. B. Szafran, F.M. Peeters, S. Bednarek, J. Adamowski, Phys. Rev. B 69, 125344 (2004)

    Article  ADS  Google Scholar 

  6. V. Fock, Zeitschrift für Physik 47, 446 (1928)

    Article  ADS  Google Scholar 

  7. C.G. Darwin, Math. Proc. Cam. Philos. Soc. 27, 86 (1931)

    Article  ADS  Google Scholar 

  8. L. Page, Phys. Rev. 36, 444 (1930)

    Article  ADS  Google Scholar 

  9. L. Landau, Zeitschrift für Physik 64, 629 (1930)

    Article  ADS  Google Scholar 

  10. I.A. Malkin, V.I. Man’ko, Sov. Phys. JETP 28, 527 (1969)

    ADS  Google Scholar 

  11. R.J. Glauber, Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Feldman, A.H. Kahn, Phys. Rev. B 1, 4584 (1970)

    Article  ADS  Google Scholar 

  13. G. Loyola, M. Moshinsky, A. Szczepaniak, Am. J. Phys. 57, 811 (1989)

    Article  ADS  Google Scholar 

  14. K. Kowalski, J. Rembielinski, L.C. Papaloucas, J. Phys. A Math. Gen. 29, 4149 (1996)

    Article  ADS  Google Scholar 

  15. D. Schuch, M. Moshinsky, J. Phys. A Math. Gen. 36, 6571 (2003)

    Article  Google Scholar 

  16. K. Kowalski, J. Rembieliński, J. Phys. A Math. Gen. 38, 8247 (2005)

    Article  ADS  Google Scholar 

  17. M.N. Rhimi, R. El-Bahi, Int. J. Theor. Phys. 47, 1095 (2008)

    Article  Google Scholar 

  18. V.V. Dodonov, in Coherent States and Their Applications: A Contemporary Panorama, Springer Proceedings in Physics (205), pages 311–338, ed. by J.-P. Antoine, F. Bagarello, J.-P. Gazeau (Springer, Cham, 2018)

  19. J. Zak, Phys. Rev. 134A, 1602 (1964)

    Article  ADS  Google Scholar 

  20. E. Brown, Phys. Rev. 133A, 1038 (1964)

    Article  ADS  Google Scholar 

  21. R.B. Laughlin, Phys. Rev. B 27, 3383 (1983)

    Article  ADS  Google Scholar 

  22. P.B. Wiegmann, A.V. Zabrodin, Phys. Rev. Lett. 72, 1890 (1994)

    Article  ADS  Google Scholar 

  23. M.K. Fung, Y.F. Wang, Chin. J. Phys. 38, 10 (2000)

    Google Scholar 

  24. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  25. Y. Zhang, Y.W. Tan, L.S. Horst, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  26. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  27. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  28. A.M.J. Schakel, Phys. Rev. D 43, 1428 (1991)

    Article  ADS  Google Scholar 

  29. M.I. Katsnelson, Eur. Phys. J. B 51, 157 (2006)

    Article  ADS  Google Scholar 

  30. T.M. Rusin, W. Zawadzki, Phys. Rev. B 76, 195439 (2007)

    Article  ADS  Google Scholar 

  31. T.M. Rusin, W. Zawadzki, Phys. Rev. B 78, 125419 (2008)

    Article  ADS  Google Scholar 

  32. A. De Martino, L. Dell’Anna, R. Egger, Phys. Rev. Lett. 98, 066802 (2007)

    Article  ADS  Google Scholar 

  33. L. Dell’Anna, A. De Martino, Phys. Rev. B 79, 045420 (2009)

    Article  ADS  Google Scholar 

  34. G. Giavaras, P.A. Maksym, M. Roy, J. Phys. Condens. Matter. 21, 102201 (2009)

    Article  ADS  Google Scholar 

  35. Ş Kuru, J. Negro, L.M. Nieto, J. Phys. Condens. Matter 21, 455305 (2009)

