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Abstract In this paper, we investigate the inflationary phenomenology of an Einstein–
Gauss–Bonnet theory with the extension of a logarithmic modified f (R) gravity, compatible
with the GW170817 event. The main idea of our work is to study different results for an
almost linear Ricci scalar through logarithmic corrections and examine whether such model
is viable. First of all, the theoretical framework under slow-roll evolution of the scalar field
is presented and also the formalism of the constant-roll evolution making predictions for the
non-Gaussianities of the models is developed, since the constant-roll evolution is known to
enhance non-Gaussianities. As shown, the non-Gaussianities are of the order O ∼ (10−1).
Furthermore, the slow-roll indices and the observational indices of inflation are calculated for
several models of interest. As demonstrated, the phenomenological viability of the models
at hand is achieved for a wide range of the free parameters and the logarithmic term has a
minor contribution to numerical calculations, as expected.

1 Introduction

The recent years, one of the most remarkable achievements in theoretical and observational
Cosmology is, without a doubt, the detection of the gravitational waves about one hundred
years after Einstein’s predictions. In 2017, the LIGO-Virgo detectors observed a gravitational
wave coming from the merging of two neutron stars [1]. The interesting fact of the observation
was that the gravitational wave arrived almost equal to the gamma-ray burst. This means that
the speed of the gravitational wave cT is approximately equal to the speed of light, namely
c2
T = 1 in natural units. This constraint imposes stringent conditions on modified theories of

gravity that may describe successfully the nature on such scales. Many generalized theories
of gravity provide viable models compatible with this astrophysical event, see Ref. [2].

One attractive class of theories, in order to approach the inflationary era of the universe
or other astrophysical phenomena, is the Einstein–Gauss–Bonnet theories [3–45]. These
theories involve the Gauss–Bonnet term, more specifically, quadratic terms of the Ricci scalar
and of the Riemann and Ricci tensors, in the context of Einstein’s gravity. Our motivation
to utilize this class of gravitational theories in order to describe the inflationary era of the
universe originates from the string property. In detail, the whole theory is string-corrected
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canonical scalar field theory minimally coupled to gravity. In our previous work [36], we
proved that this theory can be rectified in view of the GW170817 event, by simply setting the
gravitational speed wave equal to unity and expressing all the physical quantities in terms of
the scalar field.

In this paper, we shall extend our previous works [36,46], presenting a modified theory
of gravity f (R) with a logarithmic term, based on Ref. [47], and also modified gravity with
logarithmic terms is presented in Ref. [48]. First of all, we present in detail the theoretical
framework of the evolution of the scalar field under slow-roll and constant-roll approxima-
tions in the background of Friedmann–Robertson–Walker spacetime. As mentioned before,
we express all the involved physical quantities in terms of functions of the scalar field and
their higher derivatives with respect to the scalar field. By imposing the slow-roll condi-
tions into the gravitational equations of motion, the slow-roll indices and the observational
indices have quite simple and elegant final expressions. Afterwards, we consider the constant
roll evolution of the scalar field, by imposing the condition φ̈ = βH φ̇ and we repeat the
same process. Moreover, the amount of non-Gaussianities is predicted and as expected is not
significantly altered in comparison with the R gravity. Finally, we shall examine the compat-
ibility of the theoretical framework with the latest Planck Data, see Ref. [49] in the context
of the two possible ways of the scalar field evolution. In the last section, viable models for
the inflationary era are constructed by considering coupling scalar field functions ξ(φ) with
compatible numerical values with the observations.

Before we begin our analysis, it is necessary to explain the reason why the theory needs
massless gravitons in order to be consistent with the GW170817 event. In nature, the inter-
actions between particles and fields are achieved through the propagators of the fundamental
forces. The graviton is the propagator of the gravitational waves produced either in the
early universe or from astrophysical events. From the perspective of the Elementary Parti-
cle Physics, the graviton must be massless during the inflationary and post-inflationary era.
Despite the appealing string property of the Einstein–Gauss–Bonnet theory, there is a serious
drawback. The theory predicts that the primordial tensor perturbations are incompatible with
the GW170817 event. As we have proved in our previous works [32], it is possible to get a
massless graviton under certain constraints. Only if the coupling scalar function ξ(φ) satisfies
the differential equation ξ̈ − H ξ̇ = 0, we can demand c2

T = 1. Hence, we can obtain a viable
model for the inflationary era in the context of Einstein–Gauss–Bonnet gravity.

