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Abstract Elementary interactions are formulated according to the principle of minimal inter-
action although paying special attention to symmetries. In fact, we aim at rewriting any field
theory on the framework of Lie groups, so that, any basic and fundamental physical theory
can be quantized on the grounds of a group approach to quantization. In this way, connection
theory, although here presented in detail, can be replaced by “jet-gauge groups” and “jet-
diffeomorphism groups.” In other words, objects like vector potentials or vierbeins can be
given the character of group parameters in extended gauge groups or diffeomorphism groups.
As a natural consequence of vector potentials in electroweak interactions being group vari-
ables, a typically experimental parameter like the Weinberg angle 9y is algebraically fixed.
But more general remarkable examples of success of the present framework could be the
possibility of properly quantizing massive Yang—Mills theories, on the basis of a generalized
Non-Abelian Stueckelberg formalism where gauge symmetry is preserved, in contrast to the
canonical quantization approach, which only provides either renormalizability or unitarity,
but not both. It proves also remarkable the actual fixing of the Einstein Lagrangian in the
vacuum by generalized symmetry requirements, in contrast to the standard gauge (diffeo-
morphism) symmetry, which only fixes the arguments of the possible Lagrangians.
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1 The idea of gauge principle

The idea of formulating the basic interactions among elementary particles in terms of vector
potentials, generalizing electromagnetism, is traced back to the pioneers papers by Yang and
Mills [1], Utiyama [2] and Kibble [3].

Starting from a free matter Lagrangian, let us think for instance of the Lagrangian corre-
sponding to the free Dirac field,

L=iyy"duy —mipp,
which is invariant under the rigid (or global) group U (1), that is, under the transformation

U(x) — ¥'(x)=e Y (x), x € M the space-time,
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we require £ to be minimally modified, to £ so as to be invariant under the corresponding
gauge (or local) transformation

v Y =Wy

Note that the term in the original Lagrangian vy # 0, ¥, due to the derivative acting on the
local parameter «(x), transforms as

Yy ey — Yyt —ivy ey

so that we should require an extra field that includes a derivative of the local coefficient in
its transformation law under U (1), that is

1
Au(x) — A;L(x)—i—gaua(x)
and replacing

9, with D,y = (B, +ieA,)y.

In the same way, for non-Abelian symmetries, associated with a (let us say) compact group
G, we generalize the discussion above:

v o= Y =Ty =U@y
with Lie algebra generators satisfying
(T, Tp) = CS, T,

and modifying the usual derivative with the covariant derivative
1
(a) _ (a) ab () 1o pa
AM AI/« +C¢ ¢bA;L B g a#¢

where by "9),¢“ we mean something like Glga)(qb)(?uqﬁb, associated with the canonical (left
or right) 1-form on the Lie group G.

2 Basics on differential geometry

This first section is devoted to a presentation from scratch of those mathematical ingredients
that are required to a sound understanding of a general setting of basic physical interactions
in Nature. Here, we follow rather standard textbooks on Differential Geometry [4—10] and
Lie Groups [11-13].

2.1 Differentiable manifolds

Let S be a set. A local chart on S is a pair (U, ¢)/

ucs
¢ 1is abijection U <> V, an open subset of some vector space F .

An atlas is a family A of local charts (U;, ¢; i € I)

a) S=U{U;:iel}
b) YU, ¢i), (Uj, (pj) in Awith U; NU; # @, then ¢; (U,~ N Uj) is an open set C F and
ji=gjo (plfl |wl-(UiﬁUj) is a diffeomorfism (C*°) (compatibility, Fig. 1).
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Fig. 1 Local chart compatibility

Two atlases are equivalent, Ay ~ A3, if A U A3 is an atlas.

A differentiable structure on S, S, is an equivalence class of atlases on S.

A differentiable manifold M is a pair (S,S) = M. If ¢;(U;) C R" Vi € I, we say that
M has dimension n.

Topology on M : A topology on M can be defined by means of a family of open sets:

A C M is open if
VYa € A, there exists (U, ¢) local chart fa e U, U C A.

Differentiable map: Let f be a mapping M — N where M and N are differentiable mani-
folds. We say that f is differentiable if (Fig. 2):

Vm € M, Y(V, ) local charton M, f(m) € V

there exists (U, ¢), local charton M, m e U, f(U) CV /
fov =V¥ofo ¢~ ! is differentiable as a map from R" to R"
fow = local representative of f

Local coordinates: Given a local chart on M and a coordinate system on R”, {xi Li=1,..n,
the set of composition functions on M, {u' = x' o ¢} constitutes a local coordinate system
on M (Fig. 3).

Simplest non-trivial example: Let as mention that a non-trivial differentiable manifold (with
non-trivial topology) might have relevant consequences in solving a given physical problem.
We usually solve a certain equation in local coordinates and we have to be aware that not all
solutions obtained locally must be kept as true solutions. In fact, we must restrict ourselves to
those solutions that are globally defined on the full manifold. This can be easily exemplified
in the simplest situation of the S! (radius 1) manifold in which we analyze which analytic
functions in a local chart can be kept, as such, when considering the compatibility condition
with the other chart.
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Fig. 2 Local representation of f
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Fig. 3 Local coordinates

The two chosen charts correspond to the stereographic projection from both north and
south poles. Coordinates from the south pole corresponding to the point ¢ € S' will be
noted x, whereas those obtained from the same point through the north projection will be y.
Looking at Fig. 4, the point ¢ is characterized by the angle ¢, ¢ = ¢'?, or by the projection
angles ¥ and 6 corresponding to the two coordinate systems. The relationship among the

three angles is:
1 — sing 1 + sing
tg = | ——— , gy = | —. (1)
1 + sing 1 — sing

4—x2
4+x2°

Writing x, for instance, in terms of ¢, that is, sing =
between both local coordinates as:

we can express the relation
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R

Fig. 4 Global analyticity

=-. )

Clearly, polynomial functions are not, in general, allowed, since positive powers in y lead to
negative ones in x. However, we can find rational functions which are analytic as seen from
both local charts, for instance
4x 4y
R <>
4+ x? 44 y2

(€)

and, more generally, the Chebyshev Polynomials 7}, (ﬁ), and 2" -class Chebyshev Poly-

C 4y . . . . .
nomials ﬁ:;’; Un(ﬁ), which constitute a basis for the analytical functions that are well

defined on the manifold ' (Fig. 4).
Tangent Space

Tangent curves: A (differentiable) curve ¢ at m € M is a (differentiable) application from
I C R to M such that ¢(0) = m (Fig. 5). We say that two curves ¢, ¢ atm € U C M are
equivalent, c; ~ ¢, if ¢ o ¢] and ¢ o ¢, are tangent at ¢ (m) in the sense of R", i.e.,

D(goc)(0)-1=D(poc)(0)-1. “

This equivalence condition is independent of the local chart (U, ¢).
We define the Tangent Space at m € M as the space of equivalence classes of tangent
curves at m, that is,

Ty (M) = {[c]n/c is acurve at m}
and the (total) Tangent Space to M as
T(M) =UpemTn(M).

Note that there is a natural projection: 7' (M) M , lclm — m (Fig. 5).
The triplet (T' (M), =, M) constitutes an example of vector bundle .

Also note that in R" there is a natural representative for each [c],; that is to say, [¢ o ]y m)
has a preferred member:

\ o

Cem =¢(m) +1e, e=—(poc)i=0=D(poc)(0) -1=uvy. (&)

o

t

@ Springer



Eur. Phys. J. Plus (2021) 136:304 Page 70f 85 304

C2

-
N

Fig. 5 Tangent space

This allows us to define a vector space structure on 7, (M):

Alcln =o' o crem]

(el +[¢'],, = [¢7" 0 ceven] - ©

Tangent map: Given a differentiable map f : M —> N, we define the corresponding tangent
map as follows (Fig. 6):

Tf=fT:TM) — T(N)/

[clm — [f Oc]f(m) . @)

Composition Theorem: Given the applications f, g, 4, among manifolds, M EA N 5
P, M —h> M, we have:

(@) T(go f)=TgoTf
b) h: M - M identity = Th: T(M) — T(N) identity
(c¢) f diffeomorphism = Tf bijection, T(f~YH=(Tf)-1.

Locally the following expressions are correct:

ST o) = (f(m), D(f)(m) - vy)
df : (m, vy) — D(f)(m) - vy (2md component of Vi)
TW) ~ UxT,(M).
Coordinates at T(U) C T(M):

{ut, €7} = {xf o, €/ o de}
{x', €/} are coordinates at ¢(U) x R".
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Fig. 6 Local representative of /7

Here, {€/} is a linear coordinate system in R": given a basis {e;} in R” as a vector space,
an arbitrary vector v is written as v = v/ ¢}, and the dual basis provides the linear functions
e/ (v) =v/.

Derivations atm € M, D,,(M): Letus consider the algebra 7 (U) of differentiable functions
defined on the open subset of a local chart (U, ¢) (in case we desire to consider a ring
structure, we must be restricted to the germs of differentiable functions; that is to say, the set
of equivalence classes of functions that coincide in some open subset of U).

