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Abstract In this research, we explore the global conduct of age-structured SEIR system
with nonlinear incidence functional (NIF), where a threshold behavior is obtained. More
precisely, we will analyze the investigated model differently, where we will rewrite it as
a difference equations with infinite delay by the help of the characteristic method. Using
standard conditions on the nonlinear incidence functional that can fit with a vast class of a
well-known incidence functionals, we investigated the global asymptotic stability (GAS) of
the disease-free equilibrium (DFE) using a Lyapunov functional (LF) for R0 ≤ 1. The total
trajectory method is utilized for avoiding proving the local behavior of equilibria. Further,
in the case R0 > 1 we achieved the persistence of the infection and the GAS of the endemic
equilibrium state (EE) using the weakly ρ-persistence theory, where a proper LF is obtained.
The achieved results are checked numerically using graphical representations.

1 Introduction

Mathematical models make it possible to project the evolution of contagious diseases to
highlight the probable consequence of an epidemic and to assist inform the necessity of the
public health interventions. The models utilize basal presumptions or gathered statistics as
well as mathematics to obtain the responsible parameters for different contagious diseases
and utilize these parameters to determine the outcome of various interventions, such as mass
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immunization programs. Modeling can assist to determine which intervention is required and
which one to avoid or can predict next or future evolution patterns, so on. This projection was
very helpful in predicting the newly discovered COVID-19 disease we cite for instance the
paper [1,2], and other diseases as bovine Babesiosis disease [3], HIV [4], so on. Further, the
application of fractional calculus in understanding and predicting the evolution of infectious
diseases and evolution of species attract the attention of numerous scholars we cite for instance
the papers [5–12]. For more information about different methods for mathematical modeling
of some other natural problems, we invite the readers to check the following papers [13–30]

In the literature, modeling the spread of infectious diseases using differential equations
occupies a remarkable portion of the newly research achievements as example the researches
[4,22,31–33], where each population is considered that evolutes in terms of time only. Indeed,
if we presume that the studied population split into four different classes of populations
namely: S-class S, E-class E , I-class I , R-class R, the infected person can pass through
many stages which depends on the degree of the contagion of the person and the severity on
the infectious disease, modeling this effect is tough using only ordinary differential equations.
In these regards, we can consider in the mathematical modeling the time spend in the I-class
which it can be called by age of infection, which means that the infected class depends on time
denoted t and the infection age denoted a, such as approximation is investigated at the first
time in [4,31] for SIR model. There are many leading works in this context, such as modeling
incubation period in [34], vaccination-age (quarantine) [24], addiction models [22,32,33],
treat age [33], diffusion effect [35], which proves the huge importance of age-dependent
models in predicting the outbreak of infectious diseases.

In fact, the crucial responsible component for the manner of transmission infected-
susceptible is the incidence functional, where there are many types of incidence functional
that been suggested and investigated we mention as example ratio-dependent type, Holling
I-III type, Beddington–DeAngelis type, Hassell–Varley type, so on, which highlights the
diversity in the transmission mode of many infectious diseases. In this research, we will con-
sider a very wide class of incidence function that includes the previously mentioned incidence
functions for determining the threshold dynamic of the investigated model. Before proposing
our investigated model, and for the purpose of highlighting the achievement done in treat-
ing the global behavior of age structure models, we take as a starting point the following
age-structured model considered by Rost et al. [36] and McCluskey [34]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S′(t) = � − S(t)
∫ ∞

0 β(η)i(t, η)dη − μS(t),
E ′(t) = S(t)

∫ ∞
0 β(η)i(t, η)dη − (μ + α)E(t),

it (t, η) + iη(t, η) = −(μ + γ (η))i(t, η),

R′(t) = ∫ ∞
0 γ (η)i(t, η)dη − μR(t),

i(t, 0) = μE(t).

(1.1)

S(t), (resp. E(t)) is the susceptible population (resp. exposed population) density at t
(which represents the time). R(t) is the removal population density at t . i(t, a) is the density
of the infected population a time t and infection age a. � represents the constant entering flux,
and μ stands for the constant mortality-rate, 1/α is the incubation duration.

∫ ∞
0 γ (η)i(t, η)dη

is the total density of persons entered into the R-class at t , β(η) represents the transmission
rate which highlight the degree of the contagion of the infected person in the I-class. In the
recently investigated SEIR model [34,37], it is explained how the function β can take into
count the incubation stage, but the age-structured SIR models as [23,38] can provide a very
good accuracy in the cases of contagious diseases with a small length of incubation stage as
seasoner flu, COVID-19 disease, so on and loses its epidemiological accuracy in the cases of
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large latency stage contagious diseases, as an example tuberculose, HIV where the infected
person can spend months in latency stage before becoming a fully contagious person. In this
case, the age-structured SEIR model can provide better epidemiological precision results
than the classical SIR model. Our purpose is to introduce a nonlinear incidence function into
the system (1.1); hence, we obtain the system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = � − μS(t) − K
(
S(t), W (t)

)
, t ≥ 0,

E ′(t) = K
(
S(t), W (t)

) − (μ + α)E(t),
it (t, η) + iη(t, η) = −(μ + γ (η))i(t, η),

R′(t) = ∫ ∞
0 γ (η)i(t, η)dη,

W (t) = ∫ ∞
0 β(η)i(t, η)dη,

i(t, 0) = αE(t), t > 0,

S(0) = S̃ ≥ 0, E(0) = Ẽ ≥ 0, R(0) = R̃ ≥ 0, i(0, .) = i0(.).