2 Theoretical framework of logarithmic-corrected f (R) gravity

We begin our analysis by considering the following gravitational theory of a scalar field φ,
since all the information about the universe in the era of inflation is encoded in it. Let us
assume that the action is defined as,

S =
∫

d4x
√−g

(
f (R)

2κ2 − 1

2
gμν∂μφ∂νφ − V (φ) − ξ(φ)G

)
, (1)

where g is the determinant of the metric tensor, κ = 1
MP

is the gravitational constant while
MP denotes the reduced Planck mass, V (φ) is the scalar potential and ξ(φ) signifies the
Gauss–Bonnet coupling scalar function. We assume a modified theory of gravity f (R) where
f (R) = R1+δ with δ � 1. Considering a power-law model, it becomes abundantly clear that
for small deviations from unity, one could easily obtain logarithmic corrections to gravity
via Taylor expansion; such terms are known for describing quantum corrections. Finally,
the Gauss–Bonnet term G is given by the expression G = R2 − 4Rαβ Rαβ + Rαβγ δRαβγ δ ,
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with Rαβ and Rαβγ δ being the Ricci and Riemann tensor, respectively. Furthermore, the
line-element is assumed to have the Friedmann–Robertson–Walker form,

ds2 = −dt2 + a(t)2δi jdx
idx j , (2)

where a(t) is the scale factor of the universe and the metric tensor has the form of gμν =
diag(−1, a(t)2, a(t)2, a(t)2). The effective Lagrangian of inflation is not specified by the
data at present time. Thus, although the inflationary era is a classical era of our universe,
which is described by a four-dimensional spacetime, it still is possible that the quantum
era may have a direct imprint on the effective Lagrangian of inflation. Therefore, the two
most simple corrections of the inflationary effective Lagrangian may be provided by higher
curvature terms , like f (R) gravity corrections, and Einstein–Gauss–Bonnet corrections. As
long as the metric is flat, the Ricci scalar and the Gauss–Bonnet term are topological invariant
and can be written as R = 12H2 + 6Ḣ , G = 24H2(Ḣ + H2), respectively. H is Hubble’s
parameter, and in addition, the “dot” denotes differentiation with respect to the cosmic time.
We expand the modified gravitational function f (R) as follows:

f (R) � R + δRln(αR), (3)

where α is a constant with mass dimensions [m]−2 for consistency. It is expected that the
logarithmic term ln(αR) has minor contribution to the equations of motion because represents
quantum corrections. Differentiating Eq. (3) with respect to the Ricci scalar gives,

F � 1 + δ + δ ln(αR). (4)

Implementing the variation principle with respect to the metric tensor and the scalar field in
Eq. (1) generates the field equations of gravity and the continuity equation of the scalar field.
By splitting the field equations in time and space components, the gravitational equations of
motion are then derived which read,

3FH2

κ2 = 1

2
φ̇2 + V + 24ξ̇H3 + FR − f

2κ2 − 3H Ḟ

κ2 , (5)

−2F Ḣ

κ2 = φ̇2 − 16ξ̇H Ḣ − 8H2(ξ̈ − H ξ̇ ) + F̈ − H Ḟ

κ2 , (6)

φ̈ + 3H φ̇ + V ′ + ξ ′G = 0. (7)

As proved in a recent work of ours [36], certain additional constraints on the gravitational
wave speed need to be imposed so as to achieve compatibility with recent striking observations
from GW170817. Gravitational waves are perturbations in the metric which travel through
spacetime with the speed of light. The gravitational wave speed in natural units for Einstein–
Gauss–Bonnet theories has the form,

c2
T = 1 − Q f

2Qt
, (8)

where Q f = 16(ξ̈ − H ξ̇ ) and Qt = F
κ2 − 8ξ̇H are auxiliary functions depending on the

scalar field and the Ricci scalar. Compatibility can be achieved by equating the velocity of
gravitational waves with unity, or making it infinitesimally close to unity. In other words, we
demand Q f = 0. The constraint leads to an ordinary differential equation ξ̈ = H ξ̇ . Now
we will solve this equation in terms of the derivatives of scalar field. Assuming that ξ̇ = ξ ′φ̇
and d

dt = φ̇ d
dφ

the constraint equation has the form,

ξ ′′φ̇2 + ξ ′φ̈ = Hξ ′φ̇. (9)
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Considering the approximation

ξ ′φ̈ � ξ ′′φ̇2, (10)

Equation (9) can be solved easily with respect to the derivative of the scalar field,

