Skip to main content
Log in

On the role of \(K+L+M\)-wave mixing effect in the (2+1)-dimensional KP I equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The effect of \(K+L+M\)-wave mixing in the (2+1)-dimensional Kadomtsev–Petviashvili I (KP I) equation is investigated. We give a general auxiliary function to obtain the interaction solutions of KP I equation by the Hirota bilinear method and the long wave limit approach. If we choose different values of KLM in the general auxiliary function, we will obtain different types interaction solutions, including superposition of Kth-order lump, L-breather and M-soliton solutions. By strengthening the \(K+L+M\)-wave mixing parameters, the relation of the parameters is given and the interaction solutions are classified via the formula of the general auxiliary function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.R. Adem, J. Appl. Anal. 24, 27 (2018)

    Article  MathSciNet  Google Scholar 

  2. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  3. R. Hirota, Phys. Rev. Lett. 27, 1192 (1971)

    Article  ADS  Google Scholar 

  4. R. Hirota, J. Phys. Soc. Japan 33, 1456 (1972)

    Article  ADS  Google Scholar 

  5. W.X. Ma, J. Phys: Conf. Ser. 411, 012021 (2013)

    Google Scholar 

  6. Zhaqilao, Lett. A 377, 3021 (2013)

  7. W.H. Liu, Y.F. Zhang, Appl. Math. Lett. 98, 184 (2019)

    Article  MathSciNet  Google Scholar 

  8. L. Cheng, Y. Zhang, W.X. Ma, J.Y. Ge, Eur. Phys. J. Plus 135, 379 (2020)

    Article  Google Scholar 

  9. W.X. Ma, Opt. Quant. Electron. 52, 511 (2020)

    Article  Google Scholar 

  10. J.Y. Yang, W.X. Ma, C.M. Khalique, Eur. Phys. J. Plus 135, 494 (2020)

    Article  Google Scholar 

  11. W.X. Ma, Y. Zhang, Y.N. Tang, East Asian. J. Appl. Math. 10, 732 (2020)

    Google Scholar 

  12. C.H. Gu, H.S. Hu, Z.X. Zhou, Darboux Transformation in Integrable Systems: Theory and Their Applications to Geometry (Springer, Dordrecht, 2005)

    Book  Google Scholar 

  13. V.B. Matveev, M.A. Salle, Daboux Transformation and Soliton (Springer, Berlin, 1991)

    Book  Google Scholar 

  14. Z.J. Qiao, Zhaqilao. J. Math. Anal. Appl. 380, 794 (2011)

    Article  MathSciNet  Google Scholar 

  15. D. Zhao, Zhaqilao. Nonlinear Dyn. 100, 615 (2020)

    Article  Google Scholar 

  16. H.Q. Zhang, X. Gao, Z.J. Pei, F. Chen, Appl. Math. Lett. 107, 106464 (2020)

    Article  MathSciNet  Google Scholar 

  17. Zhaqilao, Wave Motion 96, 102553 (2020)

  18. Y.H. Li, R.M. Li, B. Xue, X.G. Geng, Wave Motion 98, 102639 (2020)

    Article  MathSciNet  Google Scholar 

  19. T.L. Perelman, Phys. Lett. A 47, 321 (1974)

    Article  ADS  Google Scholar 

  20. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  21. B.B. Kadomtsev, V.I. Petviashvili, Sov. Phys. Dokl. 15, 539 (1970)

    ADS  Google Scholar 

  22. W. Liu, A.M. Wazwaz, X.X. Zheng, Commun. Nonlinear Sci. Numer. Simulat. 67, 480 (2019)

    Article  ADS  Google Scholar 

  23. M. Hamid, M. Usman, T. Zubair, R.U. Haq, A. Shafee, Phys. A 528, 121320 (2019)

    Article  MathSciNet  Google Scholar 

  24. M.J. Ablowitz, J. Satsuma, J. Math. Phys. 19, 2180 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Satsuma, M.J. Ablowitz, J. Math. Phys. 20, 1496 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  26. Zhaqilao, Z.B. Li. Chinese Phys. B 17, 2333 (2008)

  27. W.X. Ma, A. Abdeljabbar, Appl. Math. Lett. 25, 1500 (2012)

    Article  MathSciNet  Google Scholar 

  28. W.X. Ma, Phys. Lett. A 379, 1975 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. H.Q. Zhao, W.X. Ma, Comput. Math. Appl. 74, 1399 (2017)

    Article  MathSciNet  Google Scholar 

  30. Y.P. Fan, A.H. Chen, Mod. Phys. Lett. B 34, 2050037 (2020)

    Article  ADS  Google Scholar 

  31. H.F. Ismael, H. Bulut, Chinese J. Phys. 71, 54 (2021)

  32. J.S. Geng, H.Q. Zhang, Mod. Phys. Lett. B 34, 2050055 (2020)

    Article  ADS  Google Scholar 

  33. M. Gao, H.Q. Zhang, Int. J. Mod. Phys. B 34, 2050053 (2020)

    Article  ADS  Google Scholar 

  34. D. Zhao, Zhaqilao. Nonlinear Dyn. 103, 1055 (2021)

  35. D. Zhao, Zhaqilao. Eur. Phys. J. Plus 135, 617 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under (Grant Nos. 11861050, 11261037), the Natural Science Foundation of Inner Mongolia Autonomous Region, China under (Grant No. 2020LH01010) and Inner Mongolia Normal University graduate students’ research and Innovation fund (Grant No. CXJJS19099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaqilao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Zhaqilao On the role of \(K+L+M\)-wave mixing effect in the (2+1)-dimensional KP I equation. Eur. Phys. J. Plus 136, 399 (2021). https://doi.org/10.1140/epjp/s13360-021-01372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01372-5

Navigation