(1.2)

All the parameters of the system (1.2) have the same epidemiological relevance as the model
(1.1), and for simplicity we considered that γ (η) = ν(η) + r(η). Further, the main mathe-
matical assumption on the NIF K

(
S(t), W (t)

)
will be set in the next section. In [7] an SEIR

model is also investigated with age-dependent in the exposed and the infected classes, the
main result in the said paper is to investigate the model directly. Here, we will transform the
model (1.2) into a difference equation with infinite delay, where the mathematical analysis
will be transformed radically. The main idea behind using such as transformation is to obtain
some information about the method of studying or analyzing global behavior of equilibria for
difference equation, and how to construct a LF for this kind of systems. It is widely known
that delay can generate interesting behavior as Hopf bifurcation [39,40]. Further, there are
few works that deals with the global behavior of some epidemiological models with time
delay as [41–49]. Here, we will prove that the infinite delay will not affect the behavior of the
solution, and based on the best of our knowledge investigating global behavior for an age-
structured SEIR using difference equation is never been achieved before, and we strongly
believe that this method will be very helpful in determining global behavior for different
difference systems. Furthermore, we are interested in studying the global behavior of a sys-
tem with difference equations and nonlinear incidence function, which never been achieved
before for the SEIR model, which motivates our paper. Also, we will use the trajectory system
to analyze the proprieties of the α-limit and ω-limit sets for proving the global stability of
the equilibria without passing the local stability of them, which is more adequate in our case.
Motivated by the previous mentioned points we organize the research in the manuscript as
the form:

The next section is set to rewrite the system (1.2) as a system of difference equations, and
providing the necessary conditions on the NIF K with various examples, also, we use some
simplifications of the model. Next, we will prove that the solution of the investigated model
has a global compact attractor (GCA) denoted A, and write the total trajectory (TT) system.
The GAS of the DFE is the subject of interest in Sect. 3 whereby the help of the trajectory
system and a proper LF is achieved for proving the GAS of this equilibrium in the case of
R0 < 1. In the fourth section, the uniqueness of the EE is provided for R0 > 1, next to the
uniform persistence. The GAS of the unique EE is shown in Sect. 5 using the total trajectory
system and a proper LF. The threshold dynamics are proved also numerical for confirming
the obtained mathematical results.
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2 Transformation of system (1.2) into system of difference equations and preliminary
results

Before starting with the transformation of the model (1.2) into a system of difference equations
that contains infinite delay, we put the following assumptions that fit with the epidemiological
relevance on the model parameters:

• We will consider in the whole paper that the function β is an integrable positive function.
The function γ ∈ L∞+ (R+).

• Assuming that K satisfies :

1. If J ≥ 0, K (S, .) is an increasing for S ≥ 0 and if S ≥ 0, K (., W ) is an increasing
for W ≥ 0. Further, K (0, W ) = K (S, 0) = 0 ∀S, W ≥ 0.

2.
∂K

∂W
(., 0) ≥ 0 and continuous on every compact set M .

3. K verifies the Lipschitz condition, which means that there exist L > 0, where
∀C > 0, ∃L := LC > 0 verifying:

|K (S2, W2) − K (S1, W1)| ≤ L(|S2 − S1| + |W2 − W1|), (2.1)

whenever 0 ≤ S2, S1, W2, W1 ≤ C.

• We denote N (t) = S(t) + E(t) + I (t) + R(t) where I (t) = ∫ ∞
0 i(t, η)dη, be the total

population, which verifies:
N ′(t) = � − μN (t).

Clearly, N (t) tends to
�

μ
, as t → ∞ then, the fourth eq. in (1.2) can be neglected.

• We denote

N̄ = �

μ
,

and

�(η) = e− ∫ η
0 γ (σ )dσ .

Now, let us focus on transforming (1.2) into a system of difference equations. The integration
of i equation in (1.2), using the characteristic method we get:

i(t, η) =
⎧
⎨

⎩

αE(t − η)e−μη
�(η), t > η ≥ 0,

i0(η − t)e−μt �(η)

�(η − t)
, η > t ≥ 0.

(2.2)

and ⎧
⎪⎪⎨

⎪⎪⎩

S′(t) = � − μS(t) − K (S(t), W (t))
E ′(t) = K (S(t), W (t)) − (μ + α)E(t),
W (t) = ∫ ∞

0 β(η)i(t, η)dη.

S(0) = S0, E(0) = E0.

(2.3)

Hence, we arrive to the following form of the system (1.2) (system of difference equations):
⎧
⎨

⎩

S′(t) = � − μS(t) − K
(
S(t), W (t)

)
,

E ′(t) = K
(
S(t), W (t)

) − (μ + α)E(t),
W (t) = α

∫ ∞
0 β(η)e−μη

�(η)E(t − η)dη,

(2.4)
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with {
S(0) = S0,

E(t) = φ(t), for t ≤ 0.
(2.5)

We denote

C := {φ : R− → R, φes is bounded and uniformly continuous on R−}.
with 0 <  < μ + inf(γ ).

With the norm
||χ || = sup

s≤0
|χ(s)es |.

Let the notation Et stands for E(t), this means that Et (θ) = E(t + θ), with θ ≤ 0. The
positive functions cone in C is highlighted by Y ; that means

Y := {φ ∈ C : φ(θ) ≥ 0 for θ ≤ 0}.
We presume that (S0, φ) ∈ R

+ × Y then from [50] the existence and the regularity and
the uniqueness of solution for (2.4)–(2.5) in R

+ × Y is guaranteed.