φ̇ � Hξ ′

ξ ′′ . (11)

In order to study the inflationary era of the universe, it is necessary to solve analytically
the system of equations of motion. It is obvious that this system is very difficult to study
analytically. Thus, we assume the slow-roll approximations during inflation. Mathematically
speaking, the following conditions are assumed to hold true,

Ḣ � H2,
1

2
φ̇2 � V, φ̈ � 3H φ̇, (12)

thus, the equations of motion can be simplified greatly. Hence, after imposing the constraint of
the gravitational wave and considering the slow-roll approximations the equations of motion
have the following elegant forms,

3FH2

κ2 = V + 24ξ̇H3 + FR− f
2κ2 − 3H Ḟ

κ2 , (13)

−2F Ḣ

κ2 = −16ξ̇H Ḣ + F̈−H Ḟ
κ2 , (14)

3H φ̇ + V ′ + ξ ′G = 0. (15)

However, even with the slow-roll approximations holding true, the system of differential
equations still remains intricate and cannot be solved. Further approximations are needed in
order to derive the inflationary phenomenology, so we neglect string corrections themselves.
This is a reasonable assumption since even though the Gauss–Bonnet scalar coupling function
is seemingly neglected, it participates indirectly from the gravitational wave condition. Also,
in many cases, sting corrections are proven to be subleading. Moreover, under slow-roll
assumptions the Ricci scalar is written as, R � 12H2. Recalling that f (R) � R+δR ln(αR),
one obtains elegant simplifications and functional expressions for the equations of motion.
The first and the second derivatives of the function F are, respectively, Ḟ = 2δ( ḢH ), F̈ =
2δ( ḦH − Ḣ2

H2 ). The last two terms in the first equation of motion are quite smaller in order of
magnitude than the scalar potential of the field hence, as we will prove in the fourth section
numerically, these terms can be neglected. The same approximation can be applied in the
second equation of motion for the last term of the right hand side. Thus, the final simplified
equations of motion are,

H2 � κ2V

3(1 − δ)
, (16)

Ḣ � −1

2
(κφ̇)2, (17)

3H φ̇ + V ′ � 0, (18)

where the parameter δ can be discarded for |δ| � 1. In the next section, we shall prove that
the discarded terms are quite smaller in order of magnitude. The dynamics of inflation can
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be described by six parameters named the slow-roll indices, defined as follows [3,36],

ε1= − Ḣ

H2 , ε2= φ̈

H φ̇
, ε3 = Ḟ

2HF
, ε4= Ė

2HE
, ε5 = Ḟ + κ2Qa

2Hκ2Qt
, ε6 = Q̇t

2HQt
,

(19)

where the auxiliary functions are defined as,

Qa = −8ξ̇H2, Qb= − 16ξ̇H, Qe = −32ξ̇ Ḣ , E = F

κ2φ̇2

(
φ̇2 + 3

(Ḟ + κ2Qa)
2

2κ4Qt

)
,

(20)

in detail, the auxiliary functions and the slow-roll indices can be written as follows:

Qa = 8κ2V ( κ2V
3−3δ

)
1
2 ξ ′2

3(δ − 1)ξ ′′ , (21)

Qb = −16κ2V (ξ ′)2

3(1 − δ)ξ ′′ , (22)

Qe = −16κ4V ( κ2V
3−3δ

)
1
2 (ξ ′)4

3(δ − 1)(ξ ′′)3 (23)

Qt = δ + 1 + δ ln(− 4aκ2V
δ−1 )

κ2 + 8κ2V (ξ ′)2

3(δ − 1)ξ ′′ (24)

ε1 � κ2

2

(
ξ ′

ξ ′′

)2

, (25)

ε2 � 1 + ξ ′(V ′ξ ′′ − 2V ξ ′′′)
2V (ξ ′′)2 , (26)

ε3 = − κ2δ(ξ ′)2

2(1 + δ + δ ln
(
− 4aκ2V

δ−1

)
)(ξ ′′)2

, (27)

ε5 = (κξ ′)2(−3(δ − 1)δ + 8V ξ ′′κ2)

2ξ ′′(8κ4V (ξ ′)2 + 3(δ − 1)(1 + δ + δ ln(− 4aκ2V
δ−1 )ξ ′′))

, (28)

