Skip to main content
Log in

Mass of the charm tetraquark (\(c\bar{c}c\bar{c}\)) in diquark–antidiquark and di-hadronic states approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The mass of the recently discovered charm tetraquark state has been estimated in the framework of the diquark–antidiquark \((c\bar{c} c\bar{c})\) and in the di-hadronic states approach. In the context of the effective mass approximation, diquarks have been designated as quasiparticles and have been used to study the tetraquark \((c\bar{c} c\bar{c})\) state. It has also been investigated considering it as a di-hadronic state of di-\(J/\Psi \) mesons. The results have been compared with the experimental value and other theoretical works. It is observed that the mass of the tetraquark state in the diquark–antidiquark configuration shows very good agreement with the experimental results. The diquark–antidiquark picture in the context of the effective mass approximation seems to describe the \((c\bar{c} c\bar{c})\) system very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LHCb collaboration, R. Aaij et al., arXiv:2006.16957 [hep-ex]

  2. V.M. Abazov et al., Phys. Rev. Lett. 117(2), 022003 (2016)

    Article  ADS  Google Scholar 

  3. LHCb collaboration, R. Aaij et al., Phys. Rev. Lett. 118 022003 (2017)

  4. LHCb collaboration, R. Aaij et al., Phys. Rev. Lett. 112 222002 (2014)

  5. E. Swanson, Physics 6, 69 (2013)

    Article  Google Scholar 

  6. LHCb collaboration, R. Aaij et al., Phys. Rev. Lett. 115 072001 (2015)

  7. LHCb collaboration, R. Aaij et al., Phys. Rev. Lett. 122 222001 (2019)

  8. Y. Iwasaki, Prog. Theo. Phys. 54, 492 (1975)

    Article  ADS  Google Scholar 

  9. Y. Iwasaki, Phys. Rev. Lett. 36, 1266 (1976)

    Article  ADS  Google Scholar 

  10. J.J. Aubert et al., Phys. Rev. Lett. 33, 1404 (1974)

    Article  ADS  Google Scholar 

  11. J.E. Augustin et al., Phys. Rev. Lett. 33, 1406 (1974)

    Article  ADS  Google Scholar 

  12. R.L. Jaffe, Phys. Rev. D 15, 267 (1977)

    Article  ADS  Google Scholar 

  13. V.R. Debastiani et al., Chin. Phys. C 43, 013105 (2019)

    Article  ADS  Google Scholar 

  14. W. Chen et al., Phys. Lett. B 773, 247 (2017)

    Article  ADS  Google Scholar 

  15. H.Chen et al., arXiv:2006.16027 [hep-ph] (2020)

  16. G.J. Wang et al., Phys. Rev. D 100, 096013 (2019)

    Article  ADS  Google Scholar 

  17. W. Park et al., Nucl. Phys. A 983, 1 (2019)

    Article  ADS  Google Scholar 

  18. S.S. Agaev et al., Nucl. Phys. B 939, 130 (2019)

    Article  ADS  Google Scholar 

  19. Z. Di et al., Communications in Theo. Phys. 69, 191 (2018)

    Article  ADS  Google Scholar 

  20. J. Vijande et al., Int. J. Mod. Phys. A 22, 561 (2007)

    Article  ADS  Google Scholar 

  21. N. Barnea et al., Phys. Rev. D 73, 054004 (2006)

    Article  ADS  Google Scholar 

  22. R. Ghosh et al., Phys. Part. Nucl. Lett. 14, 550 (2017)

    Article  Google Scholar 

  23. R. Ghosh et al., J. Mod. Phys. 6, 2070 (2015)

    Article  Google Scholar 

  24. S. Pal et al., J. Phys. Conf. Series 1579, 012021 (2020)

    Article  Google Scholar 

  25. B. Chakrabarti et al., Phys. Scr. 79, 025105 (2009)

    Article  ADS  Google Scholar 

  26. H. Chen et al., Phys. Rep. 639, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Y.R. Liu et al., Prog. in Part. Nucl. Phys. 107, 237 (2019)

