Skip to main content
Log in

Gravitational Rutherford scattering of electrically charged particles from a charged Weyl black hole

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Considering electrically charged test particles, we continue our study of the exterior dynamics of a charged Weyl black hole which has been previously investigated regarding the motion of mass-less and (neutral) massive particles. In this paper, the deflecting trajectories of charged particles are designated as being gravitationally Rutherford-scattered and detailed discussion of angular and radial particle motions is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In this paper, we work in the geometric unit system, by considering \(G=c=1\). Accordingly, the dimensions of mass, electric charge and length are given in meters.

  2. By definition, we have [54]

    $$\begin{aligned} \ss (x) \equiv y = \int _x^\infty \frac{\mathrm {d}{\mathfrak {t}}}{\sqrt{4{\mathfrak {t}}^3-g_2 {\mathfrak {t}}-g_3}}. \end{aligned}$$

    Then, the inverse function \(x = \wp (y,g_2,g_3)\equiv \wp (y)\) defines the elliptic Weierstra\(\ss \) \(\wp \) function with the coefficients \(g_2\) and \(g_3\), for which

    $$\begin{aligned} \wp '(y)\equiv \frac{\mathrm {d}}{\mathrm {d}y}\wp (y) = - \sqrt{4\wp ^3(y)-g_2\wp (y)-g_3}. \end{aligned}$$

    The two other related functions, namely the Weierstra\(\ss \) Zeta and Sigma functions, are defined as

    $$\begin{aligned} \zeta (y)= & {} -\int \wp (y)\mathrm {d}y,\\ \sigma (y)= & {} e^{\int \zeta (y)\mathrm {d}y}. \end{aligned}$$
  3. For two vectors \(\varvec{x}\) and \(\varvec{y}\), we notate \(\varvec{x}\cdot \varvec{y}=g_{\mu \nu } x^\mu y^\nu \).

  4. The norm of a vector \(\varvec{X}\) is defined as \(||\varvec{X}||\doteq \sqrt{\varvec{X}\cdot \varvec{X}}\).

References

  1. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Princeton University Press, Princeton, 2017)

    MATH  Google Scholar 

  2. J.A.H. Futterman, F.A. Handler, R.A. Matzner, Scattering from Black Holes, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1988)

    Book  MATH  Google Scholar 

  3. S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford Classic Texts in the Physical Sciences (Oxford University Press, Oxford, 2002)

    Google Scholar 

  4. E. Poisson, A. Pound, I. Vega, Liv. Rev. Rel. 14, 7 (2011), arXiv:1102.0529 [gr-qc]

  5. L. Blanchet, A. Spallicci, B. Whiting, Mass and Motion in General Relativity, Fundamental Theories of Physics Book Series (Springer, Dordrecht, 2011)

    Book  MATH  Google Scholar 

  6. J. Bicak, Z. Suchlik, V. Balek, Bull. Astron. Inst. Czechoslov. 40, 65 (1989)

    ADS  Google Scholar 

  7. V. Karas, D. Vokrouhlicky, Class. Quantum Gravity 7, 391 (1990)

    Article  ADS  Google Scholar 

  8. A.N. Aliev, N. Özdemir, Mon. Not. R. Astron. Soc. 336, 241 (2002), https://academic.oup.com/mnras/article-pdf/336/1/241/18419356/336-1-241.pdf

  9. D. Pugliese, H. Quevedo, R. Ruffini, Phys. Rev. D 83, 104052 (2011)

    Article  ADS  Google Scholar 

  10. M. Olivares, J. Saavedra, C. Leiva, J.R. Villanueva, Modern Phys. Lett. A 26, 2923 (2011). arXiv:1101.0748 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Fathi, Chin. Phys. C 37, 025101 (2013)

    Article  Google Scholar 

  12. E. Hackmann, H. Xu, Phys. Rev. D 87, 124030 (2013)

    Article  ADS  Google Scholar 

  13. Y.-K. Lim, Phys. Rev. D 91, 024048 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. García, E. Hackmann, J. Kunz, C. Lämmerzahl, A. Macías, J. Math. Phys. 56, 032501 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Pugliese, H. Quevedo, R. Ruffini, Eur. Phys. J. C 77, 206 (2017), arXiv:1304.2940 [gr-qc]

