Skip to main content
Log in

Development of Jang–Yin model for effectual conductivity of nanocomposite systems by simple equations for the resistances of carbon nanotubes, interphase and tunneling section

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This work considers the resistances of nanocomposite’s components such as interphase space and tunneling section into Jang–Yin model to propose an advanced model for the effectual conductivity of polymer carbon nanotubes (CNTs) system (PCNT). The advanced model expresses the effectual conductivity by interphase depth, tunneling parameters and network portion. The experimental data of numerous samples evaluate the predictions obtained from original and advanced models. In addition, the effects of all model’s factors on the effectual conductivity are estimated. The predictions of original model mismatch with the measured data, while the estimations of the advanced equation correctly match with the conductivity of real specimens. The high concentration of slim CNTs as well as little tunneling resistivity and small tunnels favorably improves the effectual conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

σ :

Effectual conductivity

\(\phi_{{\text{f}}}\) :

CNT volume portion

R :

CNT radius

R eff :

Total resistance in a unit cell

\(\phi_{{\text{N}}}\) :

The volume portion of network

l :

CNT length

u :

Curliness parameter

t :

Interphase thickness

f :

The portion of CNTs generating the network

R f :

The intrinsic resistance of CNTs

R i :

The intrinsic resistance of interphase

R tun :

The intrinsic resistance of tunneling part

t m :

The maximum level of interphase thickness

R tun :

The tunneling resistance

R 1 :

Whole resistance of CNT nanoparticles

R 2 :

Whole resistance of polymer layer

λ :

Tunneling distance

S :

Contact range

ρ :

Polymer layer tunneling resistivity

References

  1. R. Cui, K. Jiang, M. Yuan, J. Cao, L. Li, Z. Tang, Y. Qin, Antimicrobial film based on polylactic acid and carbon nanotube for controlled cinnamaldehyde release. J. Mater. Res. Technol. 9, 10130–10138 (2020)

    Article  Google Scholar 

  2. M. Mahmoodi, Y. Rajabi, B. Khodaiepour, Electro-thermo-mechanical responses of laminated smart nanocomposite moderately thick plates containing carbon nanotube—a multi-scale modeling. Mech. Mater. 141, 103247 (2020)

    Article  Google Scholar 

  3. M. Mirnezhad, R. Ansari, S. Falahatgar, Quantum effects on the mechanical properties of fine-scale CNTs: an approach based on DFT and molecular mechanics model. Eur. Phys. J. Plus 135, 1–71 (2020)

    Article  Google Scholar 

  4. C.P. Ganea, D. Manaila-Maximean, V. Cîrcu, Dielectric investigations on carbon nanotubes doped polymer dispersed liquid crystal films. Eur. Phys. J. Plus 135, 1–14 (2020)

    Article  Google Scholar 

  5. M. Yoosefian, A. Pakpour, M. Zahedi, Carboxylated single-walled carbon nanotubes as a semiconductor for adsorption of acrylamide in mainstream cigarette smoke. Phys. E. 124, 114299 (2020)

    Article  Google Scholar 

  6. K. Behdinan, R. Moradi-Dastjerdi, B. Safaei, Z. Qin, F. Chu, D. Hui, Graphene and CNT impact on heat transfer response of nanocomposite cylinders. Nanotechnol. Rev. 9, 41–52 (2020)

    Article  Google Scholar 

  7. M.H. Ghayesh, H. Farokhi, A. Farajpour, A coupled longitudinal-transverse nonlinear NSGT model for CNTs incorporating internal energy loss. Eur. Phys. J. Plus 134, 179 (2019)

    Article  Google Scholar 

  8. F. Mehralian, R. Firouz-Abadi, A.V. Moshtagh, Elastic properties of vertically aligned carbon nanotubes: a molecular dynamics study. Eur. Phys. J. Plus 134, 544 (2019)

    Article  Google Scholar 

  9. H. Berrehal, F. Mabood, O. Makinde, Entropy-optimized radiating water/FCNTs nanofluid boundary-layer flow with convective condition. Eur. Phys. J. Plus 135, 1–21 (2020)

