Skip to main content
Log in

Synthesis of yellow and red ochre: a preliminary multi-analytical, micro-invasive investigation on recipes and recognition criteria

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This research aims to underline distinctive features to detect synthetic ochres on paintings, being the use of synthetic red widespread and well documented since Prehistory, while synthetic Mars yellow has been commercialized since the eighteenth century. Mars yellow was synthesized from Fe(NO3)3 and KOH reaction, according to ancient recipes. Hematite was synthesized by heating Mars yellow and other natural yellow ochres, simulating a soft, less sophisticated, and a hard, more modern, heating. The natural products were characterized by X-ray diffraction. Micro-Fourier transform infrared spectroscopy (μ-FTIR) and scanning electron microscopy (SEM) were used, respectively, for a compositional and morphological comparison between natural and synthetic pigments. The synthetic pathway was also reproduced and followed through differential thermal analysis (DTA and TG).

XRD remarked the different origin of precursory samples. SEM showed typical morphological features of Mars yellow that are partially retained even after heating, leading to the recognition of both Mars pigments—red and yellow. DTA and TG highlighted that the synthetic process sensibly differs from Mars yellow to natural ochres. Mars yellow showed a double-peak dehydration with minima at 278 and 304 °C, while a single-step process was recorded for natural ochres. Distinctive features of Mars products were for the first time characterized thanks to this combined methodology. Finally, μ-FTIR proved to be very effective to discriminate the soft heating from the hard one. In particular, hydroxyl and FeO6 bands in the fingerprint region were the most useful for this task.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

modified from Freepik.com)

Similar content being viewed by others

Notes

  1. Pliny the Elder, Naturalis Historia, trans. Rackham, H., Jones, W.H.S., Eicholz, D.E. 1963: Pliny Natural history, with an English translation in ten volumes. Cambridge: Harvard University Press.

References

  1. H. Salomon, C. Vignaud, Y. Coquinot, L. Beck, C. Stringer, D. Strivay, F. D’Errico, Archaeometry 54, 698 (2012)

    Article  Google Scholar 

  2. A. Lucas, J. Harris, Ancient Egyptian Materials and Industries, 4th edn. (Dover Publications Inc, Mineola, New York, 2012).

    Google Scholar 

  3. A. Mottana, M. Napolitano, Il Libro «Sulle Pietre» Di Teofrasto Prima Traduzione Italiana Con Un Vocabolario Dei Termini Mineralogici (Accademia Nazionale dei Lincei, Rome, 1997).

    Book  Google Scholar 

  4. D. Hradil, T. Grygar, J. Hradilová, P. Bezdička, Appl. Clay Sci. 22, 223 (2003)

    Article  Google Scholar 

  5. M.-P. Pomiès, M. Menu, C. Vignaud, Archaeometry 41, 275 (1999)

    Article  Google Scholar 

  6. H. Salomon, C. Vignaud, S. Lahlil, N. Menguy, J. Archaeol. Sci. 55, 100 (2015)

    Article  Google Scholar 

  7. K. Helwig, Artists’ Pigments (Archetype Publications Ltd, 2007).

  8. J. Riffault, A.-D. Vergnaud, and C.-J. Toussaint, Nouveau Manuel Complet Du Fabricant de Couleurs et de Vernis : Contenant Les Meilleures Formules et Les Procédés Les plus Nouveaux.... Tome 1 (Paris, 1862).

  9. J.-F.-L. Mérimée, De La Peinture à l’huile (M.me Huzard Libraire, Paris, 1830).

    Google Scholar 

  10. J.D. Bernal, Clay Miner. 4, 15 (1959)

    Article  ADS  Google Scholar 

  11. M.H. Francombe, H.P. Rooksby, Clay Miner. Bull. 4, 1 (1959)

    Article  ADS  Google Scholar 

  12. M.P. Pomiès, G. Morin, C. Vignaud, Eur. J. Solid State Inorg. Chem. 35, 9 (1998)

    Article  Google Scholar 

  13. M.P. Pomiès, M. Menu, C. Vignaud, J. Eur. Ceram. Soc. 19, 1605 (1999)

    Article  Google Scholar 

  14. R.L. Frost, Z. Ding, H.D. Ruan, J. Therm. Anal. Calorim. 71, 783 (2003)

    Article  Google Scholar 

  15. C. Vignaud, H. Salomon, E. Chalmin, J.M. Geneste, M. Menu, Anthropologie 110, 482 (2006)

    Article  Google Scholar 

  16. J.R. Barnett, S. Miller, E. Pearce, Opt. Laser Technol. 38, 445 (2006)

    Article  ADS  Google Scholar 

  17. R. Pozas, M. Ocaña, M.P. Morales, C.J. Serna, J. Colloid Interface Sci. 254, 87 (2002)

    Article  ADS  Google Scholar 

  18. G. Montes-Hernandez, P. Beck, F. Renard, E. Quirico, B. Lanson, R. Chiriac, N. Findling, Cryst. Growth Des. 11, 2264 (2011)

    Article  Google Scholar 

  19. J.H.A. van der Woude, P.L. de Bruyn, Colloids Surf. 12, 179 (1984)

    Article  Google Scholar 

  20. U. Schwertmann, R.M. Cornell, Iron Oxides in the Laboratory, 2nd edn. (Wiley-VCH Verlag GmbH, Weinheim, Germany, 2000).

