Skip to main content
Log in

Some effects of different coordinate systems in cosmology

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The analysis of the dynamics of radial movement in different reference frames used in cosmology is made. Use of different frames leads to the difference in inertial forces resulting in different observable effects. The important effect is the appearance in the system different from the synchronous one of the acceleration proportional to the distance analogous to the action of the cosmological constant. Numerical estimate of the difference of this effective cosmological constant and the invariant constant in Einstein equations is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kogut et al., Dipole anisotropy in the COBE differential microwave radiometers first-year sky maps. Astrophys. J. 419, 1–6 (1993). https://doi.org/10.1086/173453

    Article  ADS  Google Scholar 

  2. P.D. Naselsky, D.I. Novikov, I.D. Novikov, The Physics of the Cosmic Microwave Background (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  3. W. Kündig, Measurement of the transverse Doppler effect in an accelerated system. Phys. Rev. 129, 2371–2375 (1963). https://doi.org/10.1103/PhysRev.129.2371

    Article  ADS  Google Scholar 

  4. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1983).

    MATH  Google Scholar 

  5. A.A. Grib, Yu.V. Pavlov, Comparison of particle properties in Kerr metric and in rotating coordinates. Gen. Relativ. Gravit. 49, 78 (2017). https://doi.org/10.1007/s10714-017-2238-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A.A. Grib, Yu.V. Pavlov, Particle properties outside of the static limit in cosmology. Int. J. Mod. Phys. A 35, 2040044 (2020). https://doi.org/10.1142/S0217751X20400448

    Article  ADS  MathSciNet  Google Scholar 

  7. A.A. Grib, Yu.V. Pavlov, Particles with negative energies in nonrelativistic and relativistic cases. Symmetry 12, 528 (2020). https://doi.org/10.3390/sym12040528

    Article  Google Scholar 

  8. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  9. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972).

    Google Scholar 

  10. G.F.R. Ellis, T. Rothman, Lost horizons. Am. J. Phys. 61, 883–893 (1993). https://doi.org/10.1119/1.17400

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A.A. Grib, Early Expanding Universe and Elementary Particles (Friedmann Lab. Publ, St. Petersburg, 1995).

    Google Scholar 

  12. V. Faraoni, Cosmological apparent and trapping horizons. Phys. Rev. D 84, 024003 (2011). https://doi.org/10.1103/PhysRevD.84.024003

    Article  ADS  Google Scholar 

  13. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford, 1983).

    MATH  Google Scholar 

  14. V. Faraoni, G. Vachon, Quasi-geodesics in relativistic gravity. Eur. Phys. J. C 81, 22 (2021). https://doi.org/10.1140/epjc/s10052-020-08808-9

    Article  ADS  Google Scholar 

  15. R.C. Tolman, Relativity, Thermodinamics and Cosmology (Clarendon Press, Oxford, 1934).

    MATH  Google Scholar 

  16. F. Kottler, Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie. Ann. Phys. 56, 401–462 (1918). https://doi.org/10.1002/andp.19183611402

    Article  MATH  Google Scholar 

  17. G.C. McVittie, General Relativity and Cosmology (Chapman and Hall Ltd, London, 1956).

    Google Scholar 

  18. Planck Collaboration: Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014). https://doi.org/10.1051/0004-6361/201321529

  19. B.P. Schmidt et al., The high-Z supernova search: measuring cosmic deceleration and global curvature of the Universe using type Ia supernovae. Astrophys. J. 507, 46–63 (1998). https://doi.org/10.1086/306308

    Article  ADS  Google Scholar 

  20. A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998). https://doi.org/10.1086/300499

    Article  ADS  Google Scholar 

  21. S. Perlmutter et al., Measurements of \(\Omega \) and \(\Lambda \) from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999). https://doi.org/10.1086/307221

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The work of Yu.V.P. was supported by the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Grib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grib, A.A., Pavlov, Y.V. Some effects of different coordinate systems in cosmology. Eur. Phys. J. Plus 136, 318 (2021). https://doi.org/10.1140/epjp/s13360-021-01249-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01249-7

Navigation