    Google Scholar 

  10. A.M. El Sayed, Synthesis, optical, thermal, electric properties and impedance spectroscopy studies on P (VC-MMA) of optimized thickness and reinforced with MWCNTs. Results Phys. 17, 103025 (2020)

    Article  Google Scholar 

  11. B. Safaei, N. Ahmed, A. Fattahi, Free vibration analysis of polyethylene/CNT plates. Eur. Phys. J. Plus 134, 271 (2019)

    Article  Google Scholar 

  12. Y. Zare, K.Y. Rhee, Prediction of tensile modulus in polymer nanocomposites containing carbon nanotubes (CNT) above percolation threshold by modification of conventional model. Curr. Appl. Phys. 17, 873–879 (2017)

    Article  ADS  Google Scholar 

  13. Y. Zare, K.Y. Rhee, Effects of interphase regions and filler networks on the viscosity of PLA/PEO/carbon nanotubes biosensor. Polym. Compos. 40, 4135–4141 (2019)

    Article  Google Scholar 

  14. M.K. Hassanzadeh-Aghdam, M.J. Mahmoodi, R. Ansari, H. Mehdipour, Effects of adding CNTs on the thermo-mechanical characteristics of hybrid titanium nanocomposites. Mech. Mater. 131, 121–135 (2019)

    Article  Google Scholar 

  15. M. Hasanzadeh, R. Ansari, M. Hassanzadeh-Aghdam, Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes. Mech. Mater. 129, 63–79 (2019)

    Article  Google Scholar 

  16. A. Rostami, M.I. Moosavi, High-performance thermoplastic polyurethane nanocomposites induced by hybrid application of functionalized graphene and carbon nanotubes. J. Appl. Polym. Sci. 137, 48520 (2019)

    Article  Google Scholar 

  17. S.-Y. Lee, J.-G. Hwang, Finite element nonlinear transient modelling of carbon nanotubes reinforced fiber/polymer composite spherical shells with a cutout. Nanotechnol. Rev. 8, 444–451 (2019)

    Article  Google Scholar 

  18. S.A. Tharu, M.B. Panchal, Effect of interphase on elastic and shear moduli of metal matrix nanocomposites. Eur. Phys. J. Plus 135, 121 (2020)

    Article  Google Scholar 

  19. Y. Zare, K.Y. Rhee, Expression of characteristic tunneling distance to control the electrical conductivity of carbon nanotubes-reinforced nanocomposites. J. Mater. Res. Technol. 9, 15996–16005 (2020)

    Article  Google Scholar 

  20. Y.J. Kim, T.S. Shin, H. Do Choi, J.H. Kwon, Y.-C. Chung, H.G. Yoon, Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43, 23–30 (2005)

    Article  Google Scholar 

  21. R. Razavi, Y. Zare, K.Y. Rhee, A two-step model for the tunneling conductivity of polymer carbon nanotube nanocomposites assuming the conduction of interphase regions. RSC Adv. 7, 50225–50233 (2017)

    Article  ADS  Google Scholar 

  22. Y. Zare, K.Y. Rhee, The effective conductivity of polymer carbon nanotubes (CNT) nanocomposites. J. Phys. Chem. Solids 131, 15–21 (2019)

    Article  ADS  Google Scholar 

  23. Y. Zare, K.Y. Rhee, The mechanical behavior of CNT reinforced nanocomposites assuming imperfect interfacial bonding between matrix and nanoparticles and percolation of interphase regions. Compos. Sci. Technol. 144, 18–25 (2017)

    Article  Google Scholar 

  24. H. Shin, S. Yang, J. Choi, S. Chang, M. Cho, Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: a multiscale approach. Chem. Phys. Lett. 635, 80–85 (2015)

    Article  ADS  Google Scholar 

  25. R. Qiao, L.C. Brinson, Simulation of interphase percolation and gradients in polymer nanocomposites. Compos. Sci. Technol. 69, 491–499 (2009)