ε6 = ξ ′ (κ2V ξ ′ξ ′′ (8k2ξ ′V ′ − 3(δ − 1)δ
) − 8κ4V 2ξ ′ (ξ (3)ξ ′ − 2(ξ ′′)2

) + 3(δ − 1)δ(ξ ′′)2V ′)
2V (ξ ′′)2

(
3(δ − 1)ξ ′′

(
δ ln

(
− 4aκ2V

δ−1

)
+ δ + 1

)
+ 8κ4V (ξ ′)2

) ,

(29)

where the index ε4 is omitted due to the perplexed expression. The scalar potential with an
unspecified scalar coupling function ξ(φ) can be written as,

V (φ) = V0e
∫ κ2ξ ′(φ)

(δ−1)ξ ′′(φ)
dφ

. (30)

with V0 being the amplitude of the scalar potential with mass dimensions [m]4. In order to
examine the validity of a model, the results which the model produces must be confronted to
the recent Planck observational data [49]. In the following model, we shall derive the values
for the quantities, namely the spectral index of primordial curvature perturbations nS , the
tensor-to-scalar-ratio r and finally, the tensor spectral index nS [3,36]. These quantities are
connected with the slow-roll indices introduced previously, as shown below,

ns = 1 − 2
2ε1 + ε2 − ε3 + ε4

1 − ε1
, nT = −2

ε1 + ε6

1 − ε1
,
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r = 16

∣∣∣∣∣
(

κ2Qe

4HF2 − ε1 − ε3

)
Fc3

A

κ2Qt

∣∣∣∣∣ , (31)

where cA the sound wave velocity defined as,

c2
A = 1 + κ4(Ḟ + κ2Qa)Qe

2κ4Qt φ̇2 + 3(Ḟ + Qa)2
. (32)

Based on the latest Planck observational data [49] the spectral index of primordial curvature
perturbations isnS = 0.9649±0.0042 and the tensor-to-scalar-ratio r must be r < 0.064. Our
goal now is to evaluate the observational indices during the first horizon crossing. However,
instead of using wavenumbers, we shall use the values of the scalar potential during the initial
stage of inflation. Taking it as an input, we can obtain the actual values of the observational
quantities. We can do so by firstly evaluating the final value of the scalar field. This value can
be derived by equating slow-roll index ε1 in Eq. (25) to unity. Consequently, the initial value

can be evaluated from the e-foldings number, defined as N = ∫ t f
ti

Hdt = ∫ φ f
φi

H
φ̇

dφ, where
the difference t f − ti signifies the duration of the inflationary era. Recalling the definition
of φ̇ in Eq. (11), one finds that the proper relation from which the initial value of the scalar
field can be derived is,

N =
∫ φ f

φi

ξ ′′

ξ ′ dφ. (33)

From this equation, as well as Eq. (25), it is obvious that choosing an appropriate coupling
function is the key in order to simplify the results.

3 Constant-roll evolution of the scalar field in logarithmic-corrected f (R) gravity and
primordial non-Gaussianities

In the following section, we shall analyse the theoretical framework of the evolution of the
scalar field under constant-roll condition φ̈ = βH φ̇, where β is defined as the constant-roll
parameter to be specified later. After the specific assumption and neglecting string corrections,
the equations of motion are modified as follows:

φ̇ = H(1 − β)
ξ ′

ξ ′′ , (34)

as a result, the equations of motion are,

H2 � κ2V

3(1 − δ)
, (35)

Ḣ � −1

2
κ2H2(1 − β)2(

ξ ′

ξ ′′ )
2, (36)

(3 + β)H φ̇ + V ′ � 0. (37)

In the context of the constant-roll evolution of the scalar field, the slow-roll indices for an
arbitrary coupling scalar function ξ(φ) are given by the following expressions:

ε1 = (β − 1)2(κξ ′)2

2(ξ ′′)2
, (38)

ε2 = β, (39)
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ε3 = − (β − 1)2δ(κξ ′)2

2(ξ ′′)2
(
δ ln

(
− 4aκ2V

δ−1

)
+ δ + 1

) , (40)

ε5 = −
(β − 1)κ2(ξ ′)2

(
3(β − 1)(δ − 1)δ + 8κ2V (ξ ′′)

)

2ξ ′′ (3(δ − 1)ξ ′′ (δ ln
(
− 4aκ2V

δ−1

)
+ δ + 1

)
− 8(β − 1)κ4V (ξ ′)2

) , (41)

ε6

=
(β − 1)ξ ′ ((β − 1)κ2V ξ ′ξ ′′ (3(δ − 1)δ − 8κ2ξ ′V ′) + 8(β − 1)κ4V 2ξ ′ (ξ(3)ξ ′ − 2(ξ ′′)2