    Article  ADS  Google Scholar 

  28. A. Bhattacharya et al., Eur. Phys. J. Plus 126, 57 (2011)

    Article  Google Scholar 

  29. A. Bhattacharya et al., Int. J. Theor. Phys. 47, 2507 (2008)

    Article  Google Scholar 

  30. B. Chakrabarti et al., Nucl. Phys. A 782, 392C (2007)

    Article  ADS  Google Scholar 

  31. A. Haug, Theoretical Solid State Physics, Vol. 1. (Pergamon Press, Oxford, London, 1975), p. 100

  32. B. Chakrabarti et al., Act. Phys. Pol. B 41, 95 (2010)

    Google Scholar 

  33. W. Lucha et al., Phys. Rep. 200, 168 (1991)

    Article  Google Scholar 

  34. M. Hirano, A. Ito, K. Iwata, Y. Matsuda, Prog. Theo. Phys. 45, 545 (1971)

    Article  ADS  Google Scholar 

  35. A.S. De Castro et al., Z. Phys. C 57, 315 (1993)

    Article  ADS  Google Scholar 

  36. M. Karliner, H.J. Lipkin, Phys. Lett. B 575, 249 (2003)

    Article  ADS  Google Scholar 

  37. A. Bhattacharya et al., Nucl. Phys. B Proc. Suppl. 142, 13 (2005)

    Article  ADS  Google Scholar 

  38. A. Bhattacharya et al., Eur. Phys. J. C 2, 671 (1998)

    Article  ADS  Google Scholar 

  39. A. Bhattacharya et al., Int. J. Mod. Phys. A 15, 2053 (2000)

    Article  ADS  Google Scholar 

  40. H.J. Schnitzer, Phys. Rev. Lett. 35, 1540 (1975)

    Article  ADS  Google Scholar 

  41. P.C. Vinodkumar et al., Pramana. J. Phys. 39, 47 (1992)

    Google Scholar 

  42. P.C. Vinodkumar et al., DAE-BRNS Symposium on Nuclear Physics, (vol. 46B), (2003) , pp. 334

  43. A.K. Rai et al., Ind. J. Phys. 80, 387 (2006)

    Google Scholar 

  44. C. Hong et al., Chin. Phys. Lett. 18, 1558 (2001)

    Article  ADS  Google Scholar 

  45. J. Ahmed et al., Quant. Phys. Lett. 6(2), 99 (2017)

    Google Scholar 

  46. A.K. Rai et al., Nucl. Phys. A 782, 406 (2007)

    Article  ADS  Google Scholar 

  47. C. Amster et al., (Particle Data Group) PL, (vol. B667), p. 1, (2008)

  48. M.S. Liu et al., Phys. Rev. D 100, 016006 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  49. J. Wu et al., Phys. Rev. D 97, 094015 (2018)

    Article  ADS  Google Scholar 

  50. V.R. Debastiani et al., Proc. Sci. Hadron 2017, 238 (2018)

    Google Scholar 

  51. M. Karlinear et al., Phys. Rev. D 95, 034011 (2017)

    Article  ADS  Google Scholar 

  52. R.J. Lloyd et al., Phys. Rev. D 70, 014009 (2004)

    Article  ADS  Google Scholar 

  53. B. Chakrabarti et al., Act. Phys. Pol. B 41, 95 (2010)

    Google Scholar 

  54. A. Bhattacharya et al., Phys. Rev. C 81, 014311 (2010)

    Article  ADS  Google Scholar 

  55. A. Bhattacharya et al., Int. J. Theo. Phys. 47, 2507 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Chakrabarti.

Ethics declarations

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Ghosh, R., Chakrabarti, B. et al. Mass of the charm tetraquark (\(c\bar{c}c\bar{c}\)) in diquark–antidiquark and di-hadronic states approach . Eur. Phys. J. Plus 136, 625 (2021). https://doi.org/10.1140/epjp/s13360-021-01302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01302-5

Navigation