Skip to main content
Log in

Cumulative effects of magnetic field and spin–orbit interaction (SOI) on excited binding energy of magnetopolaron in RbCl semi-exponential quantum well

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we investigate the cumulative effects of magnetic field and spin–orbit interaction (SOI) on the magnetopolaron-excited binding energy in RbCl semi-exponential quantum well material using Lee Low Pines Unitary Transformation and Linear Combination operator method. It’s shown that, the excited binding energy is strongly modified under the superposition of SOI and magnetic field. The predominant contribution is coming from the magnetic field strength compared to SOI constant \(\alpha_{r}\). Although neither the magnetic field nor the SOI can be neglected during the investigation of the properties of magnetopolaron, the barrier height of semi-exponential quantum well \(U_{0}\), the number of phonon \(N\) and the spin–orbit interaction affect considerably the excited state binding energy. This analysis reveals the importance in nanotechnology of RbCl material due to the variability of their property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Donfack, F. Fotio, A. Fotue, L.C. Fai, Cumulative effects of temperature, magnetic field and Spin orbit Interaction (SOI) on the properties of magnetopolaron in RbCl quantum well. Chin. J. Phys. (2020)

  2. X.F. Bai, Y. Zhang, Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field. Chin. Phys. B 25(7), 077804 (2016)

    Article  ADS  Google Scholar 

  3. S. Avetisyan, T. Chakraborty, P. Pietiläinen, Magnetization of interacting electrons in anisotropic quantum dots with Rashba spin–orbit interaction. Phys. E 81, 334–338 (2016)

    Article  Google Scholar 

  4. B. Boyacioglu, A. Chatterjee, Dia-and paramagnetism and total susceptibility of GaAs quantum dots with Gaussian confinement. Phys. E 44(9), 1826–1831 (2012)

    Article  Google Scholar 

  5. K.L. Jahan, B. Boyacioglu, A. Chatterjee, Effect of confinement potential shape on the electronic, thermodynamic, magnetic and transport properties of a GaAs quantum dot at finite temperature. Sci. Rep. 9(1), 1–10 (2019)

    Article  Google Scholar 

  6. A. Gharaati, R. Khordad, Effects of magnetic field and spin-orbit interaction on energy levels in 1D quantum wire: analytical solution. Opt. Quant. Electron. 44(8–9), 425–436 (2012)

    Article  Google Scholar 

  7. J.D. Castano-Yepes, C.F. Ramirez-Gutierrez, H. Correa-Gallego, E.A. Gómez, A comparative study on heat capacity, magnetization and magnetic susceptibility for a GaAs quantum dot with asymmetric confinement. Phys. E 103, 464–470 (2018)

    Article  Google Scholar 

  8. D. Sánchez, L. Serra, Fano-Rashba effect in a quantum wire. Phys. Rev. B 74(15), 153313 (2006)

    Article  ADS  Google Scholar 

  9. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, V.S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001)

    Article  ADS  Google Scholar 

  10. S.A. Wolf, Spintronics, electronics for the next millenium? J. Supercond. 13(2), 195–199 (2000)

    Article  ADS  Google Scholar 

  11. I. Žutić, J. Fabian, S.D. Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76(2), 323 (2004)

    Article  ADS  Google Scholar 

  12. D. Loss, G. Burkard, D.P. DiVincenzo, Electron spins in quantum dots as quantum bits. J. Nanopart. Res. 2(4), 401–411 (2000)

    Article  ADS  Google Scholar 

  13. M.A. Eriksson, M. Friesen, S.N. Coppersmith, R. Joynt, L.J. Klein, K. Slinker, C. Tahan, P.M. Mooney, J.O. Chu, S.J. Koester, Spin-based quantum dot quantum computing in silicon. Quant. Inf. Process. 3(1), 133–146 (2004)

    Article  MATH  Google Scholar 

  14. D. Stepanenko, N.E. Bonesteel, Universal quantum computation through control of spin-orbit coupling. Phys. Rev. Lett. 93(14), 140501 (2004)