  16. P. Das, R. Sk, S. Ghosh, Eur. Phys. J. C 77, 735 (2017), arXiv:1609.04577 [gr-qc]

  17. Sehrish Iftikhar, EPJ Web Conf. 168, 04006 (2018)

    Article  Google Scholar 

  18. J. Vrba, A. Abdujabbarov, M. Kološ, B. Ahmedov, Z.C.V. Stuchlík, J. Rayimbaev, Phys. Rev. D 101, 124039 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. S.U. Khan, J. Ren, Chin. J. Phys. (2020). https://doi.org/10.1016/j.cjph.2020.08.027

    Article  Google Scholar 

  20. M. Yi, X. Wu, Phys. Scr. 95, 085008 (2020)

    Article  ADS  Google Scholar 

  21. A. Abdujabbarov, J. Rayimbaev, F. Atamurotov, B. Ahmedov, Galaxies 8, 76 (2020). https://doi.org/10.3390/galaxies8040076

    Article  ADS  Google Scholar 

  22. R. Javlon, D. Alexandra, U. Camci, A. Abdujabbarov, B. Ahmedov, arXiv e-prints (2020), arXiv:2010.04969 [gr-qc]

  23. M. Anacleto, F. Brito, J. Campos, E. Passos, Phys. Lett. B 810, 135830 (2020)

    Article  MathSciNet  Google Scholar 

  24. J.R. Villanueva, M. Olivares, Eur. Phys. J. C 75, 562 (2015), arXiv:1510.08340 [gr-qc]

  25. S. Sarkar, F. Rahaman, I. Radinschi, T. Grammenos, J. Chakraborty, Adv. High Energy Phys. 2018, 5427158 (2018)

    Google Scholar 

  26. Q.-Q. Zhao, Y.-Z. Li, H. Lü, Phys. Rev. D 98, 124001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. P.A. González, M. Olivares, E. Papantonopoulos, Y. Vásquez, Phys. Rev. D 97, 064034 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Shaymatov, J. Vrba, D. Malafarina, B. Ahmedov, Z. Stuchlík, Phys. Dark Universe 30, 100648 (2020)

    Article  Google Scholar 

  29. B. Narzilloev, J. Rayimbaev, S. Shaymatov, A. Abdujabbarov, B. Ahmedov, C. Bambi, Phys. Rev. D 102, 044013 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. Z. Stuchlík, M. Kolos, Eur. Phys. J. C 76, 32 (2016)

    Article  ADS  Google Scholar 

  31. Z. Stuchlík, M. Kološ, J. Kovář, P. Slaný, A. Tursunov, Universe 6, 26 (2020). https://doi.org/10.3390/universe6020026

    Article  ADS  Google Scholar 

  32. A. Tursunov, Z. Stuchlík, M. Kološ, N. Dadhich, B. Ahmedov, Astrophys. J. 895, 14 (2020)

    Article  ADS  Google Scholar 

  33. D.V. Gal’tsov, J. Phys. A Math. Gen. 15, 3737 (1982)

    Article  ADS  Google Scholar 

  34. A. Tursunov, M. Kološ, Z. Stuchlík, D.V. Gal’tsov, Astrophys. J. 861, 2 (2018)

    Article  ADS  Google Scholar 

  35. G.-R. Chen, Y.-C. Huang, Phys. Lett. B 792, 86 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. P.D. Mannheim, D. Kazanas, Astrophys. J. 342, 635 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  37. D. Kazanas, P.D. Mannheim, Astrophys. J. Suppl. Ser. 76, 431 (1991)

    Article  ADS  Google Scholar 

  38. P.D. Mannheim, arXiv e-prints (2007), arXiv:0707.2283 [hep-th]

  39. P.D. Mannheim, Found. Phys. 37, 532 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Pawłowski, R. Raczka, Found. Phys. 24, 1305 (1994)

    Article  ADS  Google Scholar 

  41. V.C. Rubin, W.K. Ford Jr., N. Thonnard, Astrophys. J. 238, 471 (1980)

    Article  ADS  Google Scholar 

  42. Y. Yoon, Phys. Rev. D 88, 027504 (2013)

    Article  ADS  Google Scholar 

  43. P.D. Mannheim, Phys. Rev. D 93, 068501 (2016)

    Article  ADS  Google Scholar 

  44. P.D. Mannheim, Prog. Part. Nucl. Phys. 56, 340 (2006), arXiv:astro-ph/0505266 [astro-ph]

  45. P.D. Mannheim, D. Kazanas, Phys. Rev. D 44, 417 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  46. F. Payandeh, M. Fathi, Int. J. Theor. Phys. 51, 2227 (2012), arXiv:1202.2415 [gr-qc]

