Skip to main content
Log in

Forced convection Fe3O4/water nanofluid flow through a horizontal channel under the influence of a non-uniform magnetic field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The problem of forced convection ferrofluid flow inside rectangular channel under the influence of a non-uniform magnetic field was numerically studied. The magnetic field was created by placing four magnetic sources in vicinity of four heaters, located at the bottom wall of the channel. The governing equations which are take account of the ferrohydrodynamic effect were solved by the finite volume method with the prediction-projection scheme. The effects of magnetic number, Reynolds number, volume fraction of nanoparticles and magnetic sources locations on the flow and heat transfer behaviors were examined. Results show the formation of vortices near the magnetic sources in the presence of magnetic field. The skin friction coefficient increases by increasing the magnetic field strength; however it decreases by augmenting the Reynolds number and the volume fraction of nanoparticles. The heat transfer rate increases by increasing magnetic number, Reynolds number and volume fraction of nanoparticles. An optimum position of magnetic sources was obtained giving maximum heat transfer rate. In the absence of magnetic field, the effect of nanoparticles gives an enhancement of heat transfer of 23%. It can be enhanced up to 228% under the effect of the magnetic field only. The coupled effects of both nanoparticles and magnetic field enhance the heat transfer up to 300%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

c p :

Specific heat (J/Kg K)

C f :

Local skin friction coefficient

C f m :

Average skin friction coefficient

Ec, :

Eckert number, \(\rho_{{{\text{bf}}}} u_{0}^{2} /\left( {\rho C_{{\text{P}}} } \right)_{{{\text{bf}}}} \Delta T\)

h :

Heat transfer coefficient (W/m2K)

\(\vec{H}\) :

Magnetic field vector

H :

Height of channel (m)

I :

Electric current (A)

k :

Thermal conductivity (W/mK)

L :

Length of the channel (m)

\(l\) :

Heater length (m)

\(M\) :

Magnetization

Mn :

Magnetic number, \(\mu_{0} H_{0}^{2} K^{\prime}\Delta T/\rho_{bf} u_{0}^{2}\)

Nu :

Local Nusselt number

Nu m :

Average Nusselt number

P :

Non-dimensional pressure, p/ρbf \(u_{0}^{2}\)

p :

Pressure (Pa)

Pr :

Prandtl number, \(\mu_{bf} c_{p,bf} /k_{bf}\)

Re :

Reynolds number, \(\rho_{bf} u_{0} h/\mu_{bf}\)

t :

Time (s)

T :

Temperature (K)

u 0 :

Inlet velocity (m/s)

\(\vec{v}\) :

Velocity vector

\(\vec{V}\) :

Dimensionless velocity vector, \(\vec{v}/u_{0}\)

x, y :

Coordinates (m)

X,Y :

Dimensionless coordinates, x/H, y/H

\(x_{S}\) :

Abscissa of magnetic sources (m)

\(X_{S}\) :

Dimensionless modified abscissa of magnetic sources, \(X_{S} = (x_{S} - x_{i} )/l\)

μ :

Dynamic viscosity (Kg/ms)

ρ :

Density (Kg/m3)

θ :

Dimensionless temperature, (T-TC)/(TH−TC)

φ :

Volume fraction of nanoparticles

τ :

Dimensionless time, tu0/H

bf :

Base fluid

C :

Cold

H :

Hot

m :

Average

nf :

Nanofluid

p :

Particles

References

  1. R.E. Rosensweig, R. Kaiser, G. Miskolczy, Viscosity of magnetic fluid in a magnetic field. J. Colloid Interface Sci. 29(4), 680–686 (1969)

    Article  ADS  Google Scholar 

  2. M.A. Khairul, E. Doroodchi, R. Azizian, B. Moghtaderi, Advanced applications of tunable ferrofluids in energy systems and energy harvesters: a critical review. Energy Convers. Manag. 149, 660–674 (2017)

    Article  Google Scholar 

  3. M. Latikka, M. Backholm, J.V.I. Timonen, R.H.A. Ras, Wetting of ferrofluids: phenomena and control. Curr. Opin. Colloid Interface Sci. 36, 118–129 (2018)

    Article  Google Scholar 

  4. S.O. Aisida, P.A. Akpa, I. Ahmad, T.-K. Zhao, M. Maaza, F.I. Ezema, Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. Eur. Polymer J. 122, 109371 (2020)

    Article  Google Scholar 

  5. J. Sadhasivam, A. Sugumaran, Magnetic nanocarriers: Emerging tool for the effective targeted treatment of lung cancer. Journal of Drug Delivery Science and Technology 55, 101493 (2020)