    Article  ADS  Google Scholar 

  36. B. Midya, D.J. Fernández, J. Phys. A Math. Theor. 47, 285302 (2014)

    Article  Google Scholar 

  37. M. Ramezani Masir, P. Vasilopoulos, F.M. Peeters, J. Phys. Condens. Matter 23, 315301 (2011)

    Article  Google Scholar 

  38. M. Gadella, L.P. Lara, J. Negro, Int. J. Mod. Phys. C 28, 1750036 (2017)

    Article  ADS  Google Scholar 

  39. C.A. Downing, M.E. Portnoi, Phys. Rev. B 94, 165407 (2016)

    Article  ADS  Google Scholar 

  40. C.A. Downing, M.E. Portnoi, Phys. Rev. B 94, 045430 (2016)

    Article  ADS  Google Scholar 

  41. M. Eshghi, H. Mehraban, I.A. Azar, Physica E 94, 106 (2017)

    Article  ADS  Google Scholar 

  42. P. Roy, T. Kanti Ghosh, K. Bhattacharya, J. Phys. Condens. Matter 24, 055301 (2012)

    Article  ADS  Google Scholar 

  43. D.N. Le, V.-H. Le, P. Roy, Physica E 96, 17 (2018)

    Article  ADS  Google Scholar 

  44. E. Díaz-Bautista, D.J. Fernández, Eur. Phys. J. Plus 132, 499 (2017)

    Article  Google Scholar 

  45. A.O. Barut, L. Girardello, Commun. Math. Phys. 21, 41 (1971)

    Article  ADS  Google Scholar 

  46. E. Drigho-Filho, Ş Kuru, J. Negro, L.M. Nieto, Ann. Phys. 383, 101 (2017)

    Article  ADS  Google Scholar 

  47. D.J. Fernández, C.J. Negro, M.A. del Olmo, Ann. Phys. 252, 386 (1996)

    Article  ADS  Google Scholar 

  48. K. Kikoin, M. Kiselev, Y. Avishai, Dynamical Symmetries in Molecular Electronics (Springer, Vienna, 2012), pp. 197–231

    Google Scholar 

  49. L. Sourrouille, J. Phys. Commun. 2, 045030 (2018)

    Article  Google Scholar 

  50. Ş Kuru, J. Negro, L. Sourrouille, J. Phys. Condens. Matter 30, 365502 (2018)

    Article  Google Scholar 

  51. Y. Aharonov, A. Casher, Phys. Rev. A 19, 2461 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  52. E. Witten, Nucl. Phys. B 188, 513 (1981)

    Article  ADS  Google Scholar 

  53. C. Aragone, F. Zypman, J. Phys. A Math. Gen. 19, 2267 (1986)

    Article  ADS  Google Scholar 

  54. Y. Bérubé-Lauzière, V. Hussin, J. Phys. A Math. Gen. 26, 6271 (1993)

    Article  ADS  Google Scholar 

  55. M. Kornbluth, F. Zypman, J. Math. Phys. 54, 012101 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  56. E. Díaz-Bautista, J. Math. Phys. 61, 102101 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  57. E. Díaz-Bautista, M. Oliva-Leyva, Y. Concha-Sánchez, A. Raya, J. Phys. A Math. Theor. 53, 105301 (2020)

    Article  ADS  Google Scholar 

  58. V.I. Man’ko, G. Marmo, S. Solimeno, F. Zaccaria, Int. J. Mod. Phys. A 08, 3577 (1993)

    Article  ADS  Google Scholar 

  59. V.I. Man’ko, G. Marmo, S. Solimeno, F. Zaccaria, Phys. Lett. A 176, 173 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  60. F. Hong-Yi, C. Hai-Ling, Commun. Theor. Phys. 37, 655 (2002)

    Article  ADS  Google Scholar 

  61. B. Roy, P. Roy, J. Opt. B 2, 65 (2000)

    Article  ADS  Google Scholar 

  62. B. Roy, P. Roy, J. Opt. B 2, 505 (2000)

    Article  ADS  Google Scholar 

  63. S. Sivakumar, J. Opt. B 2, R61 (2000)

    Article  ADS  Google Scholar 

  64. A.M. Perelomov, Commun. Math. Phys. 26, 222 (1972)

    Article  ADS  Google Scholar 

  65. D. Bhaumik, K. Bhaumik, B. Dutta-Roy, J. Phys. A Math. Gen. 9, 1507 (1976)

    Article  ADS  Google Scholar 

  66. H. Fakhri, J. Phys. A Math. Gen. 37, 5203 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  67. I. Aremua, M.N. Hounkonnou, E. Baloïtcha, Rep. Math. Phys. 76, 247 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  68. F. London, Superfluids (Wiley, New York, 1950)

