Skip to main content
Log in

Effect of thermal noise on the nonclassicality of SU(1, 1) and SU(2) coherent states

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The effects of thermal noise on quantum systems are often unavoidable at finite temperatures and should be taken into account, in order to get consistent results with experimental data. By focusing on the quantum states of light, this effect has been less considered, particulary in the context of generalized coherent states. So, in this paper, we aim to define quantum states which are generated by SU(1, 1) and SU(2) coherent states in the presence of the thermal noise. Indeed, we introduce the quantum states of light which are composed of thermal states and SU(1, 1) (or SU(2)) coherent states. In other words, we establish a connection between displaced thermal states and the SU(1, 1) and SU(2) Lie groups. Afterward, the nonclassicality of the obtained states is examined to understand the role of thermal noise in physical properties such as sub-Poissonian statistics, quadrature squeezing and Wigner–Weyl quasi-probability distribution function. This goal is achieved by changing the temperature of thermal equilibrium. Interestingly, the numerical results indicate that the nonclassicality of the system can be improved by considering the thermal noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.P. Gazeau, Coherent States in Quantum Physics (Wiley, New Jersey, 2009)

    Book  Google Scholar 

  2. S.T. Ali, J.P. Antoine, J.P. Gazeau, Coherent States, Wavelets and Their Generalizations, 2nd edn. (Springer, New York, 2014)

