Skip to main content
Log in

q-Cat states revisited: two families in a Fock representation space of q-oscillator algebra with different nonclassical behaviors

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper has been motivated by our previous paper (Eur. Phys J Plus 135:253, 2020) on q-coherent states of the Arik–Coon q-oscillator. The quadratic powers of unbounded and bounded annihilation operators associated with the Arik–Coon q-oscillator are used to obtain two different families of the even and odd q-cat states for \(0<q<1\) in even and odd subspaces of the Fock representation space of the system. The resolutions of the identity condition for q-cat states of the unbounded and bounded annihilation operators are realized by two appropriate positive definite q-measures in the q-integral on the whole complex plane and a disk in radius \(1/\sqrt{1-q}\), respectively. It is shown that the antibunching effect and sub-Poissonian statistics as well as the bunching effect and super-Poissonian statistics are simultaneously exhibited by the first and second families of q-cat states, respectively. Otherwise, a fixed observation cannot be concluded. The strong and weak squeezing conditions for two different types of q-generalizations of the position and momentum quadratures, corresponding to the unbounded and bounded annihilation operators, on their associated even and odd q-cat states are considered. Using an example, we show that contrary to the odd q-cat states of the first family that exhibit both strong and weak squeezing effects by both quadratures, the ones of the second family demonstrate only the weak squeezing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V. Dodonov, I.A. Malkin, V.I. Man’ko, Even and odd coherent states and excitations of a singular oscillator. Physica 72, 597–615 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  2. I.A. Malkin, V.I. Man’ko, Dynamical Symmetries and Coherent States of Quantum Systems (Nauka, Moscow, 1979)

    Google Scholar 

  3. Y. Xia, G. Guo, Nonclassical properties of even and odd coherent states. Phys. Lett. A 136, 281–283 (1989)

    Article  ADS  Google Scholar 

  4. P. Knight, Practical Schrödinger cats. Nature 357, 438–439 (1992)

    Article  ADS  Google Scholar 

  5. V. Buzek, A. Vidiella-Barranco, P.L. Knight, Superpositions of coherent states: squeezing and dissipation. Phys. Rev. A 45, 6570–6585 (1992)

    Article  ADS  Google Scholar 

  6. C.C. Gerry, Nonclassical properties of even and odd coherent states. J. Mod. Opt. 40, 1053–1071 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. N.A. Ansari, V.I. Man’ko, Photon statistics of multimode even and odd coherent light. Phys. Rev. A 50, 1942–1947 (1994)

    Article  ADS  Google Scholar 

  8. C.C. Gerry, R. Grobe, Nonclassical properties of correlated two-mode Schrödinger cat states. Phys. Rev. A 51, 1698–1701 (1995)

    Article  ADS  Google Scholar 

  9. V. Buzek, P.L. Knight, I: Quantum interference, superposition states of light, and nonclassical effects. Prog. Opt. 34, 1–158 (1995)

    Article  ADS  Google Scholar 

  10. C.C. Gerry, R. Grobe, Two-mode \(SU(2)\) and \(SU(2)\) schrödinger cat states. J. Mod. Opt. 44, 41–53 (1997)

    Article  ADS  MATH  Google Scholar 

  11. C.C. Gerry, P.L. Knight, Quantum superpositions and Schrödinger cat states in quantum optics. Am. J. Phys. 65, 964–974 (1997)

    Article  ADS  Google Scholar 

  12. G.S. Agarwal, R.R. Puri, R.P. Singh, Atomic Schrödinger cat states. Phys. Rev. A 56, 2249–2254 (1997)

    Article  ADS  Google Scholar 

  13. S. Sivakumar, Even and odd nonlinear coherent states. Phys. Lett. A 250, 257–262 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. C. Gerry, P. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  15. M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J.M. Raimond, S. Haroche, Observing the progressive decoherence of the “meter” in a quantum measurement. Phys. Rev. Lett. 77, 4887–4890 (1996)

    Article  ADS  Google Scholar 

  16. B. Yurke, D. Stoler, Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett. 57, 13–16 (1986)

    Article  ADS  Google Scholar 

  17. M. Mirrahimi, Cat-qubits for quantum computation. C. R. Physique 17, 778–787 (2016)

    Article  ADS  Google Scholar 

  18. E.V. Mikheev, A.S. Pugin, D.A. Kuts, S.A. Podoshvedov, N. Ba An, Efficient production of large-size optical Schrödinger cat states. Sci. Rep. 9, 14301 (2019)

    Article  ADS  Google Scholar 

  19. J. Guillaud, M. Mirrahimi, Repetition cat qubits for fault-tolerant quantum computation. Phys. Rev. X 9, 041053 (2019)