    MATH  Google Scholar 

  69. L. Onsager, in: Proceedings of the International Conference on Theoretical Physics (Kyoto & Tokyo, September 1953), Science Council of Japan, Tokyo (1954), p. 935

  70. J.E. Jacak, New J. Phys. 22, 093027 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  71. M. Novaes, J.P. Gazeau, J. Phys. A Math. Gen. 36, 199 (2002)

    Article  ADS  Google Scholar 

  72. A. Dehghani, H. Fakhri, B. Mojaveri, J. Math. Phys. 53, 123527 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  73. A. Dehghani, B. Mojaveri, Eur. Phys. J. D 67, 264 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Junta de Castilla y León and FEDER projects (VA137G18 and BU229P18) and CONACYT (Mexico), project FORDECYT-PRONACES/61533/2020. EDB also acknowledges the warm hospitality at Department of Theoretical Physics of the University of Valladolid, as well his family moral support, specially of Act. J. Manuel Zapata L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Díaz-Bautista.

Densities and currents for the coherent states \(\varPi _{m,\alpha }\)

Densities and currents for the coherent states \(\varPi _{m,\alpha }\)

The expressions for the probability densities \(\rho _{m,\alpha }\) in the coherent states (96) are

$$\begin{aligned} \rho _{m,\alpha }(\xi ,\theta )= & {} \varPi ^{\dagger }_{m,\alpha } \varPi _{m,\alpha } =\frac{1}{2\exp (\vert {\tilde{\alpha }}\vert ^2)-1}\left[ \vert g_m(\xi )\vert ^2\right. \\&\left. +\left| \sum _{n=m+1}^{\infty }\frac{\left( {\tilde{\alpha }}z\right) ^n}{n!}L_{m}^{n-m}(\xi ^2)f_m(\xi )\right| ^2\right. \\&+\left| \sum _{n=m+1}^{\infty }\frac{\left( {\tilde{\alpha }} z\right) ^n}{n!}\frac{\sqrt{n}}{z}\, L_{m}^{n-m-1}(\xi ^2)f_m(\xi )\right| ^2\\&+2\,\text {Re}\left[ \sum _{n=m+1}^{\infty }\frac{({\tilde{\alpha }}z)^n}{n!}f_m(\xi )g_m^*(\xi )\, L_{m}^{n-m}(\xi ^2)\right] \\&+(1-\delta _{0m})\left( \left| \sum _{n=1}^{m}\left( -\frac{{\tilde{\alpha }} }{z^*}\right) ^nL_{n}^{m-n}(\xi ^2)g_m(\xi )\right| ^2\right. \\&\left. +\left| \sum _{n=1}^{m}\left( -\frac{{\tilde{\alpha }}}{z^*}\right) ^n\frac{z^*}{\sqrt{n}}\, L_{n-1}^{m-n+1}(\xi ^2)g_m(\xi )\right| ^2\right. \\&+2\, \text {Re}\left[ \sum _{n=1}^{m}\left( -\frac{{\tilde{\alpha }}}{z^*}\right) ^nL_n^{m-n}(\xi ^2)\vert g_m(\xi )\vert ^2\right. \\&\left. +\left( \sum _{n'=1}^{m}\left( -\frac{{\tilde{\alpha }}^*}{z}\right) ^{n'}L_{n'}^{m-n'}(\xi ^2)g_m^*(\xi )\right) \right. \\&\times \left( \sum _{n=m+1}^{\infty }\frac{\left( {\tilde{\alpha }}z\right) ^n}{n!}\, L_{m}^{n-m}(\xi ^2)f_m(\xi )\right) \\&-\left( \sum _{n'=1}^{m}\left( -\frac{{\tilde{\alpha }}^*}{z}\right) ^{n'}\frac{1}{\sqrt{n'}}\, L_{n'-1}^{m-n'+1}(\xi ^2)g_m^*(\xi )\right) \\&\times \left. \left. \left. \left( \sum _{n=m+1}^{\infty }\frac{\left( {\tilde{\alpha }}z\right) ^n}{n!}\sqrt{n}\, L_{m}^{n-m-1}(\xi ^2)f_m(\xi )\right) \right] \right) \right] . \end{aligned}$$