A derivation at m is a linear map:

D, : FWU) — R
f o= Du(f) /

a) Dy (fg) = Dn(f)g(m) + f(m)Dn(g)
b) D, (f) =0 if f isaconstant.

(®)

Dy (M) is a vector space isomorphic to 73, (M). In fact, the correspondence is as follows:

1

D, — Dmui = éji — cem=@m)+tE ¢ ocem =I[cln.

A basison D,,,(M) ~ T,,,(M), {(%)}, is constructed in the form:

0 _
(a ,.) f = D(fop Hipm)- e, ©)
u m
so that, a tangent vector is written as:
Xm =D, =X (i) (10)
m = PUm = A4y i m -

Vector fields on M, X (M): They are mappings associating a tangent vector on the tangent
space to any point on the manifold, that is:

X M — TM) | moX=1y.
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Analogously, we define

Derivations on M, D(M): They are R-linear maps
D : FM) — FM) /

D(fg) = fD(g) +¢D(f)
D(f) =0 if f isaconstant.

X (M) is isomorphic to D(M). The proof makes use of the isomorphism 7,,(M) ~ D(M)
running on m:

U [Tin (M) ~ D(M)].

Algebra of Derivations D(M) ~ X (M): Given two derivations (or vector fields, although
thinking of them as derivations), the product

(D1, D2) v+ [Dy, D2] /
[D1, D2lf = Di1Dyf — DD f,  f € F(M)
is internal (although none of the summands, separately, are a derivation), bilinear (R-linear)

and anti-symmetric, and it is named Lie bracket, mainly when acting on X' (M). In local
coordinates, the Lie bracket is written as:

( LY/ ,.axf> ]
X, Y]=(X—-Y —. (1

ou’ ut ) dul
It satisfies the following four properties characterizing a Lie Algebra:

[X.Y+Z]=[X, Y]+[X, Z]
[X, fY]= XY+ fIX, Y] feFM)

X, Y] = [V, X] (12)
[X, [Y, Z]]+ Y, [Z, X]]+[Z, [X, Y]] =0 (Jacobi identity)
Given a basis {X(;)}, we have:
X&), X(»] = CiXa » (13)

where C lk are constants called structure constants.
The tangent map is a Lie algebra homomorphism: That is,

fTotXi Xalo f™ = [fToXio ™, fToXz0 f7']

7
T (M) —> T (N)

Xi2 M m av 31 Y12, Y=fToXof!
M S

Here, we have assumed that f has an inverse, but even if it is not invertible, ¥ can be defined
sothat Y o f = fT o X and still named the transformed vector field of X. In this case, it also
holds that

[Y1, Y2lo f = fT o[X1, Xa].

Example: Lie algebra of rotations in R>

9 k
— = [ Jp] =njJw - (14)

‘s
iy = mijx! o
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Example: Lie algebra of the Galilei group in R? x R

3
H=g [H. Pi)] =0. [H. J;)] =0, [H. K] = P
3
Py = 7 [Piys ] = nifdwys [Py K] =0
=
k.j_d
Jay =m;;x 5% [Pa), Pp] =0
k k
Ko =177 [ Jp] =nifdws [Jors Kip] = mif Kao -
Example: Lie algebra of the Poincaré group in R3 x R: (x; = —x’, xo9 = x% = ¢1)
(we just write the differences with the Galilei group)
d 0 0 d
Poy =375 Koy =x'o5 +xi 5 [Pi). Kp] =3ijPo.
Example: The diffeomorphism algebra of R
d d d d
Li=—, Lo=x—, Li=x*—, . L,=x"T'—
ax ax ax ax
=
a d d
[Ly, L] = [x"T'—, 2™t — | = x"" m + Dx™ —
ox ax ax

9 a
_xm+1 (n + 1)xn$ — (m _ n)xll+m+1 a = (m — n)Ln+m .

Example: The diffeomorphism algebra of S
The difference is just the way we wright the generators,

ad
{GC / |§|=15 Ln=§n+1%, Vn e Z.

Tensor fields on M:

(15)

(16)

a7

(18)

(19)

Associated with the vector space 7,,,(M) on any m € M, it is possible to construct the
entire tensor space T, (M) = T, (T,,(M)), that is, the space of the tensor of {} }-type (r-times

contravariant, s-times covariant):

T (M)} = T (M) @ T (M)® %2 T (M) ® T (M) ® Ty (M)® = Ty (M) .
Tensor fields are then defined in an analogous manner to the vector fields:

M — T(M) =U,T,(M) / T (M)
wyot] =1y | om
M

(20)

In particular, we shall consider very frequently A(M)? = {tg} and A(M) = ®,A(M)?.

Locally, A = Ajyjy..i,du’t Adu> A..Adu'? (aAb=a®b—b®a).

2.2 Differential calculus

Interior product iy : Given a vector field on M, X € X (M), the interior product by X is

defined as the following endomorphism of A(M):
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ix : AM)—> AM) /
aeAM)P—> (ixa) € A(M)P™!

(ix) (X1, Xpo1) = (X, X1, o0, Xpo1) . 1)
Properties:
ixyy =ix +iy F (M) — linear
irx = fix

If hM — N, h*(iya) =ix(h*a)|=

in particular, 4 may be the restriction to an open set, 7 = |7, = the interior product commutes
with the restriction to U, that is, ix is a local operator; note that h*«(X) = a(hTX).
ixf=0

ixdf =df(X)=X.f
fact, locally, any differential form can be written as a product of functions, «;,;, .

iy is characterized by This is a consequence of iy being local. In

.ip» and

differentials of functions, du't.

Exterior Differential D : Let « € A(M)? with p > 1. We define the exterior differential
Da € A(M)P*! as:

p+1
Da: (X1, Xpp1) — Y ()7 Xio (X, oo X oo X 1)
i=1

Y e (X X)Xy X X X)) (22)
i<j

For p = 1, the expression (22) reduces to

Da(X,Y)=Xa(Y)—Ya(X)—a([X,Y] . (23)
In particular, if o« =df , f € AM)? = F(M),

Ddf (X,Y) = Xdf (Y) —Ydf (X) —df ([X,Y])
=XYf—YXf—[X,Y]f=0.

Ifh : M — N, h*oD = Doh*=D isalocal operator.

Df =df
Df)=0, YfeFM) = D*=0.
From now on, D will be named d since it extends the ordinary differential.

D is characterized by

Note: De Rham Cohomology. In the vector space (Abelian group) A(M), a quotient space
can be established:

Closed forms ZP(M): « such thatda =0, o € A(M)P

Exact forms B (M): a such thata = dB B € A(M)P~.

Obviously, Exact = Closed but not the other way round. The quotient

ZP(M)
BP (M)

HP(M) =

24)

is called the p'"-cohomology group of M.

Lie Derivative Ly : Combining the interior product and the exterior differential, we define
the Lie derivative by the vector field X as the following endomorphism in A (M) preserving
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the order of the differential forms:
Lx =ixd+dix. (25)
This operator is local so that

Lxf=X.f

Ly is characterized by Lydf = d(X.f)
X = . .

Exercise: Prove thatif« € AP (M), p>1,
(Lxa) (Y1, Y2, ... Yp) = X{a (Y1, ... ¥p)} — Zcx (Y1, .. [X.Yi],....Yp) . (26)
i
In particular, if p = 1:
(Lxa)(Y)=Xa(Y)—a([X, Y] 27

(A more general definition of L, nextly).

2.3 Integration of vector fields

Let X € X(M) be a vector field. Then, there exists an openset V C R x M > {0} x M and
a differentiable mapping ® /

d:V — M
(t,u) — @i(u) satisfying:
(@ t +— @/(u) isanintegral curve of X, thatis,
W0 = X (@) (%2 = X))
one parameter group | (p) wou) =u
(c) if (t',u), (¢'+t,u) and (¢, (u)) €V
Grrr (W) = @i (@ (u)).

@ (u) = ®(t, u) is the one-parameter group generated by X. We usually call ¢'* = ¢, and
say that X is the infinitesimal generator of ®.
Formally, %etxhzo = X.