Proposition 2.1 ∃P > 0 such that for any solution of (2.4)–(2.5) ∃T > 0 verifying

S(t) ≤ P, E(t) ≤ P, ||Et || ≤ P, W (t) ≤ M, ∀t ≥ T . (2.6)

Moreover,
� ≤ lim inf

t→∞ S(t), (2.7)

with � := �
μ+L .

Proof First of all, a simple computation, yields

lim sup
t→∞

N (t) ≤ N̄ .

as S + E + I + R = N then

lim sup
t→∞

(S(t) + E(t)) ≤ N̄ .

Therefore, ∃T > 0 such ∀t ≥ T we get

S(t) ≤ N̄ , I (t) ≤ N̄ and E(t) ≤ N̄ .

In addition,

||Et || = sup
θ≤0

Et (θ) = sup
u≤t

E(u)eue−t

≤ max{e−t ||φ||, K eT e−t , N̄ },
where K = sup0≤u≤T E(u). Further,

W (t) ≤ α

∫ ∞

0
β(η)eηe−μηe−η Et (−η)dη,

≤ α||β||
μ + inf(γ ) − 

||Et ||.
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Consequently, we can choose M so large in such a way (2.6) is satisfied. For the second
estimation (2.7), we put lim inf t→∞ S(t) = S∞, lim supt→∞ W (t) = W ∞, the fluctu-
ation method [51] yields the existence of a sequence denoted tk , verifying S′(tk) → 0,
limtk→∞ S(tk) = S∞, thus

0 ≥ � − μS∞ − K (S∞, W ∞),

due to (2.1), we obtain
0 ≥ � − μS∞ − L S∞,

so,

S∞ ≥ �

μ + L
.


�

For the model (1.2), the BRN R0 is defined by

R0 = α

μ + α

∂K

∂W
(N̄ , 0)

∫ ∞

0
β(η)e−μηe− ∫ η

0 γ (σ )dσ dη, (2.8)

3 GCA and TT

First, we define the following semiflow

�(t, (S0, φ)) = (S(t), Et (.)), (3.1)

with (S, Et ) is solution of (2.4)–(2.5).
We choose X = R

+ × Y and we show the presence of a compact attractor (CA) of all
bounded sets (BS) of X , (for more details see [51,52]).

Theorem 3.1 The semi-flow � has a compact attractor denoted A of bounded sets of X.

Proof using Proposition 2.1, the semi-flow � is point-dissipative. Hence, by Theorem 2.33
in [51], we only need to prove that � is eventually bounded on BS and verifying asymptotical
smoothness condition in order to prove our Theorem. These two properties are checked by
employing the same ideas as in proof of Theorem 6.1 [36]. 
�

The remained part of the section is devoted to describe some estimates for bounded TT
of (2.4)–(2.5) for the purpose of avoiding analyzing the local behavior of (2.4)–(2.5). These
system has a crucial role in avoiding proving the GAS of the equilibria without passing by
the local stability analysis, see, e.g., [51].

TT system
We put φ̄ that verifies φ̄(t) = (S(t), Et (.)). Hence, φ̄(r + t) = �(t, φ̄(r)), t ≥ 0, r ∈ R.

Thus, by a simple computation, a total trajectories satisfy, for all t ∈ R, the system
⎧
⎨

⎩

S′(t) = � − μS(t) − K (S(t), W (t)),
E ′(t) = K (S(t), W (t)) − (μ + α)E(t),
W (t) = α

∫ ∞
0 β(η)e−μη

�(η)E(t − η)dη.

(3.2)

Next, we will provide some important proprieties for TT system through the following lemma:
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Lemma 3.2 For all (S0, φ) ∈ A, we have

S(t) + E(t) ≤ N̄ , and S(t) ≥ �

μ + L
, where L is the Lipschitz constant,

and W (t) ≤ α N̄

μ
||β||,

for all t ∈ R.

Proof By summing the first and second equations of (3.2), we arrive at

S′(t) + E ′(t) ≤ � − μ(S(t) + E(t)),

for t ≥ r we get

(S(t) + E(t))eμt ≤ (S(r) + E(r))eμr + �

μ
(eμt − eμr ),

putting r → −∞ we find

S(t) + E(t) ≤ �

μ
, for all t ∈ R.

Also,

W (t) =
∫ ∞

0
β(η)e−μη

�(η)αE(t − η)dη ≤ α�

μ2 ||β||.
Next, we determine the persistence of S in (3.2). Using the fact that W is bounded and

(2.1), we get

S′(t) ≥ � − μS(t) − K (S(t),
αA

μ2 ||β||),
≥ � − μS(t) − L S(t).

Finally, some calculations yield:

S(t) ≥ �

μ + L
∀t ∈ R. (3.3)


�

4 The GAS of DFE

Here, we determine the global behavior of the solution of (2.4)–(2.5) in the case of R0 < 1,
note that the DFE (N̄ , 0) is the unique equilibrium state in this case. Through this section,
the assumption of concavity of K (S, W ) with respect to W is mandatory.

Theorem 4.1 For R0 ≤ 1, we get the global asymptotic stability of DFE (N̄ , 0)

Proof Introducing the function

ψ(η) = α
∂K

∂W
(N̄ , 0)

∫ ∞

η

β(σ )e−μσ
�(σ )dσ.

