Skip to main content
Log in

Kinematical models of latetime cosmology and the statefinder diagnostic

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present work deals with kinematical models of latetime cosmology. It is based on purely phenomenological assumption about the deceleration parameter. The models are confronted to observational data sets of type Ia supernovae distance modulus measurements and measurements of Hubble parameter at different redshift. Constraints on the cosmological parameters are obtained by Markov Chanin Monte Charlo (MCMC) analysis using the observation data sets. The values of present Hubble parameter, deceleration parameter and the redshift of transition from decelerated to accelerated phase of expansion are estimated for the present kinematical models. Further the properties of dark energy for the present models are explored with general relativistic assumptions. The dark energy diagnostics, namely the Om diagnostic and the statefinder are adopted for a comparison of the present models. A phase space constructed of two different statefinder parameters breaks the degeneracy of the models. It is observed that the kinematical models attain the corresponding \(\Lambda \)CDM value on the phase space in the course of evolution. The evolution of matter density contrast at linear level has also been studied for the present kinematical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.G. Riess, Supernova Search Team Astron et al., J. 116, 1009 (1998)

  2. S. Perlmutter et al., Supernova cosmology project collaboration. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. B.P. Schmidt, Supernova Search Team et al., Astrophys. J. 507, 46 (1998)

  4. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  Google Scholar 

  5. T. Padmanabhan, Phys. Rept. 380, 235 (2003)

    Article  ADS  Google Scholar 

  6. S. Tsujikawa, Class. Quant. Grav. 30, 214003 (2013)

    Article  ADS  Google Scholar 

  7. R.J. Scherrer, Phys. Rev. Lett. 93, 011301 (2004)

    Article  ADS  Google Scholar 

  8. J.S. Bagla, H.K. Jassal, T. Padmanabhan, Phys. Rev. D 67, 063504 (2003)

    Article  ADS  Google Scholar 

  9. M.C. Bento, O. Bertolami, A.A. Sen, Gen. Rel. Grav. 35, 2063 (2003)

    Article  ADS  Google Scholar 

  10. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  Google Scholar 

  11. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012)

    Article  ADS  Google Scholar 

  12. V. Sahni, A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006)

    Article  ADS  Google Scholar 

  13. N. Aghanim et al., [Planck Collaboration], arXiv:1807.06209 [astro-ph.CO]

  14. A. Font-Ribera, BOSS Collaboration et al., JCAP 1405, 027 (2014)

  15. A.G. Riess et al., Astrophys. J. 826(1), 56 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, Astrophys. J. 876, 85 (2019)