    Article  ADS  Google Scholar 

  15. R. Hanson, L.W. van Beveren, I.T. Vink, J.M. Elzerman, W.J. Naber, F.H. Koppens, L.P. Kouwenhoven, L.M. Vandersypen, Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates. Phys. Rev. Lett. 94(19), 196802 (2005)

    Article  ADS  Google Scholar 

  16. D.S. Kumar, S. Mukhopadhyay, A. Chatterjee, Effect of Rashba interaction on the energy levels of a GaAs quantum dot with parabolic confinement. In AIP Conference Proceedings (Vol. 1536, No. 1, pp. 211–212). American Institute of Physics. (2013, June)

  17. S.S. Li, K. Chang, J.B. Xia, K. Hirose, Spin-dependent transport through Cd 1–x Mn x Te diluted magnetic semiconductor quantum dots. Phys. Rev. B 68(24), 245306 (2003)

    Article  ADS  Google Scholar 

  18. D. Liang, X.P. Gao, Strong tuning of Rashba spin–orbit interaction in single InAs nanowires. Nano Lett. 12(6), 3263–3267 (2012)

    Article  ADS  Google Scholar 

  19. J. Nitta, T. Akazaki, H. Takayanagi, T. Enoki, Gate control of spin-orbit interaction in an inverted I n 0.53 G a 0.47 As/I n 0.52 A l 0.48 as heterostructure. Phys. Rev. Lett. 78(7), 1335 (1997)

    Article  ADS  Google Scholar 

  20. S. Nadj-Perge, V.S. Pribiag, J.W. Van den Berg, K. Zuo, S.R. Plissard, E.P. Bakkers, S.M. Frolov, L.P. Kouwenhoven, Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires. Phys. Rev. Lett. 108(16), 166801 (2012)

    Article  ADS  Google Scholar 

  21. H. Hassanabadi, H. Rahimov, S. Zarrinkamar, Analytical treatment of a three-electron-quantum dot under rashba spin-orbit interaction. Few-Body Syst. 52(1–2), 87–95 (2012)

    Article  ADS  Google Scholar 

  22. S.P. Shan, S.H. Chen, J.L. Xiao, Rashba effect on the bound Polaron in an asymmetric quantum dot. J. Low Temp. Phys. 176(1–2), 93–100 (2014)

    Article  ADS  Google Scholar 

  23. B.S. Kandemir, D. Akay, Tuning the pseudo-Zeeman splitting in graphene cones by magnetic field. J. Magn. Magn. Mater. 384, 101–105 (2015)

    Article  ADS  Google Scholar 

  24. B.S. Kandemir, A. Defne, Photoinduced dynamical band gap in graphene: the effects of electron–phonon and spin–orbit interaction. Phys. Status Solidi. 255(10), 1800163 (2018)

    Article  Google Scholar 

  25. B.S. Kandemir, D. Akay, The effect of electron-phonon coupling in spin–orbit-coupled graphene. Philos. Mag. 97(25), 2225–2235 (2017)

    Article  ADS  Google Scholar 

  26. J.-W. Yin et al., The rashba effect on the bound polaron in a parabolic quantum dot. J. Low Temp. Phys. 163(1–2), 53–59 (2011)

    Article  ADS  Google Scholar 

  27. Erasmo A. de Andrada e Silva, Brazilian Journal of Physics, vol. 26, no. 1, March, 1996

  28. G. Lommer et al., Phys. Rev. Lett. 60, 728 (1988)

    Article  ADS  Google Scholar 

  29. S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990)

    Article  ADS  Google Scholar 

  30. J. Nitta, F.E. Mejjer, H. Takayanagi, Appl. Phys. Lett. 75, 695 (1999)

    Article  ADS  Google Scholar 

  31. B 65,140403(3) (2002)

  32. T. Koga et al., Phys. Rev. Lett. 88, 126601 (2002)

    Article  ADS  Google Scholar 

  33. N. Tokuda, H. Kato, Strong-coupled polarons in a magnetic field. J. Phys. C Solid State Phys. 20(20), 3021 (1987)

    Article  ADS  Google Scholar 

  34. A. Ercelebi, The two-dimensional magneto-polaron in the strong-coupling regime. J. Phys. Condens. Matter 1(13), 2321 (1989)