    Article  Google Scholar 

  6. H. Ali, H. Soleimani, N. Yahya, L. Khodapanah, M. Sabet, B.M.R. Demiral, T. Hussain, L. Lanre Adebayo, Enhanced oil recovery by using electromagnetic-assisted nanofluids: a review. J. Mol. Liq. 309, 113095 (2020)

    Article  Google Scholar 

  7. K. Zhou, X. Zhou, J. Liu, Z. Huang, Application of magnetic nanoparticles in petroleum industry: a review. J. Pet. Sci. Eng. 188, 106943 (2020)

    Article  Google Scholar 

  8. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on MnZn ferrites: synthesis, characterization and applications. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.03.287,Inpress

    Article  Google Scholar 

  9. M. Amani, M. Ameri, A. Kasaeian, Hydrothermal assessment of ferrofluids in a metal foam tube under low frequency magnetic field. Int. J. Therm. Sci. 127, 242–251 (2018)

    Article  Google Scholar 

  10. A. Salehpour, S. Salehi, S. Salehpour, M. Ashjaee, Thermal and hydrodynamic performances of MHD ferrofluid flow inside a porous channel. Exp. Thermal Fluid Sci. 90, 1–13 (2018)

    Article  Google Scholar 

  11. Mohammad Behshad Shafii, Mohsen Keshavarz, Experimental study of internal forced convection of ferrofluid flow in nonmagnetizable/magnetizable porous media. Exp. Thermal Fluid Sci. 96, 441–450 (2018)

    Article  Google Scholar 

  12. A. Abadeh, M. Sardarabadi, M. Abedi, M. Pourramezan, M. Passandideh-Fard, Mohammad Javad Maghrebi, Experimental characterization of magnetic field effects on heat transfer coefficient and pressure drop for a ferrofluid flow in a circular tube. J. Mol. Liq. 299, 112206 (2020)

    Article  Google Scholar 

  13. M. Mokhtari, S. Hariri, M. Barzegar Gerdroodbary, Y. Rezvan, Effect of non-uniform magnetic field on heat transfer of swirling ferrofluid flow inside tube with twisted tapes. Chem. Eng. Process. Process Intens. 117, 70–79 (2017)

    Article  Google Scholar 

  14. W. Nessab, H. Kahalerras, B. Fersadou, D. Hammoudi, Numerical investigation of ferrofluid jet flow and convective heat transfer under the influence of magnetic sources. Appl. Therm. Eng. 150, 271–284 (2019)

    Article  Google Scholar 

  15. M. Izadi, R. Mohebbi, Amin Amiri Delouei, Hasan Sajjadi, Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields. Int. J. Mech. Sci. 151, 154–169 (2019)

    Article  Google Scholar 

  16. M.R. Daneshvar Garmroodi, A. Ahmadpour, M.R. Hajmohammadi, S. Gholamrezaie, Natural convection of a non-Newtonian ferrofluid in a porous elliptical enclosure in the presence of a non-uniform magnetic field. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-09045-3

    Article  Google Scholar 

  17. S. Morteza Mousavi, M. Biglarian, A. Ali Rabienataj Darzi, M. Farhadi, H. Hassanzadeh Afrouzi, D. Toghraie, Heat transfer enhancement of ferrofluid flow within a wavy channel by applying a non-uniform magnetic field. J. Therm. Anal. Calorim. 139, 3331–3343 (2020)

    Article  Google Scholar 

  18. A.M. Aly, S.E. Ahmed, ISPH simulations for a variable magneto-convective flow of a ferrofluid in a closed space includes open circular pipes. Int. Commun. Heat Mass Transfer 110, 104412 (2020)

    Article  Google Scholar 

  19. Abuzar Abid Siddiqui, Mustafa Turkyilmazoglu, Natural convection in the ferrofluid enclosed in a porous and permeable cavity. Int. Commun. Heat Mass Transfer 113, 104499 (2020)

    Article  Google Scholar 

  20. M. Bezaatpour, H. Rostamzadeh, Heat transfer enhancement of a fin-and-tube compact heat exchanger by employing magnetite ferrofluid flow and an external magnetic field. Appl. Therm. Eng. 164, 114462 (2020)

    Article  Google Scholar 

  21. Hamid Kazemi Moghadam, Saeed Samadzadeh Baghbani & Houman Babazadeh, Study of thermal performance of a ferrofluid with multivariable dependence viscosity within a wavy duct with external magnetic force. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09324-4

    Article  Google Scholar 

  22. T.D. Manh, A.M. Abazari, M. Barzegar Gerdroodbary, N.D. Nam, R. Moradi, H. Babazadeh, Computational simulation of variable magnetic force on heat characteristics of backward-facing step flow. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09608-9