  47. M. Fathi, M. Olivares, J.R. Villanueva, Eur. Phys. J. C 80, 51 (2020)

    Article  ADS  Google Scholar 

  48. M. Fathi, J.R. Villanueva, arXiv e-prints (2020), arXiv:2009.03402 [gr-qc]

  49. M. Fathi, M. Kariminezhaddahka, M. Olivares, J.R. Villanueva, Eur. Phys. J. C 80, 377 (2020)

    Article  ADS  Google Scholar 

  50. B. Carter, Commun. Math. Phys. 10, 280 (1968)

    Article  ADS  Google Scholar 

  51. Z. Stuchlík, Bull. Astron. Inst. Czechoslov. 34, 129 (1983)

    ADS  MathSciNet  Google Scholar 

  52. Z. Stuchlík, S. Hledík, Phys. Rev. D 60, 044006 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  53. N. Cruz, M. Olivares, J.R. Villanueva, Class. Quantum Gravity 22, 1167 (2005), arXiv:gr-qc/0408016 [gr-qc]

  54. P. Byrd, M. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Grundlehren der mathematischen Wissenschaften (Springer, Berlin, 1971)

    Book  Google Scholar 

  55. Y. Zel-dovich, I. Novikov, Stars and Relativity, Dover Books on Physics (Dover Publications, New York, 2014)

    Google Scholar 

  56. L. Ryder, Introduction to General Relativity (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  57. R. Penrose, Phys. Rev. Lett. 14, 57 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  58. S.W. Hawking, Phys. Rev. Lett. 15, 689 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  59. S.W. Hawking, Phys. Rev. Lett. 17, 444 (1966)

    Article  ADS  Google Scholar 

  60. R. Penrose, Gen. Relativ. Gravit. 7, 1141 (2002)

    Article  ADS  Google Scholar 

  61. A. Raychaudhuri, Phys. Rev. 98, 1123 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  62. S. Kar, S. SenGupta, Pramana 69, 49 (2007), arXiv:gr-qc/0611123

  63. A. Balakin, J.W. van Holten, R. Kerner, Class. Quantum Gravity 17, 5009 (2000)

    Article  ADS  Google Scholar 

  64. M. Heydari-Fard, S. Fakhry, S. Hasani, Adv. High Energy Phys. 2019, 1879568 (2019), arXiv:1905.08642 [gr-qc]

  65. R.M. Wald, General Relativity (Chicago University Press, Chicago, 1984)

    Book  MATH  Google Scholar 

  66. E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  67. F. Pirani, Acta Phys. Polon. 15, 389 (1956)

    ADS  MathSciNet  Google Scholar 

  68. S.L. Bażański, J. Math. Phys. 30, 1018 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  69. H. Weyl, Ann. Phys. 359, 117 (1917). https://doi.org/10.1002/andp.19173591804

    Article  Google Scholar 

  70. S.D. Majumdar, Phys. Rev. 72, 390 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  71. A. Papapetrou, Proc. R. Irish Acad. Sect. A Math. Phys. Sci. 51, 191 (1945)

    Google Scholar 

  72. B.S. Guilfoyle, Gen. Relativ. Gravit. 31, 1645 (1999), arXiv:gr-qc/9906089

  73. J.P.S. Lemos, V.T. Zanchin, Phys. Rev. D 81, 124016 (2010)

    Article  ADS  Google Scholar 

  74. J.P.S. Lemos, V.T. Zanchin, Phys. Rev. D 77, 064003 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  75. J.P.S. Lemos, V.T. Zanchin, Phys. Rev. D 80, 024010 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  76. P.D. Mannheim, D. Kazanas, Print-90-0363 (CONNECTICUT) (1990)

  77. P. Mannheim, Ann. N. Y. Acad. Sci. 631, 194 (1991). https://doi.org/10.1111/j.1749-6632.1991.tb52643.x

    Article  ADS  MathSciNet  Google Scholar 

  78. T.G. Cardano, E.T.R. Witmer, The Rules of Algebra: (Ars Magna) (Dover Publications, Inc., New York, 1993)

    MATH  Google Scholar 

  79. R.W.D. Nickalls, Math. Gazette 90, 203–208 (2006)

    Article  Google Scholar 

  80. I. Zucker, Math. Gazette 92, 264 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

M. Fathi has been supported by the Agencia Nacional de Investigación y Desarrollo (ANID) through DOCTORADO Grant No. 2019-21190382 and No. 2021-242210002. J.R. Villanueva was partially supported by the Centro de Astrofísica de Valparaíso (CAV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Fathi.