    Article  Google Scholar 

  26. Y. Zare, K.Y. Rhee, A multistep methodology for calculation of the tensile modulus in polymer/carbon nanotube nanocomposites above the percolation threshold based on the modified rule of mixtures. RSC Adv. 8, 30986–30993 (2018)

    Article  ADS  Google Scholar 

  27. Y. Zare, K.Y. Rhee, Accounting the reinforcing efficiency and percolating role of interphase regions in the tensile modulus of polymer/CNT nanocomposites. Eur. Polym. J. 87, 389–397 (2017)

    Article  Google Scholar 

  28. Y. Zare, K.Y. Rhee, S.-J. Park, A developed equation for electrical conductivity of polymer carbon nanotubes (CNT) nanocomposites based on Halpin–Tsai model. Results Phys. 14, 102406 (2019)

    Article  Google Scholar 

  29. S. Kim, Y. Zare, H. Garmabi, K.Y. Rhee, Variations of tunneling properties in poly (lactic acid)(PLA)/poly (ethylene oxide)(PEO)/carbon nanotubes (CNT) nanocomposites during hydrolytic degradation. Sens. Actuators A 274, 28–36 (2018)

    Article  Google Scholar 

  30. Y. Zare, K.Y. Rhee, Significances of interphase conductivity and tunneling resistance on the conductivity of carbon nanotubes nanocomposites. Polym. Compos. 41, 748–756 (2020)

    Article  Google Scholar 

  31. N. Ryvkina, I. Tchmutin, J. Vilčáková, M. Pelíšková, P. Sáha, The deformation behavior of conductivity in composites where charge carrier transport is by tunneling: theoretical modeling and experimental results. Synth. Met. 148, 141–146 (2005)

    Article  Google Scholar 

  32. C. Li, E.T. Thostenson, T.-W. Chou, Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Appl. Phys. Lett. 91, 223114 (2007)

    Article  ADS  Google Scholar 

  33. T. Takeda, Y. Shindo, Y. Kuronuma, F. Narita, Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites. Polymer 52, 3852–3856 (2011)

    Article  Google Scholar 

  34. C. Feng, L. Jiang, Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Compos. A Appl. Sci. Manuf. 47, 143–149 (2013)

    Article  Google Scholar 

  35. M. Haghgoo, R. Ansari, M. Hassanzadeh-Aghdam, Prediction of electrical conductivity of carbon fiber-carbon nanotube-reinforced polymer hybrid composites. Compos. B Eng. 167, 728–735 (2019)

    Article  Google Scholar 

  36. M. Haghgoo, R. Ansari, M.K. Hassanzadeh-Aghdam, The effect of nanoparticle conglomeration on the overall conductivity of nanocomposites. Int. J. Eng. Sci. 157, 103392 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Haghgoo, R. Ansari, M. Hassanzadeh-Aghdam, M. Nankali, Analytical formulation for electrical conductivity and percolation threshold of epoxy multiscale nanocomposites reinforced with chopped carbon fibers and wavy carbon nanotubes considering tunneling resistivity. Compos. A Appl. Sci. Manuf. 126, 105616 (2019)

    Article  Google Scholar 

  38. S.-H. Jang, H. Yin, Effective electrical conductivity of carbon nanotube-polymer composites: a simplified model and its validation. Mater. Res. Express 2, 045602 (2015)

    Article  ADS  Google Scholar 

  39. M.H. Al-Saleh, Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synth. Met. 205, 78–84 (2015)

    Article  Google Scholar 

  40. Y. Zare, K.Y. Rhee, A simple methodology to predict the tunneling conductivity of polymer/CNT nanocomposites by the roles of tunneling distance, interphase and CNT waviness. RSC Adv. 7, 34912–34921 (2017)

    Article  ADS  Google Scholar 

  41. R. Rafiee, Influence of carbon nanotube waviness on the stiffness reduction of CNT/polymer composites. Compos. Struct. 97, 304–309 (2013)

    Article  Google Scholar 

  42. J. Li, P.C. Ma, W.S. Chow, C.K. To, B.Z. Tang, J.K. Kim, Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Funct. Mater. 17, 3207–3215 (2007)