    Book  Google Scholar 

  21. D. Walter, G. Buxbaum, W. Laqua, J. Therm. Anal. Calorim. 63, 733 (2001)

    Article  Google Scholar 

  22. S. Gialanella, R. Belli, G. Dalmeri, I. Lonardelli, M. Mattarelli, M. Montagna, L. Toniutti, Archaeometry 53, 950 (2011)

    Article  Google Scholar 

  23. R. Derie, M. Ghodsi, C. Calvo-Roche, J. Therm. Anal. 9, 435 (1976)

    Article  Google Scholar 

  24. C.J. Goss, Mineral. Mag. 51, 437 (1987)

    Article  Google Scholar 

  25. D.L.A. de Faria, F.N. Lopes, Vib. Spectrosc. 45, 117 (2007)

    Article  Google Scholar 

  26. G. González, A. Sagarzazu, R. Villalba, Mater. Res. Bull. 35, 2295 (2000)

    Article  Google Scholar 

  27. M. Kosmulski, S. Durand-Vidal, E. Maczka, J.B. Rosenholm, J. Colloid Interface Sci. 271, 261 (2004)

    Article  ADS  Google Scholar 

  28. L. Löffler, W. Mader, J. Eur. Ceram. Soc. 26, 131 (2006)

    Article  Google Scholar 

  29. S. Gialanella, F. Girardi, G. Ischia, I. Lonardelli, M. Mattarelli, M. Montagna, J. Therm. Anal. Calorim. 102, 867 (2010)

    Article  Google Scholar 

  30. E. Wolska, W. Szajda, J. Mater. Sci. 20, 4407 (1985)

    Article  ADS  Google Scholar 

  31. P. Cambier, Clay Miner. 21, 191 (1986)

    Article  ADS  Google Scholar 

  32. P.S.R. Prasad, K.S. Prasad, V.K. Chaitanya, E.V.S.S.K. Babu, B. Sreedhar, S.R. Murthy, J. Asian Earth Sci. 27, 503 (2006)

    Article  ADS  Google Scholar 

  33. G.E. De Benedetto, B. Fabbri, S. Gualtieri, L. Sabbatini, P.G. Zambonin, J. Cult. Herit. 6, 205 (2005)

    Article  Google Scholar 

  34. D. Fengel, Holzforschung 46, 283 (1992)

    Article  Google Scholar 

  35. P. Calvini, A. Gorassini, Restaurator 23, 48 (2002)

    Google Scholar 

  36. N.M. Puică, A. Pui, M. Florescu, Eur. J. Sci. Theol. 2, 49 (2006)

    Google Scholar 

  37. M. Derrik, J. Am. Inst. Conserv. 28, 43 (1989)

    Article  Google Scholar 

  38. S.A. Centeno, M.I. Guzman, A. Yamazaki-Kleps, C.O.D. Védova, J. Am. Inst. Conserv. 43, 139 (2004)

    Article  Google Scholar 

  39. M. Botticelli, A. Maras, A. Candeias, J. Raman Spectrosc. 51, 1470 (2020)

    Article  ADS  Google Scholar 

  40. R. L. Younkin, Astrophys. J. 144, (1966).

  41. M. Boni, M. Benvenuti, and L. Meinert, Skarn Deposits in Southern Tuscany and Elba Island (Central Italy) (FLORENCE IGC, 2004).

  42. M. Gil, M.L. Carvalho, A. Seruya, I. Ribeiro, I. Queralt, A.E. Candeias, J. Mirão, Appl. Phys. A Mater. Sci. Process. 90, 49 (2008)

    Article  ADS  Google Scholar 

  43. J.-M. Triat, Les Ocres, CNRS Eds (2011).

  44. A.F. Gualtieri, P. Venturelli, Am. Mineral. 84, 895 (1999)

    Article  ADS  Google Scholar 

  45. U. Schwertmann, Thermochim. Acta 78, 39 (1984)

    Article  Google Scholar 

  46. E. Murad, Mineral. Mag. 43, 355 (1979)

    Article  Google Scholar 

  47. R. M. Cornell and U. Schwertmann, in Wiley-Vch (2003), p. 571.

  48. H.D. Ruan, R.L. Frost, J.T. Kloprogge, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 57, 2575 (2001)

    Article  ADS  Google Scholar 

  49. R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, 2nd edn. (Wiley-VCH Verlag GmbH & Co, KGaA, 2003).

    Book  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Museum of Earth Sciences (MUST) of the University of Rome “Sapienza” for providing sample 3595. They also would like to thank Dr. Catia Prazeres for the help in XRPD analysis, Dr. Catarina Miguel for the µ-FTIR measurements, Dr. Ana Vinagre for the supply of DTA and TGA data. Mr. Marco Albano, from the C.N.R. – IGAG in Rome is also acknowledged for the assistance at SEM-EDS. The authors would also like to thank the two anonymous reviewers for their helpful comments which greatly improved the manuscript.

Funding

This research was supported by the University of Rome “Sapienza” (“Progetti di Ricerca Universitari, Maras 2015” and “Progetti di Avvio alla Ricerca, Botticelli 2015”).

Author information

Authors and Affiliations

Authors

Contributions

MB was involved in conceptualization, formal analysis, investigation, resources, funding acquisition and writing—original draft. GA performed data curation, investigation and writing—original draft. AC contributed to conceptualization, resources and writing—review & editing. JM was involved in resources and writing—review & editing. AM performed writing—review & editing and funding acquisition.

Corresponding author

Correspondence to Michela Botticelli.

Ethics declarations

Conflict of interest

The authors of this manuscript declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botticelli, M., Appolloni, G., Candeias, A. et al. Synthesis of yellow and red ochre: a preliminary multi-analytical, micro-invasive investigation on recipes and recognition criteria. Eur. Phys. J. Plus 136, 322 (2021). https://doi.org/10.1140/epjp/s13360-021-01291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01291-5

Navigation