For the current densities \(j_{m,\alpha ,\vec {u}}\) in the coherent states (96) we get

$$\begin{aligned} j_{m,\alpha ,\vec {u}}(\xi )= & {} ev_{\mathrm{F}}\ \varPi ^{\dagger }_{m,\alpha } \,(\vec {\sigma }\cdot \vec {u})_k\, \varPi _{m,\alpha } \\= & {} \frac{2ev_{\mathrm{F}}}{2\exp (\vert \alpha \vert ^2)-1}\, \text {Re}\left[ i(-i)^{k}e^{-i\theta }\left\{ \sum _{n=m+1}^{\infty }\frac{({\tilde{\alpha }}^*z^*)^{n}}{n!}\frac{\sqrt{n}}{z^*}\, L_{m}^{n-m-1}(\xi ^2)f_m^*(\xi )g_m(\xi )\right. \right. \\&+\left( \sum _{n'=m+1}^{\infty }\frac{({\tilde{\alpha }}z)^{n'}}{n'!}\, L_{m}^{n'-m}(\xi ^2)f_m(\xi )\right) \left( \sum _{n=m+1}^{\infty }\frac{({\tilde{\alpha }}^*z^*)^{n}}{n!}\frac{\sqrt{n}}{z^*}\, L_{m}^{n-m-1}(\xi ^2)f_m(\xi )\right) \\&-(1-\delta _{0m})\left( \sum _{n=1}^{m}\left( -\frac{{\tilde{\alpha }}^*}{z}\right) ^n\frac{z}{\sqrt{n}}\, L_{n-1}^{m-n+1}(\xi ^2)\vert g_m(\xi )\vert ^2\right. \\&+\left( \sum _{n'=1}^{m}\left( -\frac{{\tilde{\alpha }}}{z^*}\right) ^{n'}L_{n'}^{m-n'}(\xi ^2)g_m(\xi )\right) \left( \sum _{n=1}^{m}\left( -\frac{{\tilde{\alpha }}^*}{z}\right) ^n\frac{z}{\sqrt{n}}\, L_{n-1}^{m-n+1}(\xi ^2)g_m^*(\xi )\right) \\&-\left( \sum _{n'=1}^{m}\left( -\frac{{\tilde{\alpha }}}{z^*}\right) ^{n'} L_{n'}^{m-n'}(\xi ^2)g_m(\xi )\right) \left( \sum _{n=m+1}^{\infty }\frac{({\tilde{\alpha }}^*z^*)^{n}}{n!}\frac{\sqrt{n}}{z^*}\, L_{m}^{n-m-1}(\xi ^2)f_m^*(\xi )\right) \\&+\left. \left. \left. \left( \sum _{n'=m+1}^{\infty }\frac{({\tilde{\alpha }}z)^{n'}}{n'!}\, L_{m}^{n'-m}(\xi ^2)f_m(\xi )\right) \left( \sum _{n=1}^{m}\left( -\frac{{\tilde{\alpha }}^*}{z}\right) ^{n}\frac{z}{\sqrt{n}}\, L_{n-1}^{m-n+1}(\xi ^2)g_m^*(\xi )\right) \right) \right\} \right] . \end{aligned}$$

In all the cases z is the complex parameter defined in Eq. (76) and

$$\begin{aligned} f_{m}(\xi )=\sqrt{\frac{m!}{2\pi \ell _{\mathrm{B}}^{2}}}\,(-z)^{-m}\exp \left( -\frac{1}{2}\xi ^2\right) , \qquad g_{m}(\xi )=\sqrt{\frac{1}{2\pi \ell _{\mathrm{B}}^{2}\,m!}}\,z^{*m}\exp \left( -\frac{1}{2}\xi ^2\right) . \end{aligned}$$

Some plots of the functions \(\rho _{m,\alpha }\) and \(j_{m,\alpha ,\vec {u}}\) can be seen on Fig. 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Bautista, E., Negro, J. & Nieto, L.M. Coherent states in the symmetric gauge for graphene under a constant perpendicular magnetic field. Eur. Phys. J. Plus 136, 505 (2021). https://doi.org/10.1140/epjp/s13360-021-01490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01490-0

Navigation