    Article  ADS  Google Scholar 

  17. S. Dhawan, D. Brout, D. Scolnic, A. Goobar, A.G. Riess, V. Miranda, (n.d.). arXiv:2001.09260 [astro-ph.CO]

  18. A. Mukherjee, N. Paul, H.K. Jassal, JCAP 1901, 005 (2019)

    Article  ADS  Google Scholar 

  19. A. Shafieloo, A.G. Kim, E.V. Linder, Phys. Rev. D 85, 123530 (2012)

    Article  ADS  Google Scholar 

  20. B.S. Haridasu, V.V. Lukovi, M. Moresco, N. Vittorio, JCAP 1810, 015 (2018)

    Article  ADS  Google Scholar 

  21. Y. Gong, A. Wang, Phys. Rev. D 73, 083506 (2006)

    Article  ADS  Google Scholar 

  22. Y.G. Gong, A. Wang, Phys. Rev. D 75, 043520 (2007)

    Article  ADS  Google Scholar 

  23. A.Al Mamon, K. Bamba, Eur. Phys. J. C 78, 862 (2018)

    Article  ADS  Google Scholar 

  24. S. del Campo, I. Duran, R. Herrera, D. Pavon, Phys. Rev. D 86, 083509 (2012)

    Article  ADS  Google Scholar 

  25. D. Rapetti, S.W. Allen, M.A. Amin, R.D. Blandford, Mon. Not. Roy. Astron. Soc. 375, 1510 (2007)

    Article  ADS  Google Scholar 

  26. Z.X. Zhai, M.J. Zhang, Z.S. Zhang, X.M. Liu, T.J. Zhang, Phys. Lett. B 727, 8 (2013)

    Article  ADS  Google Scholar 

  27. A. Mukherjee, N. Banerjee, Phys. Rev. D 93, 043002 (2016)

    Article  ADS  Google Scholar 

  28. A. Mukherjee, N. Banerjee, Class. Quant. Grav. 34, 035016 (2017)

    Article  ADS  Google Scholar 

  29. A. Aviles, C. Gruber, O. Luongo, H. Quevedo, Phys. Rev. D 86, 123516 (2012)

    Article  ADS  Google Scholar 

  30. C. Gruber, O. Luongo, Phys. Rev. D 89, 103506 (2014)

    Article  ADS  Google Scholar 

  31. S. Capozziello, R. D’Agostino, O. Luongo, Mon. Not. Roy. Astron. Soc. 476, 3924 (2018)

    Article  ADS  Google Scholar 

  32. F.Y. Wang, Z.G. Dai, Shi Qi, Astron. Astrophys. 507, 53 (2009)

    Article  ADS  Google Scholar 

  33. A.G. Riess, Supernova Search Team et al., Astrophys. J. 607, 665 (2004)

  34. M. Betoule et al., Astron. Astrophys. 568, A22 (2014)

    Article  Google Scholar 

  35. C. Zhang, H. Zhang, S. Yuan, T.J. Zhang, Y.C. Sun, Res. Astron. Astrophys. 14, 1221 (2014)

    Article  ADS  Google Scholar 

  36. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  37. M. Moresco, L. Verde, L. Pozzetti, R. Jimenez, A. Cimatti, JCAP 07, 053 (2012)

    Article  ADS  Google Scholar 

  38. M. Moresco, L. Pozzetti, A. Cimatti et al., JCAP 05, 014 (2016)

    Article  ADS  Google Scholar 

  39. A.L. Ratsimbazafy, S.I. Loubser, S.M. Crawford et al., Mon. Not. Roy. Astron. Soc. 467, 3239 (2017)

    Article  ADS  Google Scholar 

  40. M. Moresco, Mon. Not. Roy. Astron. Soc. 450, L16 (2015)

    Article  ADS  Google Scholar 

  41. S. Alam et al., Mon. Not. Roy. Astron. Soc. 470, 2617 (2017)

    Article  ADS  Google Scholar 

  42. T. Delubac et al., Astron. Astrophys. 574, A59 (2015)

    Article  Google Scholar 

  43. A. Font-Ribera et al., JCAP 05, 027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  44. A.G. Riess et al., Astrophys. J. 861, 126 (2018)

    Article  ADS  Google Scholar 

  45. J. Goodman, J. Weare, Commun. Appl. Math. Comput. Sci. 5, 65 (2010)

    Article  MathSciNet  Google Scholar 

  46. D. Foreman-Mackey, D.W. Hogg, D. Lang, J. Goodman, Publ. Astron. Soc. Pac. 125, 306 (2013)

    Article  ADS  Google Scholar 

  47. V. Sahni, A. Shafieloo, A.A. Starobinsky, Phys. Rev. D 78, 103502 (2008)

    Article  ADS  Google Scholar 

  48. C. Zunckel, C. Clarkson, Phys. Rev. Lett. 101, 181301 (2008)

    Article  ADS  Google Scholar 

  49. A. Shafieloo, V. Sahni, A.A. Starobinsky, Phys. Rev. D 86, 103527 (2012)

    Article  ADS  Google Scholar 

  50. M. Arabsalmani, V. Sahni, Phys. Rev. D 83, 043501 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the financial support from the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India through National Post-Doctoral Fellowship (NPDF, File no. PDF/2018/001859). The author would like to thank Prof. Anjan A. Sen for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankan Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A. Kinematical models of latetime cosmology and the statefinder diagnostic. Eur. Phys. J. Plus 136, 300 (2021). https://doi.org/10.1140/epjp/s13360-021-01269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01269-3

Navigation