    Article  Google Scholar 

  43. X.L. Ji, K.J. Jiao, W. Jiang, B.Z. Jiang, Tensile modulus of polymer nanocomposites. Polym. Eng. Sci. 42, 983 (2002)

    Article  Google Scholar 

  44. M. Mohiuddin, S.V. Hoa, Estimation of contact resistance and its effect on electrical conductivity of CNT/PEEK composites. Compos. Sci. Technol. 79, 42–48 (2013)

    Article  Google Scholar 

  45. P. Joshi, S. Upadhyay, Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite. Comput. Mater. Sci. 87, 267–273 (2014)

    Article  Google Scholar 

  46. M. Zappalorto, M. Salviato, M. Quaresimin, Influence of the interphase zone on the nanoparticle debonding stress. Compos. Sci. Technol. 72, 49–55 (2011)

    Article  MATH  Google Scholar 

  47. Y. Zare, H. Garmabi, Thickness, modulus and strength of interphase in clay/polymer nanocomposites. Appl. Clay Sci. 105, 66–70 (2015)

    Article  Google Scholar 

  48. R. Taherian, Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos. Sci. Technol. 123, 17–31 (2016)

    Article  Google Scholar 

  49. F. Deng, Q.-S. Zheng, An analytical model of effective electrical conductivity of carbon nanotube composites. Appl. Phys. Lett. 92, 071902 (2008)

    Article  ADS  Google Scholar 

  50. M. Lisunova, Y.P. Mamunya, N. Lebovka, A. Melezhyk, Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur. Polym. J. 43, 949–958 (2007)

    Article  Google Scholar 

  51. F. Mai, Y. Habibi, J.-M. Raquez, P. Dubois, J.-F. Feller, T. Peijs, E. Bilotti, Poly (lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing. Polymer 54, 6818–6823 (2013)

    Article  Google Scholar 

  52. S. Maiti, N.K. Shrivastava, B. Khatua, Reduction of percolation threshold through double percolation in melt-blended polycarbonate/acrylonitrile butadiene styrene/multiwall carbon nanotubes elastomer nanocomposites. Polym. Compos. 34, 570–579 (2013)

    Article  Google Scholar 

  53. R. Razavi, Y. Zare, K.Y. Rhee, The roles of interphase and filler dimensions in the properties of tunneling spaces between CNT in polymer nanocomposites. Polym. Compos. 40, 801–810 (2019)

    Article  Google Scholar 

  54. Y. Zare, K.Y. Rhee, Development of a conventional model to predict the electrical conductivity of polymer/carbon nanotubes nanocomposites by interphase, waviness and contact effects. Compos. A Appl. Sci. Manuf. 100, 305–312 (2017)

    Article  Google Scholar 

  55. Y. Zare, K.Y. Rhee, S.-J. Park, Modeling the roles of carbon nanotubes and interphase dimensions in the conductivity of nanocomposites. Results Phys. 15, 102562 (2019)

    Article  Google Scholar 

  56. Y. Zare, K.Y. Rhee, A power model to predict the electrical conductivity of CNT reinforced nanocomposites by considering interphase, networks and tunneling condition. Compos. B Eng. 155, 11–58 (2018)

    Article  Google Scholar 

  57. N. Hu, Y. Karube, C. Yan, Z. Masuda, H. Fukunaga, Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56, 2929–2936 (2008)

    Article  ADS  Google Scholar 

  58. G. Ambrosetti, C. Grimaldi, I. Balberg, T. Maeder, A. Danani, P. Ryser, Solution of the tunneling-percolation problem in the nanocomposite regime. Phys. Rev. B 81, 155434 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Soo Rhim or Kyong Yop Rhee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Rhim, S.S. & Rhee, K.Y. Development of Jang–Yin model for effectual conductivity of nanocomposite systems by simple equations for the resistances of carbon nanotubes, interphase and tunneling section. Eur. Phys. J. Plus 136, 725 (2021). https://doi.org/10.1140/epjp/s13360-021-01417-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01417-9

Navigation