Skip to main content
Log in

How a small accelerator can be useful for interdisciplinary applications part II: cultural heritage studies

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Supporting the knowledge of artworks, past times and civilizations by physics and, in general, sciences have been by now recognised to be a very valuable possibility, even though scientific measurements cannot definetely replace the historical and archaeological studies. In this framework, small particle accelerators, i.e., low voltage electrostatic systems, can play an important role for both material analysis and dating purposes. The present paper will present a review of the main principles of ion beam analysis, and in particular PIXE (Particle Induced X-ray Emission), for the study of the composition of artworks and of accelerator mass spectrometry for the measurement of 14C and dating. Advantages, limitations and outlooks are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. T. Calligaro, J.-C. Dran, J. Salomon, P. Walter, Review of accelerator gadgets for art and archaeology. Nucl. Instrum. Methods Phys. B 226(1–2), 29–37 (2004)

    Article  ADS  Google Scholar 

  2. F. Lucarelli, How a small accelerator can be useful for interdisciplinary applications: the study of air pollution. Eur. Phys. J. Plus (2020). https://doi.org/10.1140/epjp/s13360-020-00516-3

    Article  Google Scholar 

  3. P. Del Carmine, F. Lucarelli, P. Mandò, A. Pecchioli, The external PIXE setup for the analysis of manuscripts at the Florence University. Nucl. Instrum. Methods B 75, 480–484 (1993)

    Article  ADS  Google Scholar 

  4. L. Giuntini, M. Massi, S. Calusi, The external scanning proton microprobe of Firenze: a comprehensive description. Nucl. Instrum. Methods A 576, 266–273 (2007)

    Article  ADS  Google Scholar 

  5. V. Palonen, K. Mizohata, T. Nissinen, J. Räisänen, External beam IBA set-up with large-area thin Si3N4 window. Nucl. Instrum. Methods B 380, 11–14 (2016)

    Article  ADS  Google Scholar 

  6. N. Grassi, P. Bonanni, C. Mazzotta, A. Migliori, P. Mandò, PIXE analysis of a painting by Giorgio Vasari. X-ray Spectrom. 38(4), 301–307 (2009)

    Article  ADS  Google Scholar 

  7. C. Neelmeijer, M. Mäder, he merits of particle induced X-ray emission in revealing painting techniques. Nucl. Instrum. Methods B 189(1–4), 293–302 (2002)

    Article  ADS  Google Scholar 

  8. V. Corregidor, A. Oliveira, P. Rodrigues, L. Alves, Paintings on copper by the Flemish artist FransFrancken II: PIXE characterization by external microbeam. Nucl. Instrum. Methods Phys. Res. Section B 348, 291–295 (2015)

    Article  ADS  Google Scholar 

  9. P. Milota, I. Reiche, A. Duval, O. Forstner, H. Guicharnaud, W. Kutschera, S. Merchel, A. Priller, M. Schreiner, P. Steier, PIXE measurements of Renaissance silverpoint drawings at VERA. Nucl. Instrum. Methods B 266, 2279–2285 (2008)

    Article  ADS  Google Scholar 

  10. P. Del Carmine, L. Giuntini, W. Hooper, F. Lucarelli, P. Mandò, Further results from PIXE analysis of inks in Galileo’s notes. Nucl. Instrum. Methods B 113, 354–358 (1996)

    Article  ADS  Google Scholar 

  11. J. Duh, D. Krstić, D. Vladan, S. Fazinic, Non-destructive study of iron gall inks in manuscripts. Nucl. Instrum. Methods B 417, 96–99 (2018)

    Article  ADS  Google Scholar 

  12. Q. Lemasson, B. Moignard, C. Pacheco, L. Pichon, M. Guerra, Fast mapping of gold jewellery from ancient Egypt with PIXE: Searching for hard-solders and PGE inclusions. Talanta 143, 279–286 (2015)

    Article  Google Scholar 

  13. M. Vadrucci, A. Mazzinghi, A. Gorghinian, L. Picardi, M. Chiari, Analysis of Roman Imperial coins by combined PIXE, HE-PIXE and μ-XRF. Appl. Radiat. Isotopes 143, 35–40 (2019)

    Article  Google Scholar 

  14. T. Calligaro, A. Mossmann, J.-P. Poirot, G. Querré, Race element fingerprinting of jewellery rubies by external beam PIXE. Nucl. Instrum. Methods B 150, 628–634 (1999)

    Article  ADS  Google Scholar 

  15. A. Re, D. Angelici, A. Lo Giudice, E. Maupas, L. Giuntini, S. Calusi, N. Gelli, M. Massi, A. Borghi, L. Gallo, G. Pratesi, P. Mandò, New markers to identify the provenance of lapis lazuli: Trace elements in pyrite by means of micro-PIXE. Appl. Phys. A 111, 69–74 (2013)