Appendices

Appendix A: The method of finding \(L_U\) in Eq. (38)

Equation (34) allows for obtaining an expression for \(L_U\), by solving

$$\begin{aligned} {\mathfrak {a}}L_{U}^{4}-{\mathfrak {b}} L_{U}^{2}+{\mathfrak {c}}=0, \end{aligned}$$
(A1)

in which

$$\begin{aligned} {\mathfrak {a}}&={(Q^2-2r_U^2)^2\over r_U^6 }, \end{aligned}$$
(A2a)
$$\begin{aligned} {\mathfrak {b}}&={2Q^2(1+q^2)\over r_U^2}-{Q^4(2+q^2)\over 2r_U^4}-{8r_U^2-2Q^2(1-q^2)\over \lambda ^4}, \end{aligned}$$
(A2b)
$$\begin{aligned} {\mathfrak {c}}&={Q^4(1+2q^2)\over 4r_U^2}-2q^2Q^2+{4r_U^6\over \lambda ^4}-{2Q^2r_U^2(1-q^2) \over \lambda ^2}. \end{aligned}$$
(A2c)

Solving Eq. (A1) for \(L_{U}^2\) then yields the value in Eq. (38).

Appendix B: Finding the angular equation of motion

Since the closest approach happens at \(r_S\), to deal with the integral in Eq. (46), we define the following nonlinear change of variable:

$$\begin{aligned} u \doteq {1\over \frac{r}{r_S}-1}, \end{aligned}$$
(B1)

which reduces Eq. (46) to

$$\begin{aligned} \phi (r) =\kappa _0\left[ \int _{u}^{\infty }{\mathrm {d}u\over \sqrt{{\mathcal {P}}_3(u)} }-u_3\int _{u}^{\infty }{\mathrm {d}u\over (u+u_3)\sqrt{{\mathcal {P}}_3(u)} }\right] , \end{aligned}$$
(B2)

where \(u_j\doteq {1\over (r_j/r_S)-1}\), with \(j=\{2,3,5,6\}\), and

$$\begin{aligned} {\mathcal {P}}_3(u)\equiv u^3+{\mathbf {a}} u^2+{\mathbf {b}} u+{\mathbf {c}}, \end{aligned}$$
(B3)

with

$$\begin{aligned} {\mathbf {a}}&= u_2+u_5+u_6, \end{aligned}$$
(B4a)
$$\begin{aligned} {\mathbf {b}}&= u_2(u_5+u_6)+u_5 u_6, \end{aligned}$$
(B4b)
$$\begin{aligned} {\mathbf {c}}&= u_2 u_5 u_6. \end{aligned}$$
(B4c)

Defining

$$\begin{aligned} \kappa _0= {\upsilon \over r_S^2} u_3 \sqrt{u_2 u_5 u_6}, \end{aligned}$$
(B5)

and applying another change of variable

$$\begin{aligned} U\doteq \frac{1}{4}\left( u+\frac{{\mathbf {a}}}{3} \right) , \end{aligned}$$
(B6)

we can rewrite Eq. (B2) as

$$\begin{aligned} \phi (r) =\kappa _0\left[ \int _{U}^{\infty }{\mathrm {d}U\over \sqrt{ P _3(U)} }-{u_3\over 4}\int _{U}^{\infty }{\mathrm {d}U\over (U+U_3)\sqrt{ P _3(U)} }\right] , \end{aligned}$$
(B7)

given that \(U_3 = \frac{1}{4}\left( u_3+\frac{{\mathbf {a}}}{3}\right) \), and

$$\begin{aligned} P _3(u)\equiv 4 U^3-{\mathbf {g}}_2 U- {\mathbf {g}}_3. \end{aligned}$$
(B8)

Direct integration of Eq. (B7) results in the expression in Eq. (48).