Exercise:

pfa —a

(28)

an = hm,ﬁ()

TYp —Y
LyY = hmHo% —[X,Y]. (29)

Proposition (Frobenius Lemma): Given X € X'(M), written in a coordinate system {u'}
around m € U C R" / X(m) # 0, there exist new coordinates {«’!, u’>, ...u""} such that
X=X o _ 9 (30)
I LT V2
Before going to a general proof, let us give an instructive simple example.
Example: M = R x R3 x R3, coordinates {t, x*, p’}, vector field
0 ]

X=—+p —.
8t+p8x’

3D
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t=rt
Integral curves | x = K + £ {K', P/} constants of motion.
pi — Pi
We perform the change of variables in R x R3 x R3:
T=1
t.x',p)) <= @K P) |Ki=x-L; =
Pi — pi
9 _ 0 ot 9 dK! 9 9P _ 9 _ P b
% —ator T aK! a1 + api 3t — 9t m JKi
- _
o = e = 3K =
i _ 90 _ T 0
api T 9PT T maKi
3 ;0 3 P P D 3
X=_—+ "

0t TP od Tt m oK moKl ot
Proof We shall proceed to a constructive proof in Physical terms (Mechanics a la Cartan)
leaving a more formal proof to the seasoned reader.
In Mechanical terms, Frobenius Lemma would say that a vector field (associated with a
dynamical system)

0 i 0 i 0 0
X=—+4+X"—+X"— goesto X = — 32
o TN g T gy 8 Py (32)
under the change of variables, constituting the
t<— T
Hamilton—Jacobi  Transformation xl «— K! (33)
P pi

for the Principal Hamilton function (in the language of canonical transformations in Analyti-

cal Mechanics [14, 15]). After this transformation, the new variables { K ‘L P’ } behave as con-
stant Canonical Coordinates and Momenta. In fact: The vector field X = % + X~ 337 + X7 8"—”
(we have omitted the index i) provides the uniparametric group ¢ in terms of which we

construct, explicitly, the change of variables

x=¢"(K,P,7) & = X*(x, p,1)
p=¢P(K,P, 1) ‘Lifo = XP(x, p, 1) (34)
t=g00(K,P,‘L')=T ‘%:1,

where we have assumed that the possible component of X in g—t, X©, does not vanish in those

local coordinates and the entire vector field has been divided by X°. Applying the tangent
coordinate transformation we arrive at:

dx 8de+8de+3xdr ox O+3x 0+8 1= x*

—_— = —— 4t —— 4+ —— = — X — X — x 1=

dt K dt 0P dr Jat dt K P at

d dp dK opdP odpd d ad ad

l=7p7+7pi+7pl=7pxo+7pxo+7pxl=xp

dr 0K dt JdP dt Jat dt 0K P T
ad at d dx 0 ap 0 d d d

= —=—— 4+ —— 4+ —— = —+ X' — 4+ XP— 35

at 8r8t+8t8x+3rap 8t+ 8x+ ap (33)
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3 Lie groups

A group is a composition law on a set G /
axbeG
ax(b*xc)=(axb)*c
axe=exa=a
VaecGIa'eG | axa'=a'xa=e.
A Lie Group is a par (G, S) where G is a group (with the composition law %) and S is a
differentiable structure on G, respect to which the mappings
¥:GxG—->G and —-1:G—->G
(a,b) —> a*xb ar—a”!
are differentiable.
Equivalently, the maps Ly = *|(e}xG, Rg = *|Gx{g) are required to be differentiable.
The transformations Lg a +— g*a; Rga +> a* g are called
left-translation; right-translation and do commute:

LyRy = RgLy !

In addition, Lg—l = Lgl ; Rg—l = Rg_1 .

The tangent space at the identity, 7, (G), is called the Lie Algebra.

G is an ordinary manifold, so that we may define any object as in M. In particular, vector
fields X : G — T(G).

X € X(G) is left-invariant if L;X = X, thatis

LioXoLy1=X. (36)
In the same way, X € X (G) is right-invariant if R;X = X, that is,
T -1 _
RgoXoRg =X. 37

The set of left-invariant vector fields will be named XL (M)
» ” ”right-invariant” 7 7 7 xXR(M).

Proposition X-R(G) is afinite-dimensional subalgebra of X (G) isomorphicto T,(G) = G,
so that

X6y~ g~ aR(G)
Proof Given an elementin 7,(G), X., we construct X on G in the form X (g) = L;Xe. This
vector field, so built, is in XL (G). In fact,
LiX(g) =Ll oXoL'(9) =LIX(@a'9) =Ll o L1, X.
=LloLl  oL{X,=LlX,=X(g) (38)

Lie algebra structure: X LR where subalgebras of X'(G) and isomorphic to G = T,(G). Let

us denote x this isomorphism. We can translate the Lie bracket from X LR(G)to G:
vz.z' eg, 17, Z1=x""1Zs. Zs]. (39)

where Z(L;’R is the translated of Z by Lg, Ry, respectively.
This way, we have [Z’, Z]é’R = [Z’GL'R, Zé’R]. Given a basis of G, {Z(;)},

[Zay, Zyl = CiZay - (40)
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Note that in terms of vector fields, from L to R there is a global minus sign on C}k:

L oL 1_ 7R SR 1_ ~k
[ZG): 2\ = —124). 251 = CiZaw -

In practice,

ZE(@) =LTZ=D(Ly)(e)-Z

2E(9) = RTZ = D(R)(e) - Z,

(41)

where L is the mapping

L, : G— G,
a +— gxa’

here a plays the role of x in a function f(x) and g that of f. Similar comment holds for

L < R. o

XL(g/) = %Lg:e%,r
8 7

XR(g) = Fly=ety

g). O

If we write g’ = ¢’ x g, (after writing X~ (g’) we can rename g’ by

3.1 Some examples

Example I G = SU(Q2)

The group SU(2) is a double covering of the group SO (3) of rotations in the space R>.
We shall parameterize the group by the components of a vector in the direction of the rotation
axis and a module related to the rotation angle; that is, g = {€/}, |e| = 25in%. A rotation
in R3 with this parameterization is written as:

2
Ry = (1- < Vsi4 J1— i by Leic, 42)
J 2 J 4 nAJk 2 J

From the product of two rotations R(e)R(e ) = R(e”), we deduce the composition law:

’2 2 1
e”=‘/1—€4 e—i—‘/l—%e’—ie’Ae. (43)

Now we proceed to compute the left and right generators:

2
L_ | [yt k| d

R € i x|®
Xo = |y =3 % 3 | 5 @

Example II G = Galilei Group

Galilei transformations [16,17] relate inertial reference systems, that is, reference sys-
tems where the Newton Laws hold. We shall write the transformations in R x R> x R3,
parameterized by the ten parameters {B, A, V, R(e )} corresponding to a translation in time,

@ Springer



304 Page 16 of 85 Eur. Phys. J. Plus (2021) 136:304

translation in space, change in velocity and rotation of the axis. By composing two of them,
a composition law is obtained from which we compute left and right generators:

t'=t+B B"=B'+B
x'=Rx+Vi+A =S [A"=A'+RA+V'B (46)
v =R(e)v+V V"=V’ +RYV
R’"=R'R
L _ 0 9 R _ 0
Xg=35+tV- 5 Xp =35
L _ pliey_d_ R _ 9 _
XAi_Rl' (G)BAJ XAi_BAi
L _ pl 3 R _ @ 3
Xyi =R (g7 Xy =54t 57
L _ 2¢j 1) k| _d R _ 2¢j 1. J k|0 kpj_d kysj_0
Xg= [Vl_ T8~ 2Mu€ ]@ X —[ 1= 8 + gmye€ }w"ﬁ’hjﬂ’mﬁﬂj_v"m

(47)

3.2 The adjoint representation: Killing form
An action of G on a manifold M is a Lie group homomorphism from G to the group of
diffeomorphisms of M:

® : G — GDWM),

such that the mapping ® : GxM — M
(g.m) > Dg(m)=d(g,m) is C.
The tangent mapping ®7|, : T.(G) — T;(GD(M))

provides a Lie algebra homomorphism: ¢ —  GD(M) = X (M)
Z — ZM .
As a particular case, M can be G, G or G*
With a given g € G, we associate the (nonlinear, in general) mapping on G,

adg a — gxa *g_l = LgRy-1a=Ry-1L,a.
Now, we take the tangent of ade at e:
(adg); Xe =Ly Ryt Xe =R Ly X,.
It defines an action of G on G named Adjoint Representation of G:

Ad : G — GD(G)

g B (adg)eT. “48)

The tangent of Ad at the identity g = e is called Adjoint Representation of G and noted ad.
ad is a Lie algebra homomorphism that turns out to be

ad(X)- = [X,-] (adX)(Y) =[X, Y]). (49)

The Killing form is defined as:

k : GgGxG — R (50)
(X,Y) +— Tr(ad(X)ad(Y)) .
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It is bilinear, symmetric and satisfies:

k(X, Y], Z)=k(X, [Y, Z]), (5D
which means, somehow, that Ad is unitary with respect to the scalar product k (ad is Hermi-
tian). In coordinates, k;; = Cl(‘m ;"k

To be precise, & is a scalar product only when |k| = detk # 0, which happens iff G is semi-
simple, that is, it contains no Abelian invariant subgroup. If |k| = —1, G is also compact.
Invariant Forms: They are dual to left- and right-invariant vector fields. If {X (LiSR} is a basis
of XL-R — (9MOL-R} will be the dual basis, that is, 9(i>L(X(I})) = 8; They are explicitly
calculated as:

0D (g) = D(Ly)()*0", 0D =du'(e,-). (52)
Invariance properties:
(Ly)*0L = oL (R)*OL = 0L - Ad(a™ 1)
(Ry)*OR = 9R (L)*0R = 0R . Ad(a)
L L L (53)
LxR9 :0 LxLQ :9 ad(—X)
Lyt6R =0 LyrOR =0R . ad.