)
+ 3(δ − 1)δ(ξ ′′)2V ′)

2V (ξ ′′)2
(

8(β − 1)κ4V (ξ ′)2 − 3(δ − 1)ξ ′′ (δ ln
(
− 4aκ2V

δ−1

)
+ δ + 1

)) ,

(42)

where again as before, the index ε4 is omitted due to the lengthy expression. The auxiliary
functions is obvious that can be found easily. The e-folding number can be written as,

N = 1

1 − β

∫ φ f

φi

ξ ′′

ξ ′ dφ. (43)

When the scalar field evolves with a constant-rate of roll enhances the non-Gaussianities fea-
tures. Until now, the perturbations in the cosmic microwave background (CMB) are described
perfectly as Gaussian distributions, since no practical evidence is found pointing out a non-
Gaussian pattern in the CMB. It is possible though, not evident for the moment, that in the
following years the observations may reveal a non-Gaussian pattern in the CMB primordial
power spectrum. In this section, we shall discuss how to evaluate the non-Gaussianities quan-
titatively in the context of the GW170817-compatible Einstein–Gauss–Bonnet gravity, using
the formalism and notation of [50]. Even though a f (R) logarithmic gravity is assumed, we
consider the same equations as the [50]. We first define the following quantities,

δξ = κ2H ξ̇ , δX = κ2φ̇2

H2 , εs = ε1 − 4δξ , ns = ε̇s

Hεs
, s = ċA

HcA
. (44)

Here, we shall implement a different formula for the sound wave speed, however equivalent
to the previous, which is based on these newly defined quantities for convenience and reads,

c2
A � 1 − 64δ2

ξ (6δξ + δX )

δX
. (45)

Recalling Eqs. (34), (36) and (37), one finds that the aforementioned auxiliary terms have
the following forms for an unspecified scalar coupling function ξ(φ),

δξ � (β − 1)κ4V (ξ ′)2

3(δ − 1)ξ ′′ (46)

δX � (β − 1)2(κξ ′)2

(ξ ′′)2 , (47)

εs � (β − 1)(ξ ′)2
(
3(β − 1)(δ − 1)κ2 − 8κ4V ξ ′′)

6(δ − 1)(ξ ′′)2 , (48)

ns � 2(β − 1)
(
ξ (3)ξ ′ (4κ2V ξ ′′ − 3(β − 1)(δ − 1)

) − (ξ ′′)2
(−3(β − 1)(δ − 1) + 4κ2ξ ′V ′ + 8κ2V ξ ′′))

(ξ ′′)2
(
8κ2V ξ ′′ − 3(β − 1)(δ − 1)

) ,

(49)

s = (1 − β)
ξ ′

ξ ′′
c′
A

cA
. (50)

In certain examples, we shall demonstrate that by choosing appropriately the coupling func-
tion, the quantity εs is simplified greatly, and it shall also coincide with ε1, along with δX .
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No matter the form of the sound wave velocity, the derivative cA is very complex; hence, for
obvious reasons its analytic expression is omitted. These forms are very useful due to the
fact that the power spectra PS of the primordial curvature perturbations and the equilateral
momentum approximation term f eq

NL can be derived from such terms. These quantities are
defined as,

PS = κ4V

24π2εscA
, (51)

f eq
NL � 55

36
εs + 5

12
n + 10

3
δξ . (52)

In the following, we shall appropriately specify the value of the term f eq
NL during the first

horizon crossing, to see what the constant-roll condition brings along. The evaluation shall
be performed by using the values of the free parameters in such a way so that the viability of
the observational indices of inflation is achieved according to the 2018 Planck data [49].

4 Testing the theoretical framework with the latest observational data

In this section, we shall present explicitly examples of GW170817 compatible Einstein–
Gauss–Bonnet models, with the f (R) extension, that can yield a phenomenologically viable
inflationary era. First of all, the Gauss–Bonnet coupling scalar function ξ(φ) must be defined
properly, aiming for a simple ratio ξ ′/ξ ′′ so as to facilitate our study.

