Skip to main content
Log in

Cosmology with non-minimal coupled gravity: dynamical study of the inflationary universe in the deformed phase space scenario

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we consider a noncommutative (NC) inflationary model with a homogeneous scalar field non-minimally coupled to gravity. We propose to use a canonical deformation between momenta in a spatially flat Friedmann–Le maître–Robertson–Walker universe. This particular choice of noncommutativity allows interesting dynamics that other NC models seem not to allow. In this approach, the dimensional parameter \(\theta \), which considered as the length of Planck, presents the quantum regime. But also, it is crucial to recover the standard results by taking the appropriate limits of this parameter. To note that the \(1\mathrm{st}\) Friedmann equation remains unaffected while both the Friedmann acceleration and the Klein-Gordon equations are affected by an additional term linear in the NC parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.M.M. Rasouli et al., Phys. Rev. D 89, 044028 (2014)

    Article  ADS  Google Scholar 

  2. S.M.M. Rasouli et al., Gen. Relativ. Gravit. 43(10), 2895 (2011)

    Article  ADS  Google Scholar 

  3. S.M.M. Rasouli et al., Ann. Phys. 393(288–307), 29 (2018)

    Google Scholar 

  4. E. Witten, Nucl. Phys. B 268, 253 (1986)

    Article  ADS  Google Scholar 

  5. N. Mansour, E.Y. Diaf, M.B. Sedra, Electron. J. Theor. Phys. 14, 21 (2018)

    Google Scholar 

  6. N. Mansour, E.Y. Diaf, M.B. Sedra, J. Phys. Stud. 23, 1103 (2019)

    Article  MathSciNet  Google Scholar 

  7. N. Seiberg et al., JHEP 9909, 032 (1999)

    Article  ADS  Google Scholar 

  8. A. Connes, M.R. Douglas, Shwarz. JHEP 02, 003 (1998)

    Article  ADS  Google Scholar 

  9. F. Ardalan, H. Arfaei, M.M. Sheikh-Jabbari, Nuclear Phys. B 576(1–3), 578–596 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  10. T.K. Won, J.O. John, Mod. Phys. Lett. A 15, 1597–1604 (2000)

    ADS  Google Scholar 

  11. R. Blumenhagen, Theory Max-Planck-Institut fur Physik, Fohringer Ring 6, 80805 Munchen, 1 Apr (2014)

  12. Q.C. Huang, M. Li, JHEP 0306, 014 (2003)

    Article  ADS  Google Scholar 

  13. S. Tsujikawa, R. Maartens, R. Brandenberger, Phys. Lett. B 574, 141 (2003)

    Article  ADS  Google Scholar 

  14. Q.C. Huang, M. Li, JCAP 0311, 001 (2003)

    ADS  Google Scholar 

  15. Q.C. Huang, M. Li, Nucl. Phys. B 713, 219 (2005)

    Article  ADS  Google Scholar 

  16. F. Lucchin, S. Matarrese, M.D. Pollock, Phys. Lett. B 167(2), 163–168 (1986)

    Article  ADS  Google Scholar 

  17. O. Hrycyna, S. Marek, J. Cosmol. Astroparticle Phys. 04, 026 (2009)

    Article  ADS  Google Scholar 

  18. E. Ayón-Beato et al., Phys. Lett. B 495(1–2), 164–168 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. E.D. Stewart, D.H. Lyth, Phys. Lett. B 302, 171 (1993)

    Article  ADS  Google Scholar 

  20. T.P. Sotiriou, F. Valerio, Rev. Mod. Phys. 82(1), 451 (2010)

    Article  ADS  Google Scholar 

  21. S. Yong-Seon, H. Wayne, S. Ignacy, Phys. Rev. D 75(4), 044004 (2007)

    Article  ADS  Google Scholar 

  22. A.A. Starobinsky, JETP Lett. 86(3), 157–163 (2007)

    Article  ADS  Google Scholar 

  23. T. Harko et al., Phys. Rev. D 84(2), 024020 (2011)

    Article  ADS  Google Scholar 

  24. T. Faulkner et al., Phys. Rev. D 76(6), 063505 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. E. Elizalde, S. Nojiri, S.D. Odintsov, D. Saez-Gomez, Unifying inflation with dark energy in modified F(R) Horava-Lifshitz gravity. Eur. Phys. J. C 70(1), 351–361 (2010)

    Article  ADS  Google Scholar 

  26. E.A. Matzner, M.P. Ryan, E.T. Toton, Il Nuovo Cimento B (1971-1996) 14(2), 161–172 (1973)

  27. J. O’Hanlon, B.O.J. Tupper, Il Nuovo Cimento B (1971-1996) 7(2), 305–312 (1972)

  28. R. Acharya, P.A. Hogan, Lettere Al Nuovo Cimento (1971–1985) 6(16), 668–672 (1973)

  29. J. Wei-Jian, M. Yongge, Z. Tao, J. Cosmol. Astroparticle Phys. 2019(02), 010 (2019)

    Article  Google Scholar 

  30. B. Li, J.D. Barrow, D.F. Mota, Phys. Rev. D 76(4), 044027 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. C. Charmousis, Jean-Francois. Dufaux Class. Quant. Gr. 19(18), 4671 (2002)

    Article  ADS  Google Scholar 

  32. G. Cognola et al., Phys. Rev. D 73(8), 084007 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  33. K. Nozari, B. Fazlpour, J. Cosmol. Astropart. Phys. 2008(06), 032 (2008)