The set of invariant forms are codified by a single 1-form, that is, the
Canonicall-form: 018 =9DLRo 7, or 9LR = LR, Zé(lR)
Note that 7R is a G-valued 1-form, the )XR being ordinary R-valued 1-forms.
Note also that QL’R(Zé'R) =7~ Zé’R, that is to say,

6% R is the G-valued 1-form that is the identity on X%-R(G).

Exercise: Compute k;; and 0Lk for G = SU(2) and realize that 6L-R (X (Lj’)R) = 8; and
that

k,’j = —55./'.
3.3 Central extensions of Lie groups

We say that G is an extension of the Lie group G by H if H is a normal subgroup (that is,
invariant under conjugation: ghg~!) and

G/H=G.

Note that G is not necessarily subgroup of G.

G is a central extension of G by H, if H is Abelian and is in the center of G (that is, the
elements in H commute with all the elements in G). Very special situation appears when
H=U() [18].

Central Extensions of G by U (1): In that case, the group law for G can be written as follows:

" =g'g o geG
(" =CtAg ) =L e U

where the local exponent &(g’, g) is named 2-cocycle of G valued on U (1). The properties
which establish the 2-cocycle definition can be derived from the condition of the expression

(54
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above being a group law for G:

£(g". ¢ +E("g . 9) =¢(". 89+ 2 (55)
E(e,g) =0=E&(g,e).

Coboundaries: A cocycle &, satisfying

Econ(g'.8) = (6m(g'. 8) = n(g's) — n(g) —n(g) (56)

is called coboundary. Coboundaries define trivial extensions. In fact, a change of variables

E:GxG — R/

§=g §'=g8'g
=
t=ec V=0t

destroys the central extension turning G into G x U(1). The function 7 is the generating
function of the coboundary.

The name cocycle comes from the fact that the set of central extensions of G by U(1)
are parameterized by the 2"¢-cohomology group of G with values on U (1) (according to
Bargmann):

cocycles

Z=
2 _ 72/p2
H(GUM) =27/B B = coboundaries
that is to say, cocycles that are not a coboundary.

“Pseudo-cohomology”: However, there are coboundaries which are generated by a linear
function on G and they do modify the structure constants of the Lie algebra, as if they were

“true” cocycles [19,20]. This subset of coboundaries (in fact a subgroup of B?) defines a
(true) cohomology group H 2(Ge, U(D)) of a contracted group G¢ of G.

The typical situation could be that of a family of generating functions 1 on G that go badly
under a certain lie group contraction, that is,  — oo in a contraction limit, but &.,, = §n
has a well-defined limit.

Paradigmatic Example: The Poincaré group with n = mex®. G¢ is then the Galilei group
and &1 a non-coboundary cocycle for ¢ — oo.

4 Principal bundles

In this subsection, we shall follow the presentation of principal bundles given by Koszul [21]
(see also [9]).

A principal bundle is a differentiable manifold P on which a Lie group G acts from the
right, along with a differentiable mapping p from P onto a differentiable manifold M such
that:

Vm € M, thereexists U > m and adiffeomorphism y satisfying:

y :UxG — p‘l(U)
poy(m,s)=m (57)
y(m,st) =ym,s)t, s,teCG.

The application p is called projection, M base, G structure group, p~! fiber over m (Figs.
7, 8).
Properties:
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Py G
~ o )
| v L
— |
_m U M
Fig. 7 Principal-bundle local chart
P G
P(&s) =p(S)
p©)

Fig. 8 Local mappings o and p

(a) Each fiber is stable under G, G acts without fixed points on P, that is, £s = & for some
EeP = s=e

(b) G acts transitively on the fiber

(¢c) Vmgp € M thereexists U >mgando : U —> P / poo(m)=m, Yme U

(d) Vmg € M, there exits U > mg and p : p_1 U)—>G | pEs)y=p&)s, V&
p~l(U) ,s€G.

m

Exercise: Prove (a)—(b)

Example (a) Trivialbundle: P =M x G, p=m (projection over the first factor)

(b) G — G/H : G being a Lie group and H a closed subgroup

(c) Reference Bundle: Let M be a manifold, 7, (M) the tangent space at m € M, Py,
{basis in Ty, (M)}. We define P = U,,epmr P

In all cases, P/G = M.

Homomorphism between principal bundles: A homomorphism H between two principal
bundles P, P’ with the same structure group G is a (differentiable) mapping

H : P — P’/ HEs)=H®E)s. (58)
It is clear that H takes fibers into fibers definingh : M — M':
H /
P — P
Ip } pr (commutative diagram)

M h= projection of H
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Proposition [fh is a diffeomorphism, H is an isomorphism.

Conditions for triviality: We say that P —> M is trivial if P is isomorphic to M x G.

Proposition The following conditions are equivalent

(1) P istrivial
(2) There exists a differentiable (global) section o of P over M
(3) There exists a differentiable map p : P — G p(&s) = p(&)s.

Proof left as an Exercise

Transition functions: Reconstruction Theorem

Let P & Mbea principal bundle with structure group G and {Uy} an open covering of
M, with the corresponding

Vo : Uy xG —> p‘l(Ua) (local chart)

e : p MUy — G (those satisfying pq (£5) = p(&)s) (59)

If £ € p~1(Uy N Up), we have

PaEPpENT = peE)ss T opE) ' = paE)ppE) ! = gap(E) = pu(E)pp(E) !

(60)

do not depend on the particular element £ taken on p~!(p(&)), that is, they define
gup  UsNUp — G, (61)
the transition functions on P % M relative to the covering {Uy} of M. O

Proposition The transition functions satisfy

8ay (m) = gotﬁ(m)gﬂy(m)
Gaa(m) =e Vm e U, NUgNU, , (62)

gaﬂ(m) = gﬂa(m)il

properties that characterize the so-called 1-cocycle on {U,} valued on G.

The name transition functions comes from the fact that they address the change between
local charts: in p~!(Ug N Ug) we have

oq(m) = yu(m, e)

= = =
ou(m)pa(§) = & = op(m)pp(§) £ = y,(m. py ()
0o (m) = og(m) pp(&)pu ()~ = 05(m)gap(m) (63)
as well as
yﬂ_l)/o, (m,s) = (m, gga(m)s) (the change of local charts) .
Local expression of a homomorphism: Given H : P — P’ and open coverings

{(Ug}, {Uyyof M, M’',form € U, ﬂh_l(Uﬁ/), we have:

)/f;l o Hoyy(m,s) = (h(m), pg (H(0a(m)s))) = (h(m), pg (H (0(m))) 5)
= (h(m), pgr (H(00(m))) 5) .
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JH(®)
H L
G
G Y,
o p(H(E)) Y
S X B
X
(h(m).h (m)s)
m M h(m) M
Fig. 9 Local expression of H
Denoting hgo (m) = ppr (H (04 (m))), we have:
yﬂ—,l o Hoyu(m,s) = (h(m), hgq(m)s), (64)

to be compared with f(pTw (x,e) = (f(p]/, x), Do fo (p_l)(go(m)) . e) (Fig. 9).
The functions hgy : Uy N hl (Up) — G satisty:

hgr(m) = hgn, (m)gya(m) Ym e Uy NU, Nh™ ' (Ug)

hgra(m) = gy (h(m))hyrg(m) Vm e Uy Nh™ (U, NU). (65)
The pair (h, {hg}) defines H globally on P.
Remark 1If H is an isomorphism of P such that # is the identity on M, the expressions above
reduce to:

hyrq(m) = hyg(m)gpe(m) m € Uy NUg N Uy

66
hia () = gy (M)l () m € Uy N Uy 0 Uq, (66)

which express the relationship between the transition functions corresponding to two iso-
morphic principal bundles, ({Uy}, gup) and ({U,/}, gyrs7).

As a Corollary, the transition functions gy and g; s corresponding to two isomorphic
bundles, subordinated to the same covering {U,}, are related by a family of functions {hy :
U, — G} such that:

8pa (MYha(m) = hpg(m)gpa(m) . (67)

In fact: it suffices to define hy = hgg.
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We come from motivating the following cohomological characterization of Principal Bundles
on M, that is, the H' (M, {Uy}; G}:

Non-equivalent principal bundles on M, with structure group G, are characterized by
1-cocycles gqp, that is, satisfying:

(38)apy (M) = gap (M)gﬁy(M)g;,,l (m)=eecG (63)
which are not coboundaries, that is,
8ap(m) # (8h)op(m) = ho(m)gep(m)hg (m)*1 for some family {h4}.

In the limit of refinement of {U,}, with a minimum of elements and minimal intersection, it
defines the Cech Cohomology Space H'!(M; G).

Reconstruction Theorem: Let M be a manifold, {U,} an open covering and G a Lie group.
Given a cocycle {gug} relative to {Uy}, valued on G, there exists a unique (except for an
isomorphism) principal bundle P — M, with structure group G having {g,g} as transition
functions.