4.1 Model compatible with the latest Planck Data under the slow-roll assumption

Consider the coupling scalar function ξ(φ) being equal to,

ξ(φ) = λ1

∫ κφ

eγ1(x)ndx, (53)

where λ1, γ1 and n are dimensionless constants to be specified later while x is an auxiliary
integration variable. This particular coupling scalar function is chosen due to the simplicity
of the ratio ξ ′/ξ ′′, specifically

ξ ′

ξ ′′ = (κφ)1−n

κnγ1
, (54)

even though the coupling itself seems superfluous. Nevertheless, it has been proven that it is
a viable candidate for a Gauss–Bonnet scalar coupling function for the minimally coupled
case, so it is interesting to examine the impact of logarithmic corrections. One can specify
the scalar potential from Eq. (18), which has the following form,

V (φ) = V1e
(κφ)2−n

(2−n)nγ1(δ−1) , (55)

where V1 is the integration constant. Let us now proceed with the evaluation of the slow-roll
indices,

ε1 � (κφ)2−2n

2n2γ 2
1

, (56)

ε2 � (κφ)−n (
φV ′ − 2(n − 1)V

)
2γ1nV

, (57)
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ε3 � − δ(κφ)2−2n

2γ 2
1 n2

(
δ ln

(
− 4aκ2V

δ−1

)
+ δ + 1

) , (58)

ε5 �
(κφ)1−n

(
8γ1λ1nκ4V (κφ)neγ1(κφ)n − 3(δ − 1)δκφ

)

2γ1n

(
3γ1(δ − 1)n(κφ)n

(
δ ln

(
− 4aκ2V

δ−1

)
+ δ + 1

)
+ 8λ1κφκ4Veγ1(κφ)n

) , (59)

ε6 �
(κφ)1−n

(
κφκ4V

(
8λ1κ3V ′eγ1(κφ)n − 3(δ − 1)δ

)
+ 8γ1(κ4V )2eγ1(κφ)n (

n
(
γ1(κφ)n − 1

) + 1
) + 3γ1(δ − 1)δn(κφ)nκ3V ′)

2γ1nκ4V

(
3γ1(δ − 1)n(κφ)n

(
δ ln

(
− 4aκ2V

δ−1

)
+ δ + 1

)
+ 8λ1κφκ4Veγ1(κφ)n

) .

(60)

It is obvious that the first three slow-roll indices have quite simple expressions in contrast to
the next three due to the derivatives of the scalar potential and the derivatives of the coupling
scalar function. Again, ε4 is omitted due to the length expression. Now, we can determine
the final value of the field when the inflationary era ends, by setting the first slow-roll index
Eq. (56) into unity,

φ f = (2n2γ 2
1 )

1
2−2n

κ
. (61)

The initial value of the scalar field can be calculated from the e-folds number, see Eq. (33)

φi = ((κφ f )
2 − N

γ1
)

1
n

κ
, (62)

where we assumed that the number of e-folds is N � 60. Considering the following val-
ues for the free parameters in natural units, namely, κ2 = 1, (N , n, γ1, V1, λ1, δ, α) =
(60,−2,−5, 1, 1, 0.001, 1) then, the spectral index of primordial curvature perturbations
nS , the tensor-to-scalar-ratio r and finally, the tensor spectral index nT are, respectively,
nS = 0.966381, r = 0.000014 and nT = −1.7 × 10−6, which are acceptable according to
the latest Planck Data. Moreover, we found that the initial value of the field is φi = 0.236704
and the final numerical value of the field is φ f = 2.41827 which means that with the pas-
sage of time, based on the continuity, the field increases until the inflationary era ends. In
addition, the numerical values of the slow-roll indices are ε1 = 8.79 × 10−7, ε2 = 0.016,
ε3 = ε4 = ε5 = −8.7 × 10−10, and ε6 = −1.75 × 10−9, where it becomes apparent that all
of them are subleading compared to the second slow-roll index (Fig. 1).

Lastly, we examine the validity of our approximations. Based on the slow-roll approxima-
tions, we note that Ḣ ∼ O(10−7) compared to H2 ∼ O(10−1), similarly 1

2 φ̇2 ∼ O(10−7)

in contrast to V ∼ 1. Indeed, the approximations in (12) are valid. Moreover, the string terms
in the equations of motion (13) and (14) are 24ξ̇H3 ∼ O(10−42) and 16ξ̇H Ḣ ∼ O(10−48)

which justifies the reason why the terms were neglected. Furthermore, from the first modified
Friedmann equation numerically speaking, FR− f

2κ2 ∼ O(10−3) and 3H Ḟ
κ2 ∼ O(10−9) are quite

smaller than the scalar potential justifying our assumption. The term F̈−H Ḟ
κ2 ∼ O(10−10) in

the second Friedmann equation is also minor in contrast to the term 2Ḣ F
κ2 ∼ O(10−7).