    Article  Google Scholar 

  34. S. Capozziello, M. De Laurentis, S.D. Odintsov, Eur. Phys. J. C 72(7), 2068 (2012)

    Article  ADS  Google Scholar 

  35. D. Langlois, Class. Quantum Gravity 11(2), 389 (1994)

    Article  ADS  Google Scholar 

  36. J. Demaret, V. Moncrief, Phys. Rev. D 21(10), 2785 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  37. T. Futamase, K. Maeda, Phys. Rev. D 39, 399 (1989)

    Article  ADS  Google Scholar 

  38. L. Amendola, M. Litterio, F. Occhionero, Int. J. Mod. Phys. A 5, 3861 (1990)

    Article  ADS  Google Scholar 

  39. L.F. Abbott, Nucl. Phys. B 185, 233 (1981)

    Article  ADS  Google Scholar 

  40. A.D. Linde, Phys. Lett. B 259, 38 (1991)

    Article  ADS  Google Scholar 

  41. C.T. Hill, D.S. Salopek, Ann. Phys. (NY) 213, 21 (1992)

    Article  ADS  Google Scholar 

  42. T.E. Clark et al., Phys. Rev. D 80(7), 075019 (2009)

    Article  ADS  Google Scholar 

  43. J. Garcia-Bellido, D.G. Figueroa, J. Rubio, Phys. Rev. D 79(6), 063531 (2009)

    Article  ADS  Google Scholar 

  44. F. Bezrukov, M. Shaposhnikov, Phys. Lett. B 659(3), 703–706 (2008)

    Article  ADS  Google Scholar 

  45. F. Bezrukov, Class. Quantum Gravity 30(21), 214001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  46. L.E. Ibáñez, I. Valenzuela, Phys. Lett. B 736, 226–230 (2014)

    Article  ADS  Google Scholar 

  47. A. Linde, Phys. Rev. D 49, 748 (1994)

    Article  ADS  Google Scholar 

  48. M.B. Voloshin, A.D. Dolgov, Sov. J. Nucl. Phys. 35, 120 (1982)

    Google Scholar 

  49. K. Freese, J.A. Frieman, A.V. Olinto, Phys. Rev. Lett. 65(26), 3233 (1990)

    Article  ADS  Google Scholar 

  50. J.A. Frieman et al., Phys. Rev. Lett. 75(11), 2077 (1995)

    Article  ADS  Google Scholar 

  51. D. Cadamuro, J. Redondo, J. Cosmol. Astropart. Phys. 2012(02), 032 (2012)

    Article  Google Scholar 

  52. A. Barroso et al., Phys. Lett. B 275(3–4), 264–272 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  53. G. Esposito, C. Stornaiolo, Int. J. Geom. Meth. Mod. Phys. 4, 349 (2007)

    Article  Google Scholar 

  54. M.V. Battisti, G. Montani, Phys. Lett. B 656, 96 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  55. M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001)

    Article  ADS  Google Scholar 

  56. R.J. Szabo, Phys. Rep. 378, 207 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  57. S. Minwalla, M. Van Raamsdonk, N. Seiberg, JHEP 02, 020 (2000)

    Article  ADS  Google Scholar 

  58. T. Martin et al., J. Phys. Commun. 3, 095006 (2019)

    Article  Google Scholar 

  59. M.A. De Andrade, C. Neves, J. Math. Phys. 59(1), 012105 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  60. L.R. Díaz Barrón, et al., AIP Conference Proceedings. Vol. 1256. No. 1. AIP (2010)

  61. G. Amelino-Camelia et al., Int. J. Mod. Phys. D 84, 084010 (2011)

    Google Scholar 

  62. J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002)

    Article  ADS  Google Scholar 

  63. G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002)

    Article  ADS  Google Scholar 

  64. J. Magueijo, L. Smolin, Phys. Rev. D 67, 044017 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  65. J. Kowalski-Glikman, Lect. Notes Phys. 669, 131 (2005)

    Article  ADS  Google Scholar 

  66. S. Ghosh, P. Pal, Phys. Rev. D 75, 105021 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  67. N.R. Bruno et al., Phys. Lett. B 522, 133 (2001)

    Article  ADS  Google Scholar 

  68. J. Martin, D.J. Schwarz, Phys. Rev. D 67, 083512 (2003)

    Article  ADS  Google Scholar 

  69. J.O. Gong, E.D. Stewart, Phys. Lett. B 510, 1 (2001)

    ADS  Google Scholar 

  70. R. Casadio, F. Finelli, M. Luzzi, G. Venturi, Phys. Rev. D 72, 103516 (2005)

    Article  ADS  Google Scholar 

  71. S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)

    MATH  Google Scholar 

  72. D. Baumann, TASI lectures on inflation.arXiv:0907.5424

  73. Planck collaboration, P.A.R. Ade, et al., Astron. Astrophys. 594, A13 (2015).arxiv:1502.01589

  74. Planck collaboration, P.A.R. Ade, et al., Astron. Astrophys. 594, A20 (2015).arxiv:1502.02114

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mansour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toghrai, T., Mansour, N., Daoudia, A. et al. Cosmology with non-minimal coupled gravity: dynamical study of the inflationary universe in the deformed phase space scenario. Eur. Phys. J. Plus 136, 291 (2021). https://doi.org/10.1140/epjp/s13360-021-01226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01226-0

Navigation