For (S0, φ) ∈ A, we set the LF as the form V (S0, φ) = V1(S0, φ) + V2(S0, φ) + φ(0)

where

V1(S0, φ) = S0 −
∫ S0

N̄
lim

W→0+
f (N̄ , W )

f (η, W )
dη − N̄ ,

123



  587 Page 8 of 21 Eur. Phys. J. Plus         (2021) 136:587 

and

V2(S0, φ) =
∫ ∞

0
ψ(η)φ(−η)dη,

Putting� : R → A be a �−TT, �(t) = (S(t), Et ), S(0) = S0 and E0 = φ, with
(S(t), Et ) is solution of (3.2).

d

dt
V1(�(t)) =

(

1 − lim
W→0+

K (N̄ , W )

f (S(t), W )

)

(A − μS(t) − K (S(t), W (t)))

= μ

(

1 − lim
W→0+

K (N̄ , W )

f (S(t), W )

)
(
N̄ − S(t)

)

−K (S(t), W (t))

(

1 − lim
W→0+

K (N̄ , W )

K (S(t), W )

)

.

Concerning V2, we have

d

dt
V2(�(t)) =

∫ ∞

0
ψ(η)

d

dt
E(t − η)dη,

= −
∫ ∞

0
ψ(a)

d

da
E(t − η)dη,

= ψ(0)E(t) +
∫ ∞

0
ψ ′(a)E(t − η)dη,

= R0(μ + α)E(t) − α
∂K

∂W
(N̄ , 0)

∫ ∞

0
β(a)e−μη

�(a)E(t − η)dη.

Adding V ′
1, V ′

2, and E(t) yields

d

dt
V (�(t)) = μ

(

1 − lim
W→0+

K (N̄ , W )

K (S(t), W )

)
(
N̄ − S(t)

) − (
1 − R0

)
(μ + α)E(t),

+K (S(t), W (t)) lim
J→0+

K (N̄ , W )

K (S(t), W )
− ∂K (N̄ , 0)

∂W
W (t).

Clearly, the first two terms of the previous equation are nonpositive, and yield that the third
term is also nonpositive. In fact, the concavity of K for J gives

K (S, W ) ≤ W
∂K

∂W
(S, 0).

Hence,

K (S(t), W (t)) lim
W→0+

K (N̄ , W )

K (S(t), W )
− W (t)

∂K

∂W
(N̄ , 0)

= K (S(t), W (t))

∂K

∂W
(N̄ , 0)

∂K

∂W
(S(t), 0)

− W (t)
∂K

∂W
(N̄ , 0),

=
∂K

∂W
(N̄ , 0)

∂K

∂W
(S(t), 0)

(
K (S(t), W (t)) − W (t)

∂K

∂W
(S(t), 0)

) ≤ 0.
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Clearly,
d

dt
V (�(t)) = 0 yields S(t) = N̄ ∀t ∈ R. Employing this result in the S eq. yields

W (t) = 0, ∀t ∈ R. From (3.2), we easily find E(t) = 0, ∀t ∈ R. Using the compactness of A
is compact, respectively, ω(x) and α(x) are non-empty, compact, invariant and attract �(t)
as t → ±∞. Using also the fact that V (�(t)) is decreasing in t, V is nonvariable on the
ω(x) and α(x), and hence ω(x) = α(x) = {(N̄ , 0)}. As a result, limt−→±∞ �(t) = (N̄ , 0)

and
lim

t−→−∞ V (�(t)) = lim
t−→+∞ V (�(t)) = V (N̄ , 0).

Then, V (�(t)) = V (N̄ , 0), ∀t ∈ R. Using the fact that α(x) = {(N̄ , 0)} hence V (�(t)) ≤
V (N̄ , 0) ∀t ∈ R. Further, the minimum of � at (N̄ , 0), then �(t) = (N̄ , 0), ∀t ∈ R. More
precisely, (S0, φ) = (N̄ , 0). Consequently, A, is the singleton set contains only the DFE
(N̄ , 0). Theorem 2.39 in [51] yields the globally asymptotically stability of the DFE. 
�

5 Existence of EE and uniform persistence

Here, we deal with some proprieties of the system (2.4)–(2.5) in the case of R0 > 1. At first,
we demonstrate the existence of EE and then, we determine the uniform persistence of the
solution of (3.2).

Lemma 5.1 Let limW→0+
K (N̄ , W )

K (S, W )
> 1, S ∈ [0, N̄ ). Hence, for R0 > 1, (2.4) has a

unique EE.

Proof EE verifies the following equality

�(t, (S∗, E∗)) = (S∗, E∗), where E∗ = 0, ∀t ≥ 0.

where S∗, E∗ verify
⎧
⎨

⎩

� − μS∗ − K (S∗, W ∗) = 0,

(μ + α)E∗ = K (S∗, W ∗),
W ∗ = αE∗ ∫ ∞

0 β(η)e−μη
�(η)dη.

(5.1)

Combining the equations of (5.1), we arrive at
{

A = μS∗ + K (S∗, W ∗),
D̄K (S∗, W ∗) = W ∗,

with

D̄ := α

μ + α

∫ ∞

0
β(η)e−μη

�(η)dη. (5.2)

using the same calculation as in [53], we arrive to the existence of EE. 
�
Now, investigate the uniform persistence; where Theorem 5.2 in [51] is been used. At first,

we see the hypostypsis on the NIF K . We presume the existence of EE denoted (S∗, W ∗)
verifying (5.1) such that

⎧
⎪⎨

⎪⎩

x

W ∗ <
K (S, x)

K (S, W ∗)
< 1 for x < W ∗,

1 <
K (S, x)

K (S, W ∗)
<

x

W ∗ for x > W ∗.
(5.3)
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∃ε > 0, η > 0 where, ∀S ∈ [N̄ − ε, N̄ + ε], hence

K (S, W1)

W1
≥ K (S, W2)

W2
, (5.4)

for all 0 < W1 ≤ W2 ≤ η.