Appendix C: Solving depressed quartic equations

The condition \(V_r'(r)=0\) provides the following equation of eighth degree:

$$\begin{aligned} r^8+{\tilde{a}} r^4+{\tilde{b}} r^2+{\tilde{c}}=0. \end{aligned}$$
(C1)

To solve this equation, we firstly make the change of variable \(r^2\doteq x\). Afterward, we combine the methods of Ferrari and Cardano to solve a depressed quartic equation of the form (originally studied by Cardano in Ref. [78])

$$\begin{aligned} x^4+{\tilde{a}} x^2+{\tilde{b}} x+{\tilde{c}}=0,~~~~({\tilde{a}},{\tilde{b}},{\tilde{c}}) \in {\mathbb {R}}. \end{aligned}$$
(C2)

This equation can be rewritten as the product of two quadratic equations, as follows:

$$\begin{aligned} x^4+{\tilde{a}} x^2+{\tilde{b}} x+{\tilde{c}} = (x^2-2 {{\tilde{\alpha }}} x+{{\tilde{\beta }}})(x^2+2 {{\tilde{\alpha }}} x+{{\tilde{\gamma }}})=0. \end{aligned}$$
(C3)

Accordingly, we obtain

$$\begin{aligned} {\tilde{a}}&={{\tilde{\beta }}}+{{\tilde{\gamma }}}-4{{\tilde{\alpha }}}^2, \end{aligned}$$
(C4a)
$$\begin{aligned} {\tilde{b}}&=2{{\tilde{\alpha }}}({{\tilde{\beta }}}-{{\tilde{\gamma }}}), \end{aligned}$$
(C4b)
$$\begin{aligned} {\tilde{c}}&={{\tilde{\beta }}} {{\tilde{\gamma }}}. \end{aligned}$$
(C4c)

Solving the first two equations for \({{\tilde{\beta }}}\) and \({{\tilde{\gamma }}}\) yields

$$\begin{aligned} {{\tilde{\beta }}}&=2{{\tilde{\alpha }}}^2 +{{\tilde{a}}\over 2}+{{\tilde{b}}\over 4{{\tilde{\alpha }}}}, \end{aligned}$$
(C5a)
$$\begin{aligned} {{\tilde{\gamma }}}&=2{{\tilde{\alpha }}}^2 +{{\tilde{a}}\over 2}-{{\tilde{b}}\over 4{{\tilde{\alpha }}}}, \end{aligned}$$
(C5b)

which together with Eq. (C4c) results in an equation of sixth degree in \({{\tilde{\alpha }}}\):

$$\begin{aligned} {{\tilde{\alpha }}}^6+{{\tilde{a}}\over 2}{{\tilde{\alpha }}}^4+\left( {{\tilde{a}}^2\over 16}-{{\tilde{c}}\over 4}\right) {{\tilde{\alpha }}}^2-{{{\tilde{b}}}^2\over 64}=0. \end{aligned}$$
(C6)

Applying the change of variable

$$\begin{aligned} {{\tilde{\alpha }}}^2={\tilde{U}}-{{\tilde{a}}\over 6}, \end{aligned}$$
(C7)

we obtain the depressed cubic equation

$$\begin{aligned} {\tilde{U}}^3-{{\tilde{\eta }}}_2 \,{\tilde{U}}-{{\tilde{\eta }}}_3=0, \end{aligned}$$
(C8)

where

$$\begin{aligned} {{\tilde{\eta }}}_2&={{\tilde{a}}^2\over 48}+{{\tilde{c}}\over 4}, \end{aligned}$$
(C9a)
$$\begin{aligned} {{\tilde{\eta }}}_3&={{\tilde{a}}^3\over 864}+{{\tilde{b}}^2\over 64}-{{\tilde{a}} {\tilde{c}}\over 24}. \end{aligned}$$
(C9b)

The real solution to this cubic equation is obtained as [79, 80]

$$\begin{aligned} {\tilde{U}}= 2\sqrt{{{{\tilde{\eta }}}_2\over 3}} \cosh \left( \frac{1}{3}\mathrm {arccosh}\left( {3\over 2}{{\tilde{\eta }}}_3\sqrt{{3\over {{\tilde{\eta }}}_2^3}} \right) \right) . \end{aligned}$$
(C10)

Therefore, the roots of Eq. (C2) are

$$\begin{aligned} x_1&={{\tilde{\alpha }}}+\sqrt{{{\tilde{\alpha }}}^2-{{\tilde{\beta }}}}, \end{aligned}$$
(C11a)
$$\begin{aligned} x_2&={{\tilde{\alpha }}}-\sqrt{{{\tilde{\alpha }}}^2-{{\tilde{\beta }}}}, \end{aligned}$$
(C11b)
$$\begin{aligned} x_3&=-{{\tilde{\alpha }}}+\sqrt{{{\tilde{\alpha }}}^2-{{\tilde{\gamma }}}}, \end{aligned}$$
(C11c)
$$\begin{aligned} x_4&=-{{\tilde{\alpha }}}-\sqrt{{{\tilde{\alpha }}}^2-{{\tilde{\gamma }}}}. \end{aligned}$$
(C11d)