Proof (just sketched): We construct ¥ = Uy, U, x G and take quotient by the following
equivalence relation ~ :

(o, m, a) ~ (B, m', b) if
m=m" € Uy NUg
a = gup(m)b. (69)

The quotient ¥/ ~ is P, the projection being p(o, m, a) = m. O
4.1 Associated vector bundles

Let P 2> Mbea principal bundle characterized by ({Uy}, gop),and A : G —> GL(F)
a linear representation of the structure group G on a vector space F'.
The set ({Uy}, Aogap = gup) constitutes a 1-cocycle relative to {U,} and valued on G L (F).

The quotient U, U, x F/ ~, where now ~ is defined as:

(o, m, v) ~ (B, m', V) if

m:m/GUaﬂU,g

/

v = gpa(mv, (70)
defines a vector bundle E > M, with fiber F associated with P trough the representation A.

G-functions on P: Let E =5 M be an associated bundle with fiber L by means of the
representation A, and let I'(E) be the linear space of sections of E, that is, mapping from
M to E such that 7 o 0 = I). The following commutative diagram corresponds to a

homomorphism between vector bundles:

PxL -5 E

, q 1is the natural projection on the equivalence classes
or e TELT O fned by (&, v) ~ (Es, AGs—1v))
r 5 M
In fact, g defines E !!
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Giveno : M — E, thereexistso’ : P — P x L / go o' = o onm and, therefore,
6 :P—L/o'&) = 7).

The mapping 8 : T'(E) — L(P) = {6 : P — L} is a homomorphism from the F(M)-
module I'(E) to the F(P)-module L(P).

Definition A differentiable function on P with values on L satisfying the condition
Y(Es) =A™ HYE) (71)
is called G-function and we say that ¥ € Lg(P).

Proposition The application g : T'(E) — L(P) is injective and verifies L;(P) = Imgp,
that is

I'(E)~ Lg(P).

From now on, we shall identify sections of a vector bundle E with G-functions on the principal
bundle P from which E is an associated vector bundle.

Vector fields on a Principal Bundle. The different structures of the base manifold M and
the fiber G of a principal bundle P manifest themselves in the behavior of the components
of a vector field, in a (principal-bundle) local chart, under a change of coordinates. As we
shall see, the components along the fiber keep some identity as vertical components, whereas
those along the base cannot be considered as horizontal since this character changes in going
from one chart to other. The reason for that lies in the expression of the

change of chart: Denoting the local coordinates as (x*, s%), we have:
o s e @) = (@, s )
sP(x,s) = g(x)z s,

Then, a vector field X on P, will be written alternatively as

x=xr 2 pxed v 0y d (72)
T axne dst axY' ast’
and the tangent application to the change of coordinates above reads
o _ o ax” . 0 a” _ 9 o | o &
X T gy 3/;7“ + s’ 3i“  axV Efr“ + ast’ 3x“sa =
9 _ 9 oxY 9 9 _ by
857 = g, a7 g0 a5t = 8a X5
3 ) axY 9 agt I
XHP— 4 X'— = X" . gt — )+ X% ) — =
oxn 7 gsa (E)x“ ox T axi’ gsb 8a (50
Xv’ — ax": Xt
, ox! ae (73)
XV =gl (x) X + FBesaxn.

This way, even though X% = 0, in the new basis X acquires a non-null vertical component

b _ 0l
X’ = ﬁs axHI, ) ) )

In other words, the property of X being “horizontal” is not preserved under a change of
coordinates.

Only vertical vector fields preserve their structure in changing coordinates.
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Therefore, it makes sense to define the vertical subspace TE”(P) atapoint & € P.
The submodule X'V (P) admits a basis made of generators of the action of G on P:

XV(P) is generated by {Z,L,(a), a:l,...,dimG}

where by Z f, (ay We mean the generator of G associated with Z(4) € . Note that G ~ T; (P).

Z ILD (a) Ar€ called principal vector fields, although not all vector fields in XV (P) are principal.
XV (P) is a free module (it admits a basis) of F(P)-dimension dimG.

4.2 Connections on principal bundles

In the last section, we motivated the need for some extra structure in order to define properly
the notion of horizontality as regards the components of the vector fields on a Principal
Bundle. This extra structure corresponds to a connection.

A connection on a principal bundle is a I-form on P, I', XV (P)-valued, such that:

() I'(X)=X if X € X'(P)

(2) T'(ahX)=all'(X), ae G, ap theactionof a on P. 74
That is to say, I" is a projection of X'(P) onto X'V (P) invariant under G.
This allows us to define a horizontal submodule X" (P) such that:
X(P)=X"(P)® X"(P). (75)

Infact, X" (P) = Ker 'and X" = X —I'(X). Note that (X —I'(X)) = ['(X)—T'(X) = 0.
Connection 1-form: Denoting x the isomorphism TEU(P) ~ G we define

y=yxol. (76)
It is a G-valued 1-form on P with the properties:

(1) y(Zp) =27
(2) apsy = Ad@@ My .

Curvature 2-form: K = dy + [y, y]

(77)

Transformation properties ofy : y is a 1-form on P, G-valued. Locally we may characterize
y by means of a set {y,} of 1-forms on M. In fact, given {U,} > M, we define:

Vo =05y on U,
Oup = g;ﬂg on Uy NUg.

Proposition On the intersection Uy N Ug, we have:
vp = Ad(8,)Ve + Opa - (78)

Example 1 Case of G = GL(n) as the structure group of the Reference Bundle. We shall
use the matrix elements as coordinates, so that we have:

{u'}y — (s}

few) — {eg))

(€@ = {E(%} = {ds}(e, )}

@ Springer



Eur. Phys. J. Plus (2021) 136:304 Page 25 of 85 304

We compute the explicit expression of the left translation and its tangent:
i/
4

i ik i k
(Lgs)’j = s(g)isj = g,’(sj =7

(Lyis)y = 87 "ish

LT i'm asj// _ —liakgm _ —1i am
(L) = 3 = ki) =
=s(g e = (s7HLsT,
where we have relaxed the notation so as to identify s’} and s(g)j., as usual. Then, we obtain:
oD ) pm g (D
0 =0 °¢€i) = Omdsm g
(m _ —1i om
O =59
(@) —1i —1i
9(}) =5 né;"ds,"n =5 nds;'
and finally, and in global and symbolic form, though rather standard,
ot = g_]a’g and analogously oR = a,’gg_1 . (79)
Let us compute g;ﬁe on the intersection Uy N Ug. For simplicity, we denote {x!} the coor-
dinates on U, and {x/} those on Ug, then

m =i

m dx i 0x T i 9%x!
[gaﬂ(x)]n - 9xn ’ [gﬁa(x)]j - ax/’ [gaﬂ(X)]jk - m
.0 “k d T 32xi vk 9
X = Xlﬁ =X a5k | gaﬂ(x)X =

axJaxk 3Sj~

xt 0
(g;;e><X>=e(g;(X>)=o( - X")

dxJaxk 3Sj-

2
= i(g,, (st 0 e [ XX gn
75k OO\ axraxn T osy

8)? 82xm Snel ol (k) 8)21 32x7 Sn (k)
= o azraxn om0 040 = 5yd gekar © 040
axl 9%l ®
= avd axkorn X))

@ ax 9%/
= I:gzae:l(k) = ol ok
Denoting F{‘j the components of y:
Vo = y((iI;) o eg()) = Ffjdxj o eg()) . V= )7((;)) o eg)) = f'ﬁndxj o eEtr)) .
The transformation property
yp(X) = Ad (g2 va(X) + 0pa(X) = (80)
g;ul Z8pe

xm oy axt ax 9%x/ @)

_ [t g=n r) _ ps n -n
yp(X) =T,,dx"(X)oe e dx"(X)o o € Py ﬁmdx (X) oe

(try — "~ mn
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axt ax™ ax! axt 9%x/
_ s -n (r) -n (r)
=T, T dx"(X) YT oe 327 357377 dx"(X) o e =
_ 9x™ xS axk 32xm ik

R o I 81
Yo 9xt axd gxm ™ 9xigxs 9xm @D
where we have computed Ad(g~!)Z as g~ Zg, as corresponding to the action of a linear
group. The symbols Ff,. are non-tensorial (due to the affine term in the transformation law)
and are called Christoffel Symbols.

Example 2 Case of structure group G = U(1). This is a very special, though simple, case
relevant in both gauge theory and quantization. The elements of the group are parameterized
globally by £ € C, / |¢| = 1, and locally by ¢ = ¢'®. The canonical 1-form and the
transition one are:

_ dj On — dgpa

0=—, = - (Ad=1)
i£ pe 18Ba
and the transformation rule,
dg
Vb= Vo + L2
L8Ba

4.3 Derivation law on associated vector bundles

Derivation law on an A-module M: We provide the more general (algebraic) definition and
then specify the more relevant cases.
Let

K be a commutative ring
A be an algebra over the ring K
M be amodule over A (A — module) .

A derivation law on M is a mapping
V € Homy (Der A, Homg (M, M)). (82)
Two derivation laws differ in an element of
Homy (Der A, Homy (M, M)). (83)

It must be remarked that a derivation law is not tensorial since the elements in
Homg (M, M) are only linear with respect to the scalars in K. Conversely, the elements
in Homy (M, M) are linear with respect to “scalars” in A, so that the difference of two
derivations laws is a tensor. This extent will be nitid in the following

Example

K =R (M = differentiable manifold)
A=FM) =

DerA = X (M)

M=XM).