Finally, we presume that

φ(η) > 0, for some η ≤ 0. (5.5)

Remark 5.2 If K verifies both the differentiability and the concavity conditions for W , hence
(5.3) and (5.4) are checked automatically.

Setting a persistence function ρ : R
+ × Y+ → R

+ as

ρ(S0, φ) = E(0),

then for x = (S0, φ),

ρ(�(t, x)) = E(t).

The next Lemma insures that (H1) in Theorem 5.2 ( [51]) is checked.

Lemma 5.3 Using (5.5), ρ is nonnegative anywhere on R.

Proof Presuming that ∃r ∈ R in such a way E(t) = 0 ∀t ≤ r. Then, E(t) = 0, ∀t > r. In
fact, for t > r and by a change of variable we find

(E(t)e(μ+α)t )′ = αe(μ+α)t
∫ t

−∞
β(t − σ)e−μ(t−σ)

�(t − σ)E(σ )dσ,

= αe(μ+α)t
∫ t

r
β(t − σ)e−μ(t−σ)

�(t − σ)E(σ )dσ,

by integration and Fubini’s theorem we obtain

E(t)e(μ+α)t ≤ α N̄ ||β||
∫ t

r
e(μ+α)θ

∫ θ

r
e−μ(θ−σ)E(σ )dσdθ,

≤ α N̄ ||β||
∫ t

r
eμσ E(σ )

∫ t

θ

eαθ dθdσ,

thus, by a straightforward calculation, we get

E(t) ≤ N̄ ||β||
∫ t

r
E(σ )dσ.

Using Gronwall Lemma and the fact that E(r) = 0, we conclude that E(t) = 0, ∀t > r .
This is a contradiction with (5.5). Now, we suppose that ∃tn verifying tn → ∞ and E(tn) > 0.

We set En(t) = E(t + tn) and Sn(t) = S(t + tn). So, by a simple computation

En(t)e(μ+α)t ≥ En(0) + α
A

μ + L

∫ t

0
e(μ+α)θ

∫ θ

−∞
β(θ − σ)e−μ(θ−σ)E(σ )dσdθ,

by En(0) = E(tn) > 0 then En(t) > 0 ∀t ≥ 0. Finally, using tn → −∞ as n → ∞ then

E(t) > 0, ∀t ∈ R.


�
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Using the fact that (H1) in Section 5.1. [51] holds, and using Theorem 5.2. in [51],
it is sufficient to demonstrate the weak uniform persistence for establishing the uniform
persistence.

Theorem 5.4 Assume that (5.3), (5.4), (5.5) are checked. Then, ∃η > 0 verifying

lim inf
t→∞ E(t) > η,

for any positive sol. of (2.4) we have R0 > 1.

Proof Using contradiction, we suppose that

lim
t→∞ E(t) = 0,

then

lim
t→∞ W (t) := lim

t→∞

∫ ∞

0
αβ(η)e−μη

�(a)E(t − η)dη = 0.

Now, handling the S eq. in (1.2) and for t sufficiently large

S′(t) ≥ A − μS(t) − K (N̄ , W ),

≥ A − μS(t) − K (N̄ , ε),

hence

S(t) ≥
(

S0 − A − K (N̄ , ε)

μ

)

e−μt + A − K (N̄ , ε)

μ
,

thus

lim inf
t→∞ S(t) ≥ N̄ − ψ(ε),

with ψ(ε) = K (N̄ , ε)

μ
. We have

lim sup
t→∞

S(t) ≤ N̄ ,

as a result, we presume
|S(t) − N̄ | < ψ(ε), t ≥ T .

Otherwise, since R0 > 1 then for ε so small and t∗ so large we get

K (N̄ − ψ(ε), ε)

ε

∫ t∗

0
αβ(a)e−μa

�(a)da > μ + α.

Now, using the equation of E

E ′(t) = K (S(t), w(t)) − (μ + α)E(t),

≥ K (N̄ − ψ(ε), W (t)) − (μ + α)E(t),

In view of (5.4) and the fact that W (t) < ε where t is sufficiently large, we obtain,

K (N̄ − ψ(ε), W (t)) ≥ K (N̄ − ψ(ε), ε)

ε
W (t),

thus

E ′(t) ≥ K (N̄ − ψ(ε), ε)

ε
W (t) − (μ + α)E(t),
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≥ K (N̄ − ψ(ε), ε)

ε

∫ t∗

0
αβ(a)e−μa

�(η)E(t − η)dη − (μ + α)E(t).

Now, by employing a similar method as in the proof of Theorem 6.1. ( [36]) we reach to a
contradiction. The proof is completed. 
�

Letting X0 be a set which is:

X0 = {(S0, φ) ∈ X;φ(η) = 0, for all η ≤ 0}.
From Theorem 5.7 in [51], we get:

Theorem 5.5 ∃A1 (GCA) that entices all solutions with initial data in X \ X0. Further, A1
is ρ− uniformly positive, that is, ∃δ > 0 in such a way,

E(t) ≥ δ, ∀t ∈ R, and ∀(S0, φ) ∈ A1. (5.6)

6 The GAS and uniqueness of the EE

Her, we deal with the BAS of EE E∗ of (3.2). At first, we need to check what if all solutions of
(3.2) with initial condition verifying (5.5), and verifying the boundedness and the persistence
prosperities.