    Book  MATH  Google Scholar 

  3. X. Chang, S.V. Krasnoshchekov, V.I. Pupyshev, D.V. Millionshchikov, Phys. Lett. A 384(19), 126493 (2020)

    Article  MathSciNet  Google Scholar 

  4. A. Belfakir, Y. Hassouni, E.M. Curado, Phys. Lett. A 384(22), 126553 (2020)

    Article  MathSciNet  Google Scholar 

  5. M. Salazar-Ramirez, D. Martínez, R. Mota, V. Granados, Europhys. Lett. 95(6), 60002 (2011)

    Article  ADS  Google Scholar 

  6. M. Salazar-Ramırez, D. Ojeda-Guillén, R. Mota, V. Granados, Eur. Phys. J. Plus 132(1), 39 (2017)

    Article  Google Scholar 

  7. W.S. Dai, M. Xie, Phys. A 331(3–4), 497 (2004)

    Article  MathSciNet  Google Scholar 

  8. E.E. Hach, R. Birrittella, P.M. Alsing, C.C. Gerry, J. Opt. Soc. Am. B 35(10), 2433 (2018)

    Article  ADS  Google Scholar 

  9. S.R. Miry, M.K. Tavassoly, Phys. Scr. 85(3), 035404 (2012)

    Article  ADS  Google Scholar 

  10. A. Karimi, M.K. Tavassoly, J. Opt. Soc. Am. B 31(10), 2345 (2014)

    Article  ADS  Google Scholar 

  11. B. Mojaveri, A. Dehghani, Eur. Phys. J. D 67(8), 179 (2013)

    Article  ADS  Google Scholar 

  12. A. Dehghani, B. Mojaveri, Eur. Phys. J. D 67(12), 264 (2013)

    Article  ADS  Google Scholar 

  13. N.A. Firouzabadi, M.K. Tavassoly, M.J. Faghihi, Chin. Phys. B 24(6), 064204 (2015)

    Article  Google Scholar 

  14. M.J. Faghihi, Optik 227, 165999 (2021)

    Article  ADS  Google Scholar 

  15. I. Tikhonenkov, E. Pazy, Y.B. Band, A. Vardi, Phys. Rev. A 77, 063624 (2008)

    Article  ADS  Google Scholar 

  16. R.R. Puri, Phys. Rev. A 50, 5309 (1994)

    Article  ADS  Google Scholar 

  17. J. Liu, Y. Zhou, W. Wang, R.F. Liu, K. He, F.L. Li, Z. Xu, Opt. Express 21(16), 19209 (2013)

    Article  ADS  Google Scholar 

  18. S. Lloyd, Science 321(5895), 1463 (2008)

    Article  ADS  Google Scholar 

  19. I. Bobrov, S. Straupe, E. Kovlakov, S. Kulik, New J. Phys. 15(7), 073016 (2013)

    Article  ADS  Google Scholar 

  20. A. Valencia, G. Scarcelli, M. D’Angelo, Y. Shih, Phys. Rev. Lett. 94, 063601 (2005)

    Article  ADS  Google Scholar 

  21. R. Dhayal, M. Rathore, V.K. Kambila, K. Venkataratnam, Eur. Phys. J. Plus 135(4), 360 (2020)

    Article  Google Scholar 

  22. R.F. Bishop, A. Vourdas, Int. J. Mod. Phys. B 21, 2529 (2007)

    Article  ADS  Google Scholar 

  23. V. Parigi, A. Zavatta, M. Bellini, Laser Phys. Lett. 5(3), 246 (2008)

    Article  ADS  Google Scholar 

  24. A. Zavatta, V. Parigi, M.S. Kim, H. Jeong, M. Bellini, Phys. Rev. Lett. 103, 140406 (2009)

    Article  ADS  Google Scholar 

  25. L.Y. Hu, X.X. Xu, H.Y. Fan, J. Opt. Soc. Am. B 27(2), 286 (2010)

    Article  ADS  Google Scholar 

  26. L.Y. Hu, X.X. Xu, Z.S. Wang, X.F. Xu, Phys. Rev. A 82, 043842 (2010)

    Article  ADS  Google Scholar 

  27. X.X. Xu, L.Y. Hu, H.Y. Fan, Opt. Commun. 283(9), 1801 (2010)

    Article  ADS  Google Scholar 

  28. Y.I. Bogdanov, K.G. Katamadze, G.V. Avosopiants, L.V. Belinsky, N.A. Bogdanova, A.A. Kalinkin, S.P. Kulik, Phys. Rev. A 96, 063803 (2017)

    Article  ADS  Google Scholar 

  29. M. Motta, C. Sun, A.T. Tan, M.J. O’Rourke, E. Ye, A.J. Minnich, F.G. Brandão, G.K.L. Chan, Nat. Phys. 16(2), 205 (2020)

    Article  Google Scholar 

  30. J. Oz-Vogt, A. Mann, M. Revzen, J. Mod. Opt. 38(12), 2339 (1991)

    Article  ADS  Google Scholar 

  31. G. Lachs, Phys. Rev. 138, B1012 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  32. M.M. Nieto, Phys. Rev. A 17, 1273 (1978)

    Article  ADS  Google Scholar 

  33. M.J. Faghihi, M. Haddad, Z. Mazaheri, H.R. Baghshahi, J. Opt. Soc. Am. B 37(8), 2299 (2020)

    Article  ADS  Google Scholar 

  34. M.J. Faghihi, Ann. Phys. (Berlin) 532(10), 2000215 (2020)

    Article  ADS  Google Scholar 

  35. M.E. Farzan, M.J. Faghihi, G. Honarasa, Phys. A 565, 125569 (2021)

    Article  MathSciNet  Google Scholar 

  36. V.I. Man’ko, G. Marmo, E.C.G. Sudarshan, F. Zaccaria, Phys. Scr. 55(5), 528 (1997)

    Article  ADS  Google Scholar 

  37. A.M. Perelomov, Generalized Coherent States and Their Applications. Modern Methods of Plant Analysis (Springer-Verlag, 1986)

  38. M.J. Faghihi, M.K. Tavassoly, J. Phys. B At. Mol. Opt. Phys. 46(14), 145506 (2013)

    Article  ADS  Google Scholar 

  39. W.S. Chung, H. Hassanabadi, Eur. Phys. J. Plus 134(8), 394 (2019)

    Article  Google Scholar 

  40. M.J. Faghihi, M.K. Tavassoly, J. Phys. B At. Mol. Opt. Phys. 45(3), 035502 (2012)

    Article  ADS  Google Scholar 

  41. M.J. Salehi, H.R. Baghshahi, S.Y. Mirafzali, Eur. Phys. J. Plus 133(11), 471 (2018)

    Article  Google Scholar 

  42. F. Kheirandish, Eur. Phys. J. Plus 135(2), 243 (2020)

    Article  Google Scholar 

  43. G.S. Agarwal, Quantum Optics (Cambridge University Press, Cambridge, 2012)

  44. A. Kenfack, K. Życzkowski, J. Opt. B: Quantum Semiclassical Opt. 6(10), 396 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  45. C.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Faghihi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehtabzadeh, F., Faghihi, M.J. & Baghshahi, H.R. Effect of thermal noise on the nonclassicality of SU(1, 1) and SU(2) coherent states. Eur. Phys. J. Plus 136, 444 (2021). https://doi.org/10.1140/epjp/s13360-021-01443-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01443-7

Navigation