4.2 Model with power-law coupling under the constant-roll approximation

In this subsection, it is considered a much simpler Gauss–Bonnet coupling scalar function
ξ(φ) that follows a power-law form,

ξ(φ) = λ2(κφ)m . (63)
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Fig. 1 Contour plots of the spectral index of primordial curvature perturbations (left) and the tensor-to-scalar
ratio (right) depending on parameters N and γ1 ranging from [55, 65] and [−8,−1], respectively. It can be
inferred that both parameters influence their values, but the spectral index changes with a lesser rate

where λ2 and m are dimensionless constants to be specified later. This is a very appealing
function since the ratio ξ ′

ξ ′′ which appears in our calculations is greatly simplified, since,

ξ ′

ξ ′′ = φ

m − 1
. (64)

This model was also studied in Ref. [46]. Since the scalar coupling function is specified, one
can find the scalar potential from Eq. (7),

V (φ) = V2e
− (β2+2β−3)(κφ)2

6(m−1)(δ−1) , (65)

where V2 is an integration constant. For this model, the constant-roll indices are given by the
following equations,

ε1 = (β − 1)2(κφ)2

2(m − 1)2
, (66)

ε2 = β, (67)

ε3 = − (β − 1)2δ(κφ)2

2(m − 1)2
(

δ ln

(
− 4aκ2V (φ)

δ−1

)
+ δ + 1

) , (68)

ε5 =
(β − 1)

(
3(β − 1)(δ − 1)δ(κφ)2 + 8λ2(m − 1)mκ4V (κφ)m

)

2(m − 1)
(

8(β − 1)λ2mκ4V (κφ)m − 3(δ − 1)(m − 1)
(
δ ln

(
− 4aκ2V

δ−1

)
+ δ + 1

)) ,

(69)

ε6 = −
(β − 1)

(
8(β − 1)λ2mκ4V (κφ)m

(
mκ4V + κφκ3V ′) − 3(δ − 1)δφ

(
(β − 1)κφκ4V + (m − 1)κ3V ′))

2(m − 1)κ4V
(

8(β − 1)λ2mκ4V (κφ)m − 3(δ − 1)(m − 1)
(
δ ln

(
− 4aκ2V

δ−1

)
+ δ + 1

)) ,

(70)

where ε4 is not written analytically due to the perplexed form. Despite the fact that the indices
ε4 to ε6 are quite perplexed, the indices ε1 to ε3 have very simple forms. By setting the index
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Fig. 2 Contour plots of the spectral index of primordial curvature perturbations (left) and the tensor-to-scalar
ratio (right) depending on parameters β andm ranging from [0.001, 0.009] and [8, 12], respectively. Concerning
the spectral index, it is clear that the dominant parameter which defines its value is the constant-roll parameter

ε1 to unity, the final value of the field when inflationary era ends is equal to,

φ f = ±
√

2

κ

√
(β−1)2

(m−1)2

, (71)

while, the initial value of the field is,

φi = ±φ f e
− N (1−β)

m−1 . (72)

Our following analysis is based in the case of the positive value of the scalar field.
Assigning the following values to the free parameters, always in reduced Planck units,
(κ, δ, λ2,m, N , β, V2, α) = (1, 0.003, 1, 8, 60, 0.017, 1, 1) then, the observational indices
take the following values nS = 0.966, r = 7.6 × 10−7 and nT = −9.5 × 10−8, which are
acceptable according to the latest Planck Data. Furthermore, cA = 1; hence, the model is free
of ghosts. The numerical values of the slow-roll indices are ε1 � 4.8 × 10−8, ε2 = 0.017,
ε3 = −2.3×10−10 and the rest indices are all equal to ε3, a feature which is expected at least
for ε5 and ε6 when F is more dominant than string corrections. Moreover, we mention that the
initial and final values of the scalar field are φi � 0.002 and φ f = 10.0707 which indicates
an increase in the scalar field. In Fig. 2, we plot the spectral index of primordial curvature
perturbations nS (left) and the tensor-to-scalar ratio r (right) depending on parameters β and
m ranging [0.001, 0.009] and [8, 12], respectively.