Corollary 6.1 ∃δ̄ > 0 where, ∀(S0, φ) ∈ A1,

W (t) := α

∫ ∞

0
β(η)e−μη

�(η)E(t − η)dη ≥ δ̄,

and

K (S(t), W (t)) ≥ K (
A

μ + L
, δ̄), (6.1)

for all t ∈ R, and δ̄ := δα
∫ ∞

0 β(η)e−μη
�(η)dη.

Proof Since A1 is invariant, ∃� : R → A1, �(t) = (S(t), Et ) with S(0) = S0 and
E0(a) = φ(a) for a ≤ 0. In view of the estimation (5.6), ∀t ∈ R we obtain,

W (t) := α

∫ ∞

0
β(η)e−μη

�(η)E(t − η)dη ≥ δα

∫ ∞

0
β(η)e−μη

�(η)dη,

From Lemma 3.2, we easily obtain (6.1). 
�
Theorem 6.2 By the presumptions of Theorem 5.4, the EE (S∗, E∗) is unique and it is GAS
in A1.

Proof Let � : R → A1 be a �−TT, �(t) = (S(t), Et (.)), S(0) = S0 and E0(.) = φ, with
(S(t), Et (.)) is solution of (3.2). Putting H(χ) = χ − ln(χ) − 1, also

ψ(η) = K (S∗, W ∗)
∫ ∞

η

dm(ϑ), with dm(ϑ) = β(ϑ)e−μϑ
�(ϑ)

D̄
dϑ. (6.2)

with D̄ := ∫ ∞
0 β(ϑ)e−μϑ

�(ϑ)dϑ. We mention that
∫ ∞

0 dm(σ ) = 1.

For (S0, φ) ∈ A1, we set the LF as V (S0, φ) = V1(S0, φ) + V2(S0, φ) + E∗V3(S0, φ) with

V1(S0, φ) = S0 −
∫ S0

S∗
K (S∗, W ∗)
K (η, W ∗)

dη − S∗,
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and

V2(S0, φ) =
∫ ∞

0
ψ(a)H

(
φ(−a)

E∗

)

da.

V3(S0, φ) = H

(
φ(0)

E∗

)

,

Firstly,

d

dt
V1(�(t)) = μ(1 − K (S∗, W ∗)

K (S(t), W ∗)
)(S∗ − S(t)) +

(

1 − K (S∗, W ∗)
K (S(t), W ∗)

)

K (S∗, W ∗)

−
(

1 − K (S∗, W ∗)
K (S(t), W ∗)

)

K (S(t), W (t)). (6.3)

Concerning V2, we have

d

dt
V2(�(t)) = H

(
E(t)

E∗

)

ψ(0) +
∫ ∞

0
H

(
E(t − a)

E∗

)

ψ ′(a)da,

= K (S∗, W ∗)H

(
E(t)

E∗

)

+
∫ ∞

0
H

(

t
E(t − a)

E∗

)

ψ ′(a)da. (6.4)

Now,

E∗V ′
3(t) =

(

1 − E∗

E(t)

)
(
K (S(t), W (t)) − (μ + α)E(t)

)
, (6.5)

adding V ′
1, V ′

2 and E∗V ′
3 we obtain

V ′(�(t)) = μ

(

1 − K (S∗, W ∗)
K (S(t), W ∗)

)

(S∗ − S(t)) + K (S∗, W ∗)
(

1 − K (S∗, W ∗)
K (S(t), W ∗)

)

−K (S(t), W (t))

(

1 − K (S∗, W ∗)
K (S(t), W ∗)

)

+K (S∗, W ∗)
(

E(t)

E∗ − ln
E(t)

E∗ − 1

)

+
(

1 − E∗

E(t)

)

K (S(t), W (t))

−(μ + α)E(t)

(

1 − E∗

E(t)

)

+
∫ ∞

0
H

(
E(t − a)

E∗

)

ψ ′(a)da.

Recall that (μ + α)E∗ = K (S∗, w∗), and reorganizing our terms, we have

V ′(�(t)) = μ

(

1 − K (S∗, W ∗)
K (S(t), W ∗)

)

(S∗ − S(t)) + K (S(t), W (t))
K (S∗, W ∗)

K (S(t), W ∗)

+
∫ ∞

0
H

(
E(t − a)

E∗

)

ψ ′(a)da

+K (S∗, W ∗)
(

1 − K (S∗, W ∗)
K (S(t), W ∗)

)

− K (S∗, W ∗) ln
E(t)

E∗ − E∗

E(t)
K (S(t), W (t)).

Adding and subtracting the term

K (S∗, W ∗)
(

ln
K (S(t), W (t))

K (S(t), W ∗)
+ 1

)

,
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and the explicit expression of H yields

V ′(�(t)) = μ

(

1 − K (S∗, W ∗)
K (S(t), W ∗)

)

(S∗ − S(t)) +
∫ ∞

0
H

(
E(t − a)

E∗

)

ψ ′(a)da

+K (S∗, W ∗)H

(
K (S(t), W (t))

K (S(t), W ∗)

)

+K (S∗, W ∗)
(

ln
K (S(t), W (t))

K (S(t), W ∗)
− ln

E(t)

E∗

− E∗K (S(t), W (t))

E(t)K (S∗, W ∗)
− K (S∗, W ∗)

K (S(t), W ∗)
+ 2

)

,

from this and the following equality

ln
K (S(t), W (t))

K (S(t), W ∗)
= ln

K (S(t), W (t))