A derivation law then turns out to be a derivation law for vector fields (usually referred to as
“connection”):
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V € Homz(y) (X(M), Homg(X (M), X(M)))
V:X +— VX/
Vx : Y — VyxY. (84)

Taking a local basis in X (U), { X}, we have:
Vxo X() =THXw  Xo=e
JoN i PN ;0Y/ iykp
Viie (Vep) = X'Vo(Yej) = X o + X'V T e =
. 9Yd .
Vivl =+ ik, (85)

More generally, M is the module of sections, I'(E), of a vector bundle E over M, with
basis {xa}: ¥ = ¥*xa € T'(E)

Ve; Xa = F,/'Sa XB =
Y o« B
ox +igy”. (86)
If now P is a principal bundle over M with structure group G, p is a linear representation
of G on GL(F), and E is a vector bundle associated with P, through the representation p,
with any connection y on P we may associate the following derivation law on I'(E), VV:

Viy® =

Viv =Xy +p(y X))y (87)
(AP dxm)
T = J/,-(a)p(z(a))% Y zy,-(”)dx’ oZ(a) (88)

Aff) = vector potentials or Yang—Mills fields.

5 Variational calculus

After a more traditional exposition of variational calculus as in standard textbooks [22],
we recommend intermediate texts as [23,24] and, finally, more formal papers as [25] and
references therein.

5.1 Jet bundles

Let E > M be a vector bundle on M ,Xx € M,and I', (E) the space of all local (differentiable)

. . . . 1
sections about x. In I'y (E), we define the following equivalence relation ~:

W) = Y
Bl (¥) = B (x) 89)

1

v~y e

. . 1 ..
and consider the quotient space Jxl (E) =T« (E)/ ~, and the natural projection

D INE) — M
W, x) > x.
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1
The union J ! (E) = Uy Jx1 (E) Z, M is called the bundle of 1-jets of I'(E) (the space of
sections of F).

1
JYE) s Mis parameterized locally by {x*, ¥¢, 1/f§}.
Given a section ¢y : M — E, we can define its 1-jet extension

@) = @A), ¥hx) = 0,9F (), (90)

which is an immersion of ['(E) < T'(J1(E)).
The structure 1-forms {6%},

0% = dy® — Y dx", 1)
characterize the jet extension of sections and vector fields:
O j1eyymy = 0-

In the same way, given X € X (M), j1(X) € X(J'(E)), is the only field that projects on X
and preserves the 1-form system {6“}:

- - -, 0
-1 o
X)=X, X=X+X , 92
i1 R 92)
CY — X« _waax"
B ayP " yh
LXQa = Caeﬂ = = IX® axV axX” axXV (93)
’ X,Oi = afu -y 3i(u + (3;{5 - wgaiﬁ) 1/’,5

The jet extension is a Lie algebra homomorphism:
jlaxcyp=1'eo, jlanl. (94)

Lagrangian (density): A Lagrangian density is a real function £ on J!(E). Then, we define
the Action functional

S:T(E) — R/

SW) = [igyon LG @70, )

where  is a volume n-form on M and 7' is its pull-back to J!(E). (Usually, M is the
Minkowski space-time and w = dx? A dx! A dx? A dx?).

5.2 Hamilton principle

The Ordinary Hamilton Principle establishes that the critical sections of the variational prob-
lem are the points of I'(E) where §S, the “differential” of S , is zero, that is:

v el(E) / 88(]/,)(X)E/ Ly (L(jl(ljf))w):O, VXeX(E). (96
Jtan o
As is well known, critical sections satisfy the Euler—Lagrange equations:
d oL oL
— - = —o, ©7)
dxit \ oyg RV

where df'(—ﬂ stands for “derivative with respect to x** along the section ¥.”
Exercise: Derive the Euler-Lagrange equations!!
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Hint: Realize that the variations dx*, §¥* and 89, %" correspond to the components
XH, X%, XZ of X. The fact that 1///‘1‘ behaves as 9, under variation is related to the

fact that X is j!(X).

5.3 Modified Hamilton principle: the Poincaré—Cartan form

The Modified Hamilton Principle assumes the independent variation of ¥ and wuﬂ . That

means that we look for critical sections in the module I'(J ' (E)), rather than I'(E), where
the variations are caused by arbitrary X! € X'(J!(E)) that are no longer jet extensions.
The Modified Hamilton Action £! : T'(J1(E)) —> R is defined as the integral

stah =f Opc. (98)
yl(M)
where the Poincaré—Cartan(—Hilbert) form is a (n =dim M )-form defined by
Opc = awa (dwa Yy dx") A by + Lo, (99)

where 6, =i a w.
The Pomcare—Cartan n-form can also be written as

LY
Opc = a% dl// (Wwﬂ - ,c) w. (100)

When £ is regular, that is, det <33z§ ﬁ> # 0, we may define the covariant Hamiltonian
v

H=mlyl — L, (101)

where 7l = 3 W"’ are the covariant momenta and the form ® p¢ can be written as

Opc = 7Y A6, — Ho. (102)

Remark The Poincaré—Cartan form might be redefined as

a 1
Opc = |:31//a (dy® —yfdx”) + de/‘:| AN =Tpe A Oy (103)

for future relationships.

The Modified Hamilton Principle defines critical sections as those sections le r(JY(E))
on which the functional derivative of S', §S!, is zero:

6SH 1 (xh z/ Lyi®pc =0 VX' e x(JUE)) =
vl M)
ix1d®PC|1/,1 =0. (104)

The equations of motion above generalize the Euler—Lagrange ones in the sense that if £ is
regular

Euler—Lagrange equation

ix1d®pclyr =0 VX' = o= i)

(105)
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Let us remark that © p¢ reduces to L on jet extensions since @ pc = 4 6% A 0, + Lw and
In the regular case, ix1d® pc |¢1 = 0 can be taken into the Hamiltonian form:

OH Y OH ol

orl T axi T aye  oxk (106)

’

We shall remark that in the Ordinary Variational Calculus people define only 7, = ¥, the
time component, and the non-covariant Hamiltonian H = w3 — L (Te¥® — L). The
extra Hamiltonian equations we have, simply provide the definition of covariant momenta.
Note: The non-covariant Hamiltonian A will be obtained in our scheme as the time com-
ponent of the conserved current associated with the invariance under time translations (see
later).

5.4 Symmetries and the Noether Theorem: Hamilton—Jacobi transformation and Solution
Manifold

A symmetry of the variational problem is a vector field Y! e X(JY(E)) such that
Ly1®pc =dayr, ayr (n—1)—form. (107)
We actually say that ® p¢ is semi-invariant if ary1 # 0.

Theorem (Noether): If Y! is a symmetry of © pc, the quantity Jy1 = iy1®pc — ay1 is
conserved along the solutions.

Proof Lyi®pc =iy1d®pc 4 diy1®pc = dayi. Restricting this expression to solutions,
we have:

iy1d®pclsor. =0 =d(ay1 —iy1©pc)lsor -

The quantity Jy1 = iy1®pc — ay: is the Noether Invariant.

Note that Jy1 is an (n — 1)-form and we can define the dual current (we shall omit the
subscript) J = (iy1®pc — ay1).

If we denote j = iy1®pc = ‘a]/% Y® — 9,y*Y")6,, + LY, that is, the conserved
current for strict invariance, we can write the vector current

AL
= 307 (YY — 3,0°Y") + LY™ . (108)
"

In terms of J, the constancy of iy1©®pc — ay1 along solutions becomes
I s =0 = / do,JH =0, (109)
b

where ¥ is a Cauchy surface, is a constant. It is named conserved charge associated with the
symmetry. m}
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5.5 Examples

The free Galilean particle:
E=RxR' >R ,JYUE)=RxR’ xR >R

{t, x} {t,x", %7}

0 =dx’ — iidr L= imi*
d (3L L d o dx
—(=)-—==0 —mil =0, i = —
dt(f))&’) oxi TS YT
a2 . xi:Ki+%it
@xl=0 = \pi=Fh

=t
L ¥ »’
Pi=ﬁ» H = pix —£=% . (110)

The expression above concerning the trajectories of the free particle can be read as an invert-
ible transformation in R x R3 x R3 to be referred to as the

Hamilton—Jacobi transformation <& (xi, pj.t) < (Ki, Pj, 7). (111)

This Hamilton—Jacobi transformation permits the pass to the Solution Manifold parameter-
ized by the basic constants of motion.

After this (H-J) transformation, ® pc comes down to the Solution Manifold, except for a
total differential:

L i i i P i, P P’
Opc = —(dx' —x'dt) + £dt = p;dx! — —dt = Pd | K'+ —1 )| — —drt
ox! 2m m 2m
. P? Pt . P? : P?
= PdK' + —dt + dP' — —dt = PdK'+d | —1 ). (112)
m m 2m 2m
Its differential is
dOpc =dP; AdK' = w=dA (113)

that is, the symplectic form on the Solution Manifold.
A = P;dK' is the Potential 1-form or Liouville 1-form.