Moreover, we make predictions for the amount of non-Gaussianities in the primordial
power spectrum of the curvature perturbations. The auxiliary terms of the specific model are
defined as,

δξ � (β − 1)λ2mκ4V (κφ)m

3(δ − 1)(m − 1)
(73)

εs � (β − 1)
(
3(β − 1)(δ − 1)(κφ)2 − 8λ2(m − 1)mκ4V (κφ)m

)
6(δ − 1)(m − 1)2 , (74)

ns � 8(β − 1)λ2(m − 1)m(κφ)m
(
mκ4V + κφκ3V ′) − 6(β − 1)2(δ − 1)(κφ)2

(m − 1)
(
3(β − 1)(δ − 1)(κφ)2 − 8λ2(m − 1)mκ4V (κφ)m

) . (75)
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From Eq. (52), the expected value of f eq
NL, for the exact same set of parameters we used to

obtain the viability of the model with the Planck data, is f eq
NL = 0.117024 which is also an

accepted value and may explain why non-Gaussianities have yet to be observed. Finally, the
parameters used to derive such values are δξ � 2.1 × 10−22, εs = 4.80305 × 10−8 and
η = 0.280857 which means that one of them is in fact dominant. These results imply that
εs = ε1.

At this point, it is important to mention that the observed quantities nS and r experience
different changes after the alteration of the free parameters. Specifically, the primordial
spectral index is affected only by the constant-roll parameter β, while the tensor-to-scalar
ratio is affected by the exponentm of the coupling scalar function along with the constant-roll
parameter with the first being more dominant factor. This can easily be observed in Fig. 2
where one sees that the spectral index of scalar perturbations is depicted by a simple plot
resembling vertical lines. In addition, while the term f eq

NL is independent of parameter λ2,
it can be enhanced by decreasing the exponent m, but such a change leads to a subsequent
decrease in the tensor-to-scalar ratio. For instance, numerically speaking, choosing m = 2
leads to f eq

NL = 0.819167, nS = 0.966 and the effective value of the tensor-to-scalar ratio is
0, since r ∼ O(10−51).

Finally, we examine the validity of the approximations which were made during this model
at the first horizon crossing. Firstly, the slow-roll approximations in Eq. (12) hold true since
Ḣ ∼ O(10−8) compared to H2 ∼ O(10−1) and 1

2 φ̇2 ∼ O(10−8) compared to V ∼ O(101)

are negligible. Also, the terms which were omitted in Eqs. (5) and (5) are of of the order
(in reduced Planck units) 24ξ̇H3 ∼ O(10−21) while 16ξ̇H Ḣ ∼ O(10−29), which explains
why these terms, compared to the scalar potential and the kinetic term, can be neglected and
V ′ ∼ O(10−4), whereas ξ ′G ∼ O(10−18) which explains the neglect of string term. Lastly,
the following two terms in Eqs. (5) FR− f

2κ2 ∼ O(10−3) and 3H Ḟ
k2 ∼ O(10−10) are quite

smaller than the scalar potential and the term F̈−H Ḟ
k2 ∼ O(10−11) in the second Friedmann

equation is also minor in contrast to the term 2Ḣ F
κ2 ∼ O(10−8) justifying our approximations.

5 Conclusions

In this work, an alteration of our previous work [36] is presented, by using a modified f (R)

logarithmic gravity instead of Einstein’s gravity, consistent with the GW170817 event. We
focused our analysis on the inflationary era of the universe, by considering that the scalar
field evolves with either under slow-roll assumptions or with a constant rate of roll. In both of
these cases, the slow-roll indices and the observational quantities of inflation were evaluated
along with the predicted amount of non-Gaussianities, in the case of constant-roll evolu-
tion of the scalar field. After the theoretical framework, we confronted two models with
the observational data coming from the Planck 2018 collaboration, considering logarithmic
corrections. As shown, the resulting inflationary phenomenology can be compatible with the
latest Planck data, for a wide range of the free parameters of the theory, after neglecting string
corrections, which is shown to be a reasonable approach. In our analysis, we demonstrated
that all the assumptions made were satisfied for all the models examined and for the values
of the free parameters that yield inflationary viability with respect to the latest Planck data.
In the constant-roll case, we also investigated the amount of non-Gaussianities that are pre-
dicted from the model, by calculating the nonlinear term f eq

NL in the equilateral momentum
approximation. Interestingly enough, we demonstrated that the amount of non-Gaussianities
is quite small. Finally, we performed an analytic approximation in the differential equation
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that connects the scalar field potential and the scalar coupling function, and we examined the
phenomenology of inflation in this case too. As evinced, the models can also be compatible
with the Planck 2018 too, even with a logarithmic modified gravity f (R) with an almost
linear Ricci scalar through logarithmic corrections.
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