K (S∗, W ∗)
+ ln

K (S∗, W ∗)
K (S(t), W ∗)

,

we find,

V ′(�(t)) = μ

(

1 − K (S∗, W ∗)
K (S(t), W ∗)

)

(S∗ − S(t)) +
∫ ∞

0
H

(
E(t − a)

E∗

)

ψ ′(a)da

+K (S∗, W ∗)H

(
K (S(t), W (t))

K (S(t), W ∗)

)

+K (S∗, W ∗)
(

ln
E∗K (S(t), W (t))

E(t)K (S∗, W ∗)
− E∗K (S(t), W (t))

E(t)K (S∗, W ∗)

+ ln
f (S∗, W ∗)

f (S(t), W ∗)
− f (S∗, W ∗)

K (S(t), W ∗)
+ 2

)

,

therefore, in view of the definition of the function ψ,

V ′(�(t)) = μ

(

1 − K (S∗, W ∗)
K (S(t), W ∗)

)

(S∗ − S(t))K (S∗, W ∗)
(

H

(
K (S(t), W (t))

K (S(t), W ∗)

)

−
∫ ∞

0
H

(
E(t − a)

E∗

)

dm(a)da

)

−K (S∗, W ∗)
{

H

(
E∗K (S(t), W (t))

E(t)K (S∗, W ∗)

)

+ H

(
K (S∗, W ∗)

K (S(t), W ∗)

)}

.

Since K is nondecreasing in S, the first term is nonpositive. Now, we set

X = H

(
K (S(t), W (t))

K (S(t), W ∗)

)

−
∫ ∞

0
H

(
E(t − a)

E∗

)

dm(a),

and we claim that X is negative. Indeed, using concaveness of H , and using Jensen inequality
see [4], we get

X ≤ H

(
K (S(t), W (t))

K (S(t), W ∗)

)

− H

(∫ ∞

0

E(t − a)

E∗ dm(a)

)

,

from the definition of dm(a) and J we have,

X ≤ H

(
K (S(t), W (t))

K (S(t), W ∗)

)

− H

(
W (t)

W ∗

)

.
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Considering t verifying Z := W (t)

W ∗ < 1; and according to the hypothesis (5.3), we obtain

K (S(t), W (t))

K (S(t), W ∗)
≥ W (t)

W ∗ .

Then, using H(1) = 0, H is nonincreasing in (0, 1), and K is nondecreasing with respect
to J we get,

H

(
K (S(t), W (t))

K (S(t), W ∗)

)

≤ H

(
W (t)

W ∗

)

,

hence X ≤ 0.

For the remained values of t, means Z > 1, using (5.3), we have

K (S(t), W (t))

K (S(t), W ∗)
≤ W (t)

W ∗ ,

hence, (H is nondecreasing in (1,∞))

H

(
K (S(t), W (t))

K (S(t), W ∗)

)

≤ H

(
W (t)

W ∗

)

.

As a result, the result is shown and hence
dV

dt
≤ 0.

Remarking
d

dt
V (�(t)) = 0 leads to S(t) = S∗, ∀t ∈ R also

H

(
K (S(t), W (t))E∗

K (S(t), W ∗)E(t)

)

= 0.

and thus
K (S∗, W (t))E∗ = K (S∗, W ∗)E(t) (6.6)

The first eq. in (3.2) yields
A − μS∗ = K (S∗, W (t)),

combined with (5.1) we arrive at

K (S∗, W (t)) = K (S∗, W ∗),

then W (t) = W ∗ ∀t ∈ R. Substituting this result in (6.6), we get

E(t) = E∗, ∀t ∈ R.

Using the same procedures used in the proof of Theorem 4.1 leads to the GAS of the EE. As
the equality d

dt V (�(t)) = 0 only checked if S = S∗, hence EE is unique. 
�

7 Graphical representations

Here, we will offer some illustrations of the obtained results in the previous sections. Further,
we will give the method of choosing some parameters. At first, using euler explicit formula
for approximating the first-order derivative to the system (1.2) we get

⎧
⎪⎪⎨

⎪⎪⎩

S(t + �t) = S(t) + �t (� − μS(t) − G(S(t), W (t))),
E(t + �t) = E(t) + �t (K (S(t), W (t)) − (μ + α)E(t)) ,

J (t) = α
∑∞

0 �ηβ(η�η)e−μη�η
�(η�η)E(t − η),

S(0) = S0, E(t) = φ(t), t < 0,

(7.1)

123



  587 Page 16 of 21 Eur. Phys. J. Plus         (2021) 136:587 

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

β
 (

a)

Age (weeks)
0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

β
 (

a)

Age (weeks)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

β
 (

a)

Age (weeks)

τ
1
=68τ

1
=7

(A) (B)

(C)

Fig. 1 The method of choosing the transmission functional with β1 = 40.10−3

Now, let us discuss the method of choosing the transmission rate β(a). It is been shown in
the first section that the age structured SIR system can lose its epidemiological precision in
the case of infection with a large (or variable) latency stage. In several papers (such as [54]),
the following transmission functional is considered

β(a) =
{

0, if a ≤ τ1

β1 (a − τ1)
2 e−0.2(a−τ1), if a > τ1.