    Article  Google Scholar 

  23. Z. Mehrez, A. El Cafsi, Heat exchange enhancement of ferrofluid flow into rectangular channel in the presence of a magnetic field. Appl. Math. Comput. 391, 125634 (2021)

    MathSciNet  MATH  Google Scholar 

  24. A. Jarray, Z. Mehrez, A. El Cafsi, Effect of magnetic field on the mixed convection Fe3O4/water ferrofluid flow in a horizontal porous channel. Pramana J. Phys. 94, 156 (2020). https://doi.org/10.1007/s12043-020-02015-7

    Article  ADS  Google Scholar 

  25. M. Turkyilmazoglu, Natural convective flow of nanofluids past a radiative and impulsive vertical plate. J. Aerosp. Eng. 29, 04016049 (2016). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000643

    Article  Google Scholar 

  26. M. Turkyilmazoglu, Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis. Comput. Methods Programs Biomed. 187, 105171 (2020)

    Article  Google Scholar 

  27. M. Turkyilmazoglu, Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Comput. Methods Programs Biomed. 179, 104997 (2019)

    Article  Google Scholar 

  28. M. Turkyilmazoglu, Nanoliquid film flow due to a moving substrate and heat transfer. Eur. Phys. J. Plus 135, 781 (2020). https://doi.org/10.1140/epjp/s13360-020-00812-y

    Article  Google Scholar 

  29. M. Sheikholeslami, M.M. Rashidi, Ferrofluid heat transfer treatment in the presence of variable magnetic field. Eur. Phys. J. Plus 130, 115 (2015)

    Article  Google Scholar 

  30. Z. Mehrez, A. El Cafsi, Forced convection magnetohydrodynamic Al2O3–Cu/water hybrid nanofluid flow over a backward-facing step. J. Therm. Anal. Calorim. 135, 1417 (2019). https://doi.org/10.1007/s10973-018-7541-z

    Article  Google Scholar 

  31. H.C. Brinkman, The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–581 (1952)

    Article  ADS  Google Scholar 

  32. J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd edn. (Oxford University Press, Cambridge, 1904), pp. 435–441

    Google Scholar 

  33. A. Jarray, Z. Mehrez, A. El Cafsi, Mixed convection Ag-MgO/water hybrid nanofluid flow in a porous horizontal channel. Eur. Phys. J. Spec. Top. 228, 2677–2693 (2019). https://doi.org/10.1140/epjst/e2019-900068-8

    Article  Google Scholar 

  34. A. Chorin, Numerical simulation of the Navier-Stokes equations. J. Math. Comput. 22, 745–762 (1968)

    Article  Google Scholar 

  35. R. Temam, Une méthode d’approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98, 115–152 (1968)

    Article  Google Scholar 

  36. F. Zamzari, Z. Mehrez, A. El Cafsi, A. Belghith, Entropy generation and mixed convection in a horizontal channel with an open cavity. Int. J. Exergy 17(2), 219 (2015)

    Article  Google Scholar 

  37. Z. Mehrez, A. El Cafsi, A. Belghith, P. Le Quéré, MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity. J. Magn. Magn. Mater. 374, 214–224 (2015)

    Article  ADS  Google Scholar 

  38. Z. Mehrez, M. Bouterra, A. El Cafsi, A. Belghith, P. Le Quere, Simulation of the periodically perturbed separated and reattaching flow over a backward-facing step. J. Appl. Fluid Mech. JAFM 3(2), 1–8 (2010)

    Google Scholar 

  39. G. Evans, S. Paolucci, The thermoconvective in sta bility of plane poiseuille flow heated from below: a bench mark solution for open boundary flow. Int. J. Numer. Method Fluids 11(7), 1001–1013 (1990)

    Article  ADS  Google Scholar 

  40. G. Comini, M. Manzan, G. Cortella, Open boundary conditions for the stream function of unsteady laminar convection. Numer. Heat Transfer Part B 31(2), 217–234 (1997)

    Article  ADS  Google Scholar 

  41. M. Nourollahi, M. Farhadi, K. Sedighi, Numerical study of mixed convection and entropy generation in the poiseulle-benard channel in different angles. Thermal Sci. 14(2), 329–340 (2010)

    Article  Google Scholar 

  42. M. Nassim, Sahraoui, Samir Houat, and Nawal Saidi, Simulation of mixed convection in a horizontal channel heated from below by the lattice Boltzmann method. Eur. Phys. J. Appl. Phys. 78, 34806 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zouhaier Mehrez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrez, Z., El Cafsi, A. Forced convection Fe3O4/water nanofluid flow through a horizontal channel under the influence of a non-uniform magnetic field. Eur. Phys. J. Plus 136, 451 (2021). https://doi.org/10.1140/epjp/s13360-021-01410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01410-2

Navigation