    Google Scholar 

  20. J.Z. Xu, Y.T. Yu, Multi-party quantum private comparison based on the entanglement swapping of \(d\)-level cat states and \(d\)-level Bell states. Quantum Inf. Process. 16, 177 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Y. Zhang, T. Liu, Y. Yu, C.P. Yang, Preparation of entangled W states with cat-state qubits in circuit QED. Quantum Inf. Process. 19, 218 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. Z. Leghtas, S. Touzard, I.M. Pop, A. Kou, B. Vlastakis, A. Petrenko, K.M. Sliwa, A. Narla, S. Shankar, M.J. Hatridge, M. Reagor, L. Frunzio, R.J. Schoelkopf, M. Mirrahimi, M.H. Devoret, Confining the state of light to a quantum manifold by engineered two-photon loss. Science 347, 853–857 (2015)

    Article  ADS  Google Scholar 

  23. A. Gilchrist, K. Nemoto, W.J. Munro, T.C. Ralph, S. Glancy, S.L. Braunstein, G.J. Milburn, Schrodinger cats and their power for quantum information processing. J. Opt. B Quantum Semiclass. Opt. 6, S828–S833 (2004)

    Article  ADS  Google Scholar 

  24. B. Vlastakis, G. Kirchmair, Z. Leghtas, S.E. Nigg, L. Frunzio, S.M. Girvin, M. Mirrahimi, M.H. Devoret, R.J. Schoelkopf, Deterministically encoding quantum information using 100-photon SchrÖdinger cat states. Science 342, 607–610 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. J. Joo, M. Elliott, D.K.L. Oi, E. Ginossar, T.P. Spiller, Deterministic amplification of Schrödinger cat states in circuit quantum electrodynamics. New J. Phys. 18, 023028 (2016)

    Article  ADS  Google Scholar 

  26. O.W. Greenberg, Example of infinite statistics. Phys. Rev. Lett. 64, 705–708 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. R.N. Mahapatra, Infinite statistics and a possible small violation of the Pauli principle. Phys. Lett. B 242, 407–411 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  28. V.I. Man’ko, G. Marmo, E.C.G. Sudarshan, F. Zaccaria, \(f\)-oscillators and nonlinear coherent states. Phys. Scr. 55, 528–541 (1997)

    Article  ADS  Google Scholar 

  29. V.I. Man’ko, R.V. Mendes, On the nonlinearity interpretation of \(q\)- and \(f\)-deformation and some applications. J. Phys. A Math. Gen. 31, 6037–6044 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. N.M. Atakishiev, S.K. Suslov, Difference analogs of the harmonic oscillator. Theor. Math. Phys. 85, 1055–1062 (1990)

    Article  MATH  Google Scholar 

  31. E.V. Damaskinskii, P.P. Kulish, Applications of deformed oscillators. J. Soviet Math. 62, 2963–2986 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. A.M. Perelomov, On the completeness of some subsystems of \(q\)-deformed coherent states. Helv. Phys. Acta 68, 554–576 (1995)

    MathSciNet  MATH  Google Scholar 

  33. V.V. Borzov, E.V. Damaskinsky, Generalized coherent states for the \(q\)-oscillator associated with discrete \(q\)-Hermite polynomials. J. Math. Sci. 132, 26–36 (2005)

    Article  MathSciNet  Google Scholar 

  34. S. Dey, A. Fring, L. Gouba, P.G. Castro, Time-dependent \(q\)-deformed coherent states for generalized uncertainty relations. Phys. Rev. D 87, 084033 (2013)

    Article  ADS  Google Scholar 

  35. S. Dey, \(q\)-deformed noncommutative cat states and their nonclassical properties. Phys. Rev. D 91, 044024 (2015)

    Article  ADS  Google Scholar 

  36. H. Fakhri, A. Hashemi, Nonclassical properties of the \(q\)-coherent and \(q\)-cat states of the Biedenharn–Macfarlane \(q\) oscillator with \(q>1\). Phys. Rev. A 93, 013802 (2016)

    Article  ADS  Google Scholar 

  37. H. Fakhri, M. Sayyah-Fard, Arik–Coon \(q\)-oscillator cat states on the noncommutative complex plane \({\mathbb{C}}_{q^{-1}}\) and their nonclassical properties. Int. J. Geom. Meth. Mod. Phys. 14, 1750060 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  38. H. Fakhri, M. Sayyah-Fard, Nonclassical properties of the Arik–Coon \(q^{-1}\)-oscillator coherent states on the noncommutative complex plane \({\mathbb{C}}_q\). Int. J. Geom. Meth. Mod. Phys. 14, 1750165 (2017)

    Article  MATH  Google Scholar 

  39. H. Fakhri, M. Sayyah-Fard, \(q\)-Coherent states associated with the noncommutative complex plane \({\mathbb{C}}_q^2\) for the Biedenharn–Macfarlane \(q\)-oscillator. Ann. Phys. 387, 14–28 (2017)