    Article  ADS  Google Scholar 

  35. F.M. Peeters, J.M. Shi, J.T. Devreese, Magnetopolaron effect on shallow donors in bulk and in weakly and strongly coupled superlattices. Phys. Scr. 1994(T55), 57 (1994)

    Article  Google Scholar 

  36. A. Ercelebi, R.T. Senger, A variational study of the ground Landau level of the 2D Frohlich polaron in a magnetic field. J. Phys. Condens. Matter 7(50), 9989 (1995)

    Article  ADS  Google Scholar 

  37. S. Mou, K. Guo, B. Xiao, Studies on the third-harmonic generation coefficients in asymmetrical semi-exponential quantum wells. Superlattices Microstruct. 65, 309–318 (2014)

    Article  ADS  Google Scholar 

  38. X.Q. Wang, J.L. Xiao, Effects of temperature on the ground state energy of the strong coupling polaron in a RbCl asymmetrical semi-exponential quantum well. Int. J. Theor. Phys. 57(11), 3436–3442 (2018)

    Article  MATH  Google Scholar 

  39. M. Xinjun, X. Boyu, S. Yong, X. Jinglin, Effects of magnetic field on the polaron in an asymmetrical Gaussian confinement potential quantum well. J. Semicond. 36(10), 102004 (2015)

    Article  ADS  Google Scholar 

  40. A.J. Fotue, T.V. Diffo, E. Baloitcha, F.F. Mbognou, G.T. Tedondje, M.N. Hounkonnou, Spin–orbit interaction on the thermodynamics of three-dimensional impurity magnetopolaron under strong parabolic potential. Eur. Phys. J. Plus 135(6), 430 (2020)

    Article  Google Scholar 

  41. S. Gumber, M. Kumar, M. Gambhir, M. Mohan, P.K. Jha, Thermal and magnetic properties of cylindrical quantum dot with asymmetric confinement. Can. J. Phys. 93(11), 1264–1268 (2015)

    Article  ADS  Google Scholar 

  42. T.D. Lee, F.E. Low, D. Pines, The motion of slow electrons in a polar crystal. Phys. Rev. 90(2), 297 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. D. Najafi, B. Vaseghi, G. Rezaei, R. Khordad, Thermodynamics of mono-layer quantum wires with spin-orbit interaction. Eur. Phys. J. Plus 133(8), 302 (2018)

    Article  Google Scholar 

  44. Y.J. Chen, C.F. Cui, W.F. Liu, F.L. Shao, Influences of Rashba spin-orbit coupling on first excited state of magnetopolaron in parobolic quantum dot. Int. J. Theor. Phys. 59, 1829–1837 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. F.A. Jervé, T. Maurice, F.K. Gaétan, S.K. Christian, F.H. Bertrand, F.C. Lukong, Effect of temperature and electric field on life time and energy states of bound polaron in triangular quantum dot. Chin. J. Phys. 54(4), 483–488 (2016)

    Article  MathSciNet  Google Scholar 

  46. V.V. Kudryashov, Rashba spin-orbit interaction in quantum ring with confining potential of finite depth. arXiv preprint arXiv:1112.1276. (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Fotue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donfack, B., Fotio, F. & Fotue, A.J. Cumulative effects of magnetic field and spin–orbit interaction (SOI) on excited binding energy of magnetopolaron in RbCl semi-exponential quantum well. Eur. Phys. J. Plus 136, 241 (2021). https://doi.org/10.1140/epjp/s13360-021-01221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01221-5

Navigation