, (7.2)

where in fact, for 0 < a < τ1 it represents the latency stage. This kind of functionals cannot
be considered for age structured SEIR system (1.2). In Fig. 1, the choice of transmission
functional depends on the average of the latency stage where for (A) the latency stage is
small (a1 = 7 weeks) which means that the SIR model can be used with a very good
epidemiological precision. For (B), the latency stage is very long (a2 = 68 week) which
means that the SIR model is not suitable for this case of infections; in this case, the SEIR is
more precise then the SIR model. In fact, for the reason of modeling the latency stage it is
better to consider the transmission functional used in (C) (which means that τ1 = 0) for the
SEIR model

Now, we will provide some examples for various incidence functional to confirm the
obtained mathematical results:
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Fig. 2 The global behavior of the SEIR system with difference equations with the Beddington–DeAngelis
incidence function in both cases R0 < 1 and R0 > 1 where we use the set of parameters (7.4) for a we used
β1 = 3 × 103 and for b we used β1 = ×103

Example 1 we consider the Beddington–DeAngelis incidence,

K (S, W ) = SW

1 + c1S + c2W
,

Using this nonlinear incidence, we will verify the global behavior of the system (2.4). At
first, the associated BRN is

R0 = α N̄

(1 + C1 N̄ )(μ + α)

∫ ∞

0
β(η)e−μη−∫ η

0 γ (σ )dσ dη. (7.3)

for Fig. 2 we utilize the following parameter set:

� = 3 × 10−3, μ = 0.1, α = 10−6, c1 = 0.01, c2 = 0.01, γ (η) = γ ∗ = 0.01,

S0 = 0.080, E(t) = 0.05, t ∈] − ∞, 0]. (7.4)

Example 2 Now, we consider a second example of another incidence functional that our
analysis can fit, which is the ratio-dependent incidence function which is expressed as

K (S, W ) = SW

S + W
,

Using the same arguments, we can calculate the BRN which is written as

R0 = α

(μ + α)

∫ ∞

0
β(η�η)e−μη−∫ η

0 γ (σ )dσ dη. (7.5)

In Fig. 3, we use the set:

� = 3 × 10−3, μ = 0.1, α = 10−6, γ (η) = γ ∗ = 0.01,

S0 = 0.080, E(t) = 0.05, t ∈] − ∞, 0]. (7.6)

Example 3 For the last example that we will consider is the Crowley–Martin which is
expressed as

K (S, W ) = SW

1 + c1S + c2W + c1c2SW
,
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Fig. 3 The global behavior of the SEIR system with difference equations with the ratio-dependent incidence
function in both cases R0 < 1 and R0 > 1 where we use the set (7.6) and for a we used β1 = 102 and for b
we used β1 = 40
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Fig. 4 The global behavior of the SEIR system with difference equations with the Crowley–Martin incidence
function in both cases R0 < 1 and R0 > 1 where we use the set (7.8) and for a we used β1 = 2 × 103 and
for b we used β1 = 2.5 × 103

Using the same arguments, we can calculate the BRN which is written as

R0 = α N̄

(1 + C1 N̄ )(μ + α)

∫ ∞

0
β(η)e−μη−∫ η

0 γ (σ )dσ dη. (7.7)

In Fig. 4, we use the set:

� = 3 × 10−3, μ = 0.1, α = 10−6, c1 = 0.01, c2 = 0.01, γ (η) = γ ∗ = 0.01,

S0 = 0.080, E(t) = 0.05, t ∈] − ∞, 0]. (7.8)

8 Discussion

We investigate in this research with a new approach for determining the global conduct
of difference equations with infinite delay. Our starting point was an age-structured SEIR
model, and by applying the characteristic method and some calculations, we transformed the
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aged structured model (1.2) into a system with difference equations and infinite delay. In the
literature, there many works that deal with the dynamical conduct of age-structured models
we mention a few [23,24,31–33,38], but they analyze the age-structured model directly. But
here we investigate the system with difference equations and infinite delay. To mention the
global conduct of these kind of models is not very known, where through this paper we
arrived to put the first steps in determining the global dynamics for this kind of systems. To
mention that the construction method of LF is radically different where the infinite delay
plays a crucial role in the building method. Indeed, our global analysis is entirely governed
by the value of BRN where for R0 ≤ 1 we get the GAS of the DFE and for R0 > 1 we obtain
the GAS of the EE. Also, we can highlight that the very well-known method for proving the
GAS of equilibria is to show the global attraction of an equilibrium using Lyapunov function
and the local stability of the same equilibrium, but here we use a different approach, where
the local stability is very tough to be achieved; hence, we use the total trajectory system
(see chapter 9 in [51]), also the uniform persistence (for the EE) for avoiding analyzing
the local behavior of the equilibria, where determining the proprieties of the α-limit and
ω-limit sets is more handseled in our case, where the main purpose is to prove that these
sets contain only the DFE (for R0 < 1) and the EE (for R0 > 1) as it has been shown in
the Proof of Theorem 4.1, also Theorem 6.2, which is the main motivation of our research.
Furthermore, A wide class of nonlinear incidence functions is included which means that
the incidence functional has no influence on the threshold dynamics of this research. In fact,
this result is confirmed numerically, where we considered three examples the first is the
Beddington–DeAngelis functional response in Fig. 2, which highlights the achievement of
the threshold behavior of the SEIR system with difference Eq. (2.4). The second example is
the ratio-dependent functional response where the same results are achieved in Fig. 3. The
last example is the Crowley–Martin incidence function, where the conduct of solution is
affected by the value of BRN and it is shown through Fig. 4.

The main result achieved in this research is not confined to determine the global behavior
of age-structured models only (this result is already achieved through many types of research
as it is been mentioned in the first section) but is to put a background for treating systems
with differential equations and infinite delay. This result can be applied to many other fields
as ecological, eco-epidemiological systems [55].
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