Reminder: At this moment, we must remind the reader some few words on Symplectic
Manifold (to be completed with traditional references like Ref. [5] and/or Ref. [4]):

Let (S, ) be a symplectic manifold.

X on S is locally Hamiltonian if iyw = «, a closed 1-form.

X on S is globally Hamiltonian if iyw = —df, (an exact 1-form).

Since det(w) # 0, given f : S — R, the equation

ix,o= —df determines X .

The correspondence f +— X is a homomorphism with kernel R.
Poisson Bracket: f, g + {f, g} / i, x, 0 = —d{f, g}
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Symmetries of the free particle:

X i X i X t3 X A 9
=5 =0 =1— =XANA —
B =5 "W T 5 TV ax’ @ ox
_ ~ . 5 5 . ; ;
X=X, Xay =X, Xevy=t— + — Xy =XA — +XA —
(B) (B) (A) A) ) o + 5% X© X o +x 2
(114)
. 1, P?
LX(B)®PC =0 = J» = lX’(B)®PC = me ~ o
LX(A)(’*)PC:O = ”7(A):iX(A>®PC:mXEP
L)_((V)@PC =d(mx) = L7(V) = mx — i)_((v>®PC =mx—pt =K
L)_((€)®PC:0 = \7(5):i)_((5)®PC =xAp=KAP. (115)

Note that all Noether invariants are written in terms of the basic ones K, P.

The free scalar field (Klein—-Gordon)

Klein—Gordon fields are sections ¢ of the line (R for real fields, C for charged ones) vector
bundle over Minkowski space-time M [24] (see for instance [26-28] for a more physically
minded presentation)

E=RxM — M, ¢pel'(E)

Klein—Gordon Lagrangian £ = % b — % mie”

The Euler—Lagrange equations lead to:

d aL aL
T <8¢M> — % =0 = ¢ —|—m2¢ =0, with solutions:

3
d(x) = f %{a(k)e_ik')‘ +a*Ke* Yy, kK0 = VK2 + m? (116)

a(k) :i/ dstek 5; d(x), a*k)= —i/ dste x 5; dpx), (117
) X

where ¥ is a Cauchy surface, usually R? (x% = 0). The “constants” a(k), a*(k) parame-
terize the Solution Manifold.
The Poincaré—Cartan form can be written as

Opc =ntdp N6, — Hw, (118)
where H = %n,ﬂ/‘ + %mquqb is the covariant Hamiltonian.

Space-time symmetry: The K—G Lagrangian is invariant under the Poincaré group generated
by

=890 xe — (119)

with jet extension:
X :i. X :gﬁﬂxi+3 % e —
(1) axk (uv) uvro e uv, p¥o
0, = i 0= doy,

w = volume on M

. 0L
Lg,,@prc =0, ix, Oprc= <£X?u) - @av‘ﬁx&)) 0o
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, L 1 1
= jo,=8L— @am = (Eav(pa“(p - 5mz<¢>2> 85 — 8°¢du¢ conserved

= Quw = /Edavj(‘i” = P, constant

In particular

— A3y (L L 1,242
H=[dx (169 + 196 Vo + jm’p?) (120)
P=[dx¢Vg.
In the same way
1
L;(W)G)pc =0 = j((;w) = —8,,%c97 oo + E(ng,xe 0, p0*¢p conserved
= My = /d3x(j(0mxv —jg)xﬂ) constant . (121)

The space-time symmetries play the analogous role of time translations in Mechanics and the
corresponding Noether invariants do not contribute to the Solution Manifold, that is to say:
SM cannot be parameterized by Noether invariants associated with space-time symmetries.
“Internal” symmetries: (Such symmetries are rarely reported in Literature and considered
as “hidden symmetries” [27])

The following vector fields on the bundle E are non-trivial symmetries:

ey 0 9
Xorgo = ie'™ — | Xy = —ie P —
a*(k) ¢ a(k) 2
)_(a*(k) = Xa*(k) — ikveikxﬁ s )_(a(k) = )_(:;*(k) (122)
v

with Noether invariants

Qo = [ Pxjgegy =i [ dxe™ (@ — ik) = ak)

(123)
Quy = - .. =a*K).
Alternatively, the “configuration space” counterparts are
Bk ek ik O 3
Xny) =i / 70 {e’kxe’k"@ - h.c.} = Cos[x"vV/m? — V2]8(y — x)%
dk kx ikx O Sin[x"v/m? — V2 3
Xy = _/ &k o {e,k.xemi N h.c.} _sinbevm” = Vil w2
2k0 a9 m? — V2 a9
(124)
with Noether invariants
Qn(y) = o(y) (125)

Q(p(y) =n(y).

Note that 7(x) = q'b(xo =0,%), p(x) = q)(xo = 0, x) and that k and y in the subscript are
indices, whereas x* is the variable in the base manifold M of E.
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The Hamilton—Jacobi transformation: Passing to the Solution Manifold
By writing the Klein—Gordon solutions in a proper way, and adding the trivial transformation
x0 = 9 the following transformation (H — J) has an inverse ((H — J )y

m(x 27V2)

§ () = Cos (XOVimT = V?) p(0) + e G(X)

$(x) = Cos (Xom) $(x) — v/m2 = V2 Sin (Xom) oy (126

X0 = 0
Sin( m?— V)

¢(x) = Cos ()cox/m2 — Vz) & (x0, x) + %¢(x X)

@(x) = Cos (x(k/mz - V2> $(x°, x) — v/mZ = VZ Sin (xo mZ — VZ) $(x°, x)

X0 = x0
127)
The tangent H-J transformation becomes:
_0 0 2 _ 7\ _3d
3(p(X)_Cos(x m V)M() vm Sln( V)343(X)
P Sin(xo mLVZ) 5 J— (128)
S B e SR F1EY +C°S( V) s
0 _ 0 2 2) _2 /2 2 qj 0 2 2) _9
W-Cos(x m _V)a<p(x)+ m* —V Sm(x m _V)W
3 Sin(x° m2—v2 ) \/7 (129)
o = v ww COS( ) B -

Acting with H-J on the objects on I'(E) we arrive at the Solution Manifold endowed with
a symplectic structure and Hamiltonian symmetries. In fact, the “integral on the Cauchy
surface” of ® pc comes down to the SM except for a total differential after applying the H-J
transformation:

Opc = / doy, {E(dqb — ¢,dx") + [de“}
z 3(}5#

. |
= / Ex{¢dp — 2§ + Vg Vo +m?¢H)dx’)
Liouville form a
= / dAx{dde — HAx} = / d*x¢(x)8¢(x) +total differential (130)
and the differential d pc actually comes down defining the Symplectic form: 2 = §A

Hamiltonian vector fields: ix, 2 = —3f

)
f=o(x) = X(p(x) = 5(#(37(?()

. constitute the basic local symmetries . (131)
f=0® = Xom = 5500
»(x)

(They are not gauge; in fact, the Noether invariants are non-trivial)
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Note that they go back to the Evolution Manifold by means of the transformation (H — J)~!.
“Functions” such as fz d3x¢>(x) or f): d3x(p(x), that is, the integrated basic symmetries,
generate rigid symmetries.

For instance, for the massless Klein—Gordon field,

f :fd3x<p(x) = Xy
f=/dErpx) = Xy

X024 8
a¢ 3¢ as vector fields on the bundle J' (E). (132)

9
¢

By the way, even in the massive case, Yy = f 337) is a symmetry of the Lagrangian if f is a
solution of the Klein—Gordon equation:

f—fi
=15 ¢

YL =—m>fé+0,fo¢" =0,(0"fp) if 0,0"f +m’f=0.

/Lf

When f is not a solution, symmetry under such a vector field Y requires the introduction
of compensating Yang—Mills fields.

5.6 Current algebra (on the example of the massless Klein—Gordon field)

We write the complete symmetry of the Klein—Gordon field in the form of a semi-direct
product group:

Poincaré ®g “Current Group”.

The space—time rigid symmetry provides charges:

Po= 1L [ @x{pe() + Vox) - Vex)} = [ dxP

0
X = — (133)
= [Exp@p 0 = [ ExP, 0 oan

3 €o 0 €o 0 €0
My = | @x(Puxy — Poxp)lo—g | X(uv) = 8,5%e oy anxea—a +68,00c —— 8¢>“
(134)
The internal symmetries lead to rigid charges:
3. 9
0y = | d'x9(x) Xp=— (135)
d¢
and
= (3 ad a
0y = J dxot Xy, = xl— (136)
Qp = [dxx'9(x) " 09 9P,
as well as local ones associated with the Hamiltonian vector fields (131):
Q) = 9(X), Q) = @(X) | local symmetries. (137)

In other words, given arigid symmetry, the integrand of the corresponding Noether invariants,
that is, the zero” component of the currents, j°, are in turn Noether invariants of a current
algebra!!.
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6 Symmetry and quantum theory

Canonical quantization proved to be inadequate very soon for dealing with nonlinear systems
in general, except for certain perturbative conditions. See, for instance the historical paper on
“No-Go theorems” [29] as well as, more recently [30,31]. Here, we shall adopt a symmetry-
based algorithm more appropriate to formulate basic physical systems irrespective of their
(non-)linear character, provided that we are able to parameterize their Solution Manifold by
means of Noether charges associated with symmetries [32-36].