    Article  ADS  Google Scholar 

  16. S. Gama, M. Volfinger, C. Ramboz, O. Rouer, Accuracy of PIXE analyses using a funny filter. Nucl. Instrum. Methods B 181, 150–156 (2001)

    Article  ADS  Google Scholar 

  17. Z. Török, R. Huszánk, L. Csedreki, J. Dani, Z. Szoboszlai, Development of a new in-air micro-PIXE set-up with in-vacuum charge measurements in Atomki. Nucl. Instrum. Methods B 362, 167–171 (2015)

    Article  ADS  Google Scholar 

  18. A. Zucchiatti, A. Climent-Font, P. Gutiérrez-Nei, I. Montero-Ruiz, J. Fuenlabrada, C. Galindo, Amorphous glass fragments from archaeological surface surveys: potential chronological use of ion beam and isotopic analytical characterization. J. Archaeol. Sci. Rep. 19, 439–453 (2018)

    Google Scholar 

  19. L. Pichon, C. Moignard, Q. Lemasson, C. Pacheco, P. Walter, Development of a multi-detector and a systematic imaging system on the AGLAE external beam. Nucl. Instrum. Methods B 318, 27–31 (2014)

    Article  ADS  Google Scholar 

  20. F. Taccetti et al., A multipurpose X-ray fluorescence scanner developed for in situ analysis. Rendiconti Lincei 30, 307–322 (2019)

    Article  Google Scholar 

  21. A. Migliori, P. Bonanni, L. Carraresi, N. Grassi, P. Mandò, A novel portable XRF spectrometer with range of detection extended to low-Z elements. X-Ray Spectrom. 40, 107–112 (2011)

    Article  ADS  Google Scholar 

  22. F. Rosi, C. Grazia, R. Fontana, F. Gabrieli, L. PensabeneBuemi, E. Pampaloni, A. Romani, C. Stringari, C. Miliani, Disclosing Jackson Pollock’s palette in Alchemy (1947) by non-invasive spectroscopies. Heritage Sci. 4, 18 (2016)

    Article  Google Scholar 

  23. G. Mauran, M. Lebon, F. Détroit, B. Caron, A. Nankela, D. Pleurdeau, J.-J. Bahain, First in situ pXRF analyses of rock paintings in Erongo, Namibia: results, current limits, and prospects. Archaeol. Anthropol. Sci. 11, 4123–4145 (2019)

    Article  Google Scholar 

  24. K. Trentelman et al., The examination of works of art using in situ XRF line and area scans. X-Ray Spectrom. 39, 159–166 (2010)

    Article  ADS  Google Scholar 

  25. S. Valadas et al., Study of mural paintings using in situ XRF, confocal synchrotron-μ-XRF, μ-XRD, optical microscopy, and SEM-EDS—the case of the frescoes from Misericordia Church of Odemira. Microsc. Microanal. 17, 702–709 (2011)

    Article  ADS  Google Scholar 

  26. P. Mandò, M. Fedi, N. Grassi, A. Migliori, Differential PIXE for investigating the layer structure of paintings. Nucl. Instrum. Methods B 239, 71–76 (2005)

    Article  ADS  Google Scholar 

  27. N. Grassi, A. Migliori, P. Mandò, H. Calvo Del Castillo, Differential PIXE measurements for the stratigraphic analysis of the painting Madonna dei fusi by Leonardo da Vinci. X-Ray Spectrom. 34, 306–309 (2005)

    Article  ADS  Google Scholar 

  28. Ž Šmit, J. Istenič, T. Knific, Plating of archaeological metallic objects studies by differential PIXE. Nucl. Instrum. Methods B 266, 2329–2333 (2008)

    Article  ADS  Google Scholar 

  29. N. Grassi, Differential and scanning-mode external PIXE for the analysis of the painting RitrattoTrivulzio by Antonello da Messina. Nucl. Instrum. Methods B 267, 825–831 (2009)

    Article  ADS  Google Scholar 

  30. T. Silva et al., Elemental mapping of large samples by external ion beam analysis with sub-millimeter resolution and its applications. Nucl. Instrum. Methods B 422, 68–77 (2018)

    Article  ADS  Google Scholar 

  31. W. Kutschera, The Half-life of 14C—why is it so long? Radiocarbon 61, 1135–1142 (2019)

    Article  Google Scholar 

  32. R. Taylor, O. Bar-Yosef, Radiocarbon Dating: An Archaeological Perspective (United Kingdom, Taylor & Francis Ltd, 2020).