    Article  ADS  MATH  Google Scholar 

  40. L.M. Kuang, F.B. Wang, The \(su_q(1,1)\)\(q\)-coherent states and their nonclassical properties. Phys. Lett. A 173, 221–227 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  41. B. Roy, R. Roychoudhury, Even and odd \(q\)-coherent states in a finite-dimensional basis and their squeezing properties. Int. J. Theor. Phys. 36, 1525–1536 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. J.S. Wang, B.Y. Wang, C.Y. Sun, Even and odd \(qs\)-coherent states and their photon-statistical properties. Phys. Lett. A 246, 464–470 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Y. Zhao, Y. Zeng, H. Liu, Q. Song, G. Wang, K. Xue, \(q\)-Deformed Barut–Girardello \(su(1,1)\) coherent states and Schrödinger cat states. Theory Math. Phys. 193, 1844–1852 (2017)

    Article  MATH  Google Scholar 

  44. H. Fakhri, M. Sayyah-Fard, Triplet \(q\)-cat states of the Biedenharn–Macfarlane q-oscillator with \(q>1\). Quantum Inf. Process. 19, 19 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  45. H. Fakhri, S. E. Mousavi Gharalari, Nonclassical properties of two families of \(q\)-coherent states in the Fock representation space of \(q\)-oscillator algebra, Eur. Phys. J. Plus 135 (2020) 253, Erratum: ibid. 135 (2020) 504

  46. H. Fakhri, S.E. Mousavi Gharalari, Approach of the continuous \(q\)-Hermite polynomials to \(x\)-representation of \(q\)-oscillator algebra and its coherent states. Int. J. Geom. Meth. Mod. Phys. 2, 2050021 (2020)

  47. K. Berrada, H. Eleuch, Noncommutative deformed cat states under decoherence. Phys. Rev. D 100, 016020 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  48. L.C. Biedenharn, The quantum group \(SU_q(2)\) and a \(q\)-analogue of the boson operators. J. Phys. A 22, L873–L878 (1989)

    Article  ADS  MATH  Google Scholar 

  49. A.J. Macfarlane, On \(q\)-analogues of the quantum Harmonic oscillator and the quantum group \(SU(2)\). J. Phys. A 22, 4581–4588 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. M. Arik, D.D. Coon, Hilbert spaces of analytic functions and generalized coherent states. J. Math. Phys. 17, 524–527 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. A. Klymik, K. Schmüdgen, Quantum Groups and Their Representations (Springer, Berlin, Heidelberg, 1997)

    Book  Google Scholar 

  52. S. Mancini, Even and odd nonlinear coherent states. Phys. Lett. A 233, 291–296 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. V.V. Dodonov, V.I. Man’ko, D.E. Nikonov, Even and odd coherent states for multimode parametric systems. Phys. Rev. A 51, 3328–3336 (1995)

    Article  ADS  Google Scholar 

  54. L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205–207 (1979)

    Article  ADS  Google Scholar 

  55. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  56. J.C. Garrison, R.Y. Chiao, Quantum Optics (Oxford University Press Inc., New York, 2008)

    Book  Google Scholar 

  57. H. Fakhri, M. Sayyah-Fard, Noncommutative photon-added squeezed vacuum states. Mod. Phys. Lett. A 35, 2050167 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. E.G. Kalnins, W. Miller, S. Mukherjee, Models of \(q\)-algebra representations: matrix elements of \({U_q}(su_2)\). Contemp. Math. 160, 191–208 (1994)

    Article  MATH  Google Scholar 

  59. M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  60. H. Fakhri, A. Hashemi, The symmetric \(q\)-oscillator algebra: \(q\)-coherent states, \(q\)-Bargmann-Fock realization and continuous \(q\)-Hermite polynomials with \(0<q<1\). Int. J. Geom. Methods Mod. Phys. 13, 1650028 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Fakhri.

Appendix A: q-calculus

Appendix A: q-calculus

For \(0<q<1\), the two known q-generalized exponential functions are

$$\begin{aligned}&{E_q(x)}:=\sum _{n=0}^{\infty }\frac{q^\frac{n(n-1)}{2}}{(q;q)_n}{x^n}, \end{aligned}$$
(A1a)
$$\begin{aligned}&{e_q(x)}:=\sum _{n=0}^{\infty }\frac{x^n}{(q;q)_n}, \end{aligned}$$
(A1b)