Appendix D: Solving the equation of motion for frontal scattering

Equation (66) can be recast as

$$\begin{aligned} \left( \frac{\mathrm{d}r}{\mathrm{d}\tau }\right) ^{2}=\frac{m^2 \left( r-r_s\right) {\mathfrak {p}}_3(r)}{\lambda ^2 r^2}, \end{aligned}$$
(D1)

in which

$$\begin{aligned} {\mathfrak {p}}_3(r)\equiv r^3+r_s r^2+(r_s^2+{\bar{a}})r+r_s^3+r_s{\bar{a}}+{\bar{b}}. \end{aligned}$$
(D2)

Considering \(r_s\) as the initial position, we can rewrite Eq. (D1) as

$$\begin{aligned} \tau (r)={\lambda \over m}\int _{r_s}^{r} {r \mathrm {d}r \over \sqrt{(r-r_s) {\mathfrak {p}}_3(r)}}, \end{aligned}$$
(D3)

which by the linear change of variable

$$\begin{aligned} z \doteq {r \over r_s}-1 \end{aligned}$$
(D4)

reduces to

$$\begin{aligned} \tau (z)={\lambda \over m}\int _{0}^{z} {(z+1) \mathrm {d}z \over \sqrt{z \tilde{{\mathfrak {p}}}_3(z)}}, \end{aligned}$$
(D5)

where

$$\begin{aligned} \tilde{{\mathfrak {p}}}_3(z)\equiv z^3 +4 z^2 +\gamma _1 z+\gamma _0, \end{aligned}$$
(D6)

and

$$\begin{aligned} \gamma _1&=6+\frac{{\bar{a}}}{r_s^2}, \end{aligned}$$
(D7a)
$$\begin{aligned} \gamma _0&=4+\frac{2{\bar{a}}}{r_s^2}+\frac{{\bar{b}}}{r_s^3}. \end{aligned}$$
(D7b)

Now, letting

$$\begin{aligned} u\doteq \frac{1}{z} \end{aligned}$$
(D8)

yields the following reduced integral form of Eq. (D5):

$$\begin{aligned} \tau (u)={-\lambda \over m\sqrt{\gamma _0}}\left( \int _{\infty }^{u} {\mathrm {d}u\over \sqrt{\bar{{\mathfrak {p}}}_3(u)}}+ \int _{\infty }^{u} {\mathrm {d}u \over u \sqrt{\bar{{\mathfrak {p}}}_3(u)}} \right) , \end{aligned}$$
(D9)

in which

$$\begin{aligned} \bar{{\mathfrak {p}}}_3(u)\equiv u^3 +\frac{\gamma _1}{\gamma _0} u^2 +\frac{4}{\gamma _0} u+\frac{1}{\gamma _0}. \end{aligned}$$
(D10)

Applying the last change of variable

$$\begin{aligned} u\doteq 4 \mathrm {U}-\frac{\gamma _1}{3\gamma _0}, \end{aligned}$$
(D11)

we get

$$\begin{aligned} \tau (\mathrm {U})={-\lambda \over m\sqrt{\gamma _0}}\left( \int _{\infty }^{\mathrm {U}} {\mathrm {d}\mathrm {U}\over \sqrt{\bar{{\mathfrak {P}}}_3(\mathrm {U})}}\right. \left. +{1\over 4} \int _{\infty }^{\mathrm {U}} {\mathrm {d}\mathrm {U} \over (\mathrm {U}- {\gamma _1\over 12 \gamma _0}) \sqrt{\bar{{\mathfrak {P}}}_3(\mathrm {U})}} \right) , \end{aligned}$$
(D12)

where we have defined

$$\begin{aligned} \bar{{\mathfrak {P}}}_3(\mathrm {U})\equiv 4\mathrm {U}^3 - {\bar{g}}_2 \mathrm {U}^2 -{\bar{g}}_3. \end{aligned}$$
(D13)

The direct integration of the elliptic integral in Eq. (D12) now results in the expression in Eq. (72).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, M., Olivares, M. & Villanueva, J.R. Gravitational Rutherford scattering of electrically charged particles from a charged Weyl black hole. Eur. Phys. J. Plus 136, 420 (2021). https://doi.org/10.1140/epjp/s13360-021-01441-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01441-9

Navigation