    Google Scholar 

  33. R. Muller, Radioisotope dating with a cyclotron. Sci. 196, 489–494 (1977)

    Article  ADS  Google Scholar 

  34. K. Purser et al., An attempt to detect stable N-ions from a sputter ion source and some implications of the results for the design of tandems for ultra-sensitive carbon analysis. Revue de Physique Appliquee 12, 1487–1492 (1977)

    Article  Google Scholar 

  35. K. Purser, T. Litherland, Accelerator mass spectrometry: a remarkable week in May 1977. Nucl. Instrum. Methods B 479, 254–263 (2020)

    Article  ADS  Google Scholar 

  36. C. Tuniz, J. Bird, D. Fink, G. Herzog, Accelerator Mass Spectrometry: Ultrasensitive Analysis for Global Science (Taylor & Francis Inc, United Kingdom, 1998).

    Google Scholar 

  37. M. Fedi, A. Cartocci, M. Manetti, F. Taccetti, P. Mandò, The 14C AMS facility at LABEC, Florence. Nucl. Instrum Methods B 259, 18–22 (2007)

    Article  ADS  Google Scholar 

  38. H. Betz, Review of stripping of heavy ions. IEEE Trans. Nucl. Sci. 18, 1110–1114 (1971)

    Article  ADS  Google Scholar 

  39. F. Barile et al., A C-14 beam monitor using silicon solid state sensor for cultural heritage. Nucl. Instrum. Methods A 936, 22–24 (2019)

    Article  ADS  Google Scholar 

  40. A. Müller, M. Döbeli, M. Suter, H.-A. Synal, Performance of the ETH gas ionization chamber at low energy. Nucl. Instrum. Methods B 287, 94–102 (2012)

    Article  ADS  Google Scholar 

  41. A.-H. Synal, M. Stocker, M. Suter, MICADAS: A new compact radiocarbon AMS system. Nucl. Instrum. Methods B 259, 7–13 (2007)

    Article  ADS  Google Scholar 

  42. T. Schulze-König et al., The dissociation of 13CH and 12CH2 molecules in He and N2 at beam energies of 80–250 keV and possible implications for radiocarbon mass spectrometry. Nucl. Instrum. Methods B 269, 34–39 (2007)

    Article  ADS  Google Scholar 

  43. G. Prasad, J. Noakes, A. Cherkinsky, R. Culp, D. Dvoracek, The New 250kV single stage AMS system at CAIS, University of Georgia: performance comparison with a 500kV compact tandem machine. Radiocarbon 55, 319–324 (2013)

    Article  Google Scholar 

  44. C. Bronck Ramsey, Radiocarbon dating: revolutions in understanding. Archaeometry 50, 249–275 (2008)

    Article  Google Scholar 

  45. P. Fabbri, Middle paleolithic human deciduous incisor from Grotta del Cavallo, Italy. Am. J. of Phys. Anthropol. 161, 506–512 (2016)

    Article  Google Scholar 

  46. L. Caforio et al., Discovering forgeries of modern art by the 14C Bomb Peak. EPJ Plus 129, 6 (2014)

    Google Scholar 

  47. I. Hajdas et al., Bomb 14C on paper and detection of the Forged Paintings of T’ang Haywen. Radiocarbon 61, 1905–1912 (2019)

    Article  Google Scholar 

  48. S. Mathot, The CERN PIXE-RFQ, a transportable proton accelerator for the machina project. Nucl. Instrum. Methods B 459, 153–157 (2019)

    Article  ADS  Google Scholar 

  49. P. Steier, J. Liebl, W. Kutschera, E.M. Wild, R. Golser, Preparation methods of µg carbon samples for 14C measurements. Radiocarbon 59, 803–814 (2017)

    Article  Google Scholar 

  50. M. Ruff, S. Fahrni, H. Gäggeler, I. Hajdas, M. Suter, H. Synal, S. Szidat, L. Wacker, On-line radiocarbon measurements of small samples using elemental analyzer and MICADAS gas ion source. Radiocarbon 52, 1645–1656 (2010)

    Article  Google Scholar 

  51. M. Fedi, S. Barone, F. Barile, L. Liccioli, M. Manetti, L. Schiavulli, Towards micro-samples radiocarbon dating at INFN-LABEC, Florence. Nucl. Instrum. Methods B 465, 19–23 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariaelena Fedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedi, M. How a small accelerator can be useful for interdisciplinary applications part II: cultural heritage studies. Eur. Phys. J. Plus 136, 411 (2021). https://doi.org/10.1140/epjp/s13360-021-01334-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01334-x

Navigation