in which, the definition of q-Pochhammer symbol as \((a;q)_n:=(1-a)(1-aq)(1-aq^2)\cdots (1-aq^{n-1})\) for a nonzero complex number such as a has been used. Their convergence regions are the intervals \(|x|<\infty \) and \(|x|<1\), respectively, with an infinite product expansion for the second q-exponential function as \(e_{q}(x)=1/\prod _{k=0}^\infty (1-q^{k} x)\) [58]. Also, they satisfy the relations \({E_q(x)}={e_{q^{-1}}(-{q^{-1}} x)}\), \(e_q(x)E_q(-x)=1\), \(\lim _{q\rightarrow 1} {e_q((1-q)x)}=\exp (x)\) and \(\lim _{q\rightarrow 1}{E_q((1-q)x)}=\exp (x)\) [51, 59]. We fix the definition of q-hyperbolic functions \(\sinh \) and \(\cosh \) by using (A1a), as below

$$\begin{aligned}&{{\sinh _q}x}:=\frac{E_q((1-q)x) - E_q(-(1-q)x)}{2}, \end{aligned}$$
(A2a)
$$\begin{aligned}&{{\cosh _q}x}:=\frac{E_q((1-q)x) + E_q(-(1-q)x)}{2}. \end{aligned}$$
(A2b)

Moreover, the asymmetric and symmetric q-derivatives \(D_{q,x}\) and \({\widetilde{D}}_{q,x}\) on an arbitrary continuous function such as f(x) are defined as

$$\begin{aligned}&D_{q,x}f(x)=\frac{f(x)-f(qx)}{(1-q)x}, \quad \end{aligned}$$
(A3a)
$$\begin{aligned}&{\widetilde{D}}_{q,x}f(x):=\frac{f(q x)-f(q^{-1}x)}{(q-q^{-1})x}. \quad \end{aligned}$$
(A3b)

Their relative q-analogues of Leibniz formula are

$$\begin{aligned}&{D_{q,x}}(f(x) g(x))=({D_{q,x}}f(x))\, g(qx)+f(x)\,D_{q,x}g(x) \quad \nonumber \\&\quad =({D_{q,x}}f(x))\, g(x)+f(qx)\,D_{q,x}g(x), \quad \end{aligned}$$
(A4a)
$$\begin{aligned}&{\widetilde{D}}_{q,x}(f(x) g(x))=({\widetilde{D}}_{q,x}f(x))\,g(q^{-1}x)+f(q x)\,{\widetilde{D}}_{q,x}g(x) \quad \nonumber \\&\quad =({\widetilde{D}}_{q,x}f(x))\,g(q x)+f(q^{-1} x)\,{\widetilde{D}}_{q,x}g(x).&\end{aligned}$$
(A4b)

Using the q-derivatives \({D_{q,x}}\) and \({\widetilde{D}}_{q,x}\) as the inverse operations, the q-integrals on the intervals \([0,\infty )\) and [0, c] with c as a positive real number are defined, respectively, as [51, 59]

$$\begin{aligned}&\int _{0}^{\infty }f(x)d_{q}x:=(1-q)\sum _{j=-\infty }^{\infty }q^j{f(q^j)}, \quad \end{aligned}$$
(A5a)
$$\begin{aligned}&\int _{0}^{c}f(x)d_{q}x:=(1-q)c\sum _{j=0}^{\infty }q^j{f(q^j{c})}, \quad \end{aligned}$$
(A5b)

and [60]

$$\begin{aligned}&\int _0^{\infty }f(x)\widetilde{d_q}x=(q^{-1}-q)\sum _{j=-\infty }^{\infty }q^{2j+1}f(q^{2j+1}), \quad \end{aligned}$$
(A6a)
$$\begin{aligned}&\int _0^{c}f(x)\widetilde{d_q}x=(q^{-1}-q)c\sum _{j=0}^{\infty }q^{2j+1}f(q^{2j+1}c). \quad \end{aligned}$$
(A6b)

For \(0<q<1\), as two different generalizations of the integral representation of the ordinary factorial, the infinite and finite q-integral representations of the q- and \(q^2\)-factorials are obtained, respectively, as below [31, 32, 60]

$$\begin{aligned}&\int _{0}^{\infty }\frac{x^n}{E_{q^2}((q^{-1}-q)x)}{\widetilde{d}}_{q}x=q^{-n^2}[n]_{q^2}!, \quad \end{aligned}$$
(A7a)
$$\begin{aligned}&\int _{0}^{\frac{1}{1-q}}\frac{x^n}{{e_q}((1-q)x)}d_{q}x=[n]_q!. \quad \end{aligned}$$
(A7b)

The q-factorial is defined as \([0]_q!=1\) and \([n]_q!:=[1]_q [2]_q \cdots [n]_q\) with n as a positive integer number. One must note that the quantum number introduced in [60] is symmetric, and here it is written in terms of the asymmetric quantum number.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhri, H., Mousavi-Gharalari, S.E. q-Cat states revisited: two families in a Fock representation space of q-oscillator algebra with different nonclassical behaviors. Eur. Phys. J. Plus 136, 282 (2021). https://doi.org/10.1140/epjp/s13360-021-01261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01261-x

Navigation