6.1 Group Approach to Quantization

The basic idea of GAQ consists in having two mutually commuting copies of the Lie algebra
G of G a central extension by U (1):
xLG)y~ G~ xRG).

Then, a copy, let us say X% (G), constitutes the (pre-)Quantum Operators acting by usual
derivations on complex U (1)-functions on G.

The other copy, now X L (G), is used to reduce the (pre-)quantum representation in a
compatible way = true Quantization

In fact, given a group law, g’ = g’g, we have two actions:

/,

§'=gg=Lgg leftaction
g" =4g'¢ = Ryg’ rightaction,
and they do commute: [f(aL , )25] =0 Va,b=1,..dimG.
This property also implies:
Lgr6™ =0 {p%) dualto {X[) and
L)}(Ilg O AOLCA L) = L)ng =0 = o invariant volume.
The left-invariant form £ (1) plays the role of generalized Poincaré—Cartan form or quan-

tization form ©.
The classical Noether invariants are i3z ®, as they are invariant along the equations of
a

motion, that is, X aL in the characteristic subalgebra Ge:
Go = (X" /iz10=0=i;.dO)
G /Ge = Quantum Solution Manifold .

Wave functions ¢ are U (1)-functions (¥ (g) = ¢®(g), ¢ € U(1)) invariant under the right
action of a polarization subgroup P:

P is a maximal subgroup of G containing the characteristic
subgroup Ge and excluding the U(1) central subgroup,

Y (Reg) = (g) VgeP.

G acts on Y from the left, 'y (g) = ¥ (L, g), providing an irreducible representation of G.
Atthe infinitesimal level, the U (1)-function condition ¥/ (g) = ¢ ®(g) is writtenas By = iy,
where E stands for

I 9 9
L _ SR _ . .
Xy =Xy =15, — 18755

)
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which is the central generator of the group G , L etlu).
Starting from a complex function ¥ (g, ¢) on G, we must impose the Polarization conditions

in the form:
XLky =o0.

XL ep generate a left-invariant subalgebra P containing Gg and excluding the vertical
generator =.

If such a polarization subalgebra does not exist, then we may search for a higher-order
subalgebra in the left-enveloping algebra substituting a first-order one.
On the space of polarized wave functions, the right-invariant generators X 5 operate defining
the true quantum operators associated with the group variable a, a. They generate a unitary
and irreducible representation of the group G, that is, a quantization of the physical system

with basic symmetry G
6.2 Some examples
6.2.1 Non-relativistic harmonic oscillator (1+1 dimension)

Group law: (central extension by U (1) of the Newton group)

=1 4+t
U

x" = x + x'coswt + L-sinwt Newton group

p’ = p + p'coswt — mwx'sinwt

¢ = g/gei(x’pcosw—p’xcoswﬂ%+wx’x)sinwt) (138)
gL _ 0 . p3d 2.9 L _ 3 =
Xt g-’-ﬁa—mu) X@, Xp 5-"%“ (139)
xL_3_rg XL—i;i—ig*a _ =
x T ax 2= R S T3 acr = =
xr= 2
Lt
xR ta i ta + : ( t+ inwt) 2
= coswt — — mwsinwt —+— (pcoswt + mwxsinwt) 8
x ax ap 2n'P
~ 1 d a 1
XB = —gin— + coswt — —— (xcoswt — Lsinwt)E
P mw dx op 2h mw
v R . 0 .ok 0 —
Xy =il——i¢ =& (140)
ile ag*
“p - R 1 - R = 1
R HR 2%R . R $R R . R ¥R -
xR Xx] — —mo* XK ; [Xt , Xp] = —X{ [X, , Xp] =—2E (14D

Quantization Form: ® = pdx — (% + %ma)zxz)dt + ?—g
Characteristic Module: Co = (XL)

Polarization (complex): P = (f(t]‘, f()f + imwf(;;)
There is no first-order real polarization!
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: ., = [me i Lok — e
Fock variables: a = | /5% x + TmiaP =R AT

i
V2mhw p

Group law, vector fields, characteristic module, polarization:

= +¢
d'=de ' +a
a//* /* lwl +a
é‘// _ é‘ ; j(la/a*e_“"rfia*a/eiwt) (142)
L_ 0 9 |yR _ 0
XtL_g—lwaaa—l—twa*aa XtR_at .
* 1) ik
XL afad—éc; g XR e l (ga +?a E) (143)
— = —_ iw .=
X = 37 T 3a& Xpx=e (aa* 5a &
Co = (XEy ; P=(XL, XLy or P* = (XL, XL) (144)

Polarization Equations: ¥ = W (¢, 1, a, a*)

(U(1) — function) BE.W =iV = W =;:d(a,a")
~ aat
XEWw =0 = W=¢e 7 ¢(t,a)

~ aa™ * ,—iwt\n
Xtwv=0- % =0 = W=t T JEEe e, 2k =,
(145)
Operators: E= 1h)~(tR , 4= f(f* , X
ad, = \/ﬁq)n,1
At =Vn+ 10, (VW) = /d(Rea*)d(Ima)e_““*db/(p (146)
E®, =nhwd,
Configuration space: Higher-order Polarization
HO oL wL Mopsp
P = (Xp’ Xy = %Xx X7 (147)
EV=iV - V=D, x,p)
Xw=0 - w= {e_i%%dﬂt x) - (148)
(XE— XLXLYW =0 — in = — 00 | 10,22
1/4
[o (mo Cn _mw 2 [mw
o, x) = Effozocn%(t, x) = E (E) Z,ﬁome 2 e mthn ( 7)6)
(149)

where H, are the Hermite polynomials.

6.2.2 Relativistic harmonic oscillator (1+1 dimension)

What is a relativistic harmonic oscillator? A dynamical system characterized by a symmetry
that contract to that of the non-relativistic harmonic oscillator in the non-relativistic limit and
that contract to the symmetry of the free relativistic particle in the limit of zero frequency
[37]. Here is the proposed Lie algebra:
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[E, I%] = %13 ¢* = 0o N-R oscillator
[12, ﬁ] — imho?R w? = 0 Free Relativistic particle (150)
[1%, }3] = h(ﬁl:? i) ¢ > 00, w?* — 0 N-R Free particle
Group law: (by exponentiating the Lie algebra)
10) a aP)
sinwt” = — | —— p'x'sin wt'sin wt + 9_cos wt'sin wr
o’ 2 mawcao’
w ! /s ’ o' . / p/x /
+ ——xx Pysinwt’ + —coswisinwt’ + ———coswt
medo 1) mco
/a X /
¥ = 2%inwr + ax’cos wr + -0
mo mc
wx ! P ! P
p = Tp <£sina)t + wx’cos a)t) + 20 <£COS wt — a)x/sina)t> + 2%
c o m co m mc
¢ = ;’;e%(‘y/*‘s/*‘s) (1s1)
where
Py = \/ mc? — p? +m2w?x? 8 = function generating the
wzxz 200
1+ coboundary such that —
§=—mc*t — f cocycle
_2 ~1
f=—2Ere [ 2@ - (R -]
Left generators:
gL _ Py 0 , p3d 2.9 VL wL| _ . 2%L
Xt—mcgzy—i-ﬁﬁ—mwx@ Xr, Xy —ma)Xp
vL _ Popd p P pmec_ 1 m v L L _1lyL
Xy = ﬁﬁﬁ + mcZaZ m 9t Potmc h ™ X XP = —mXx (152)
vL _ P 1 VL wL I wL,lg
XP _mgap—‘r_Pgljlfwh XX’ XP __fo +ﬁ“
Configuration space: Higher-order Polarization
HO L wLHO _ (L) _ 2 (%L)? 2ime® o, imc*w
PHO — (XL, X! <X ) —c (Xx) e (153)
EV =iV = ¥V=7:P(,x,p)
XEw =0 = w=celp,x)
v LH 122 2imc? 9 2.9 2 292 2
XPHOW =0 = 58— e 5 — 200t — P58 mewp =0.
(154)
Restoring the rest energy, that is, X R X R mgz E, ¢— o,
the equation X tLH 9. W = 0 becomes
N C2
Cp = —ED(p = N(N — 1)¢ (Casimir operator), (155)
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2 92 92 . . .
where N = %= and [J = S 2exd 25’? O is the D’ Alembert operator in anti-
de Sitter space-time. The evolution equation is solved by power series expansion:

. b, = ¢
= e—zbnwta—anN = n n — _ 156
#n " o= o+ d 4 NN _ oy 1y (PO
where H is a polynomial in the variable & = 72 x satisfying
I £) & HY 2N 4n— el “eN+mHN =0 = (157)
=) — n— = — n =
dez N 277 dé ” N "
N /21 25 . N (S‘i‘l)(N‘i‘S‘i‘l) N
Hn &)= sn 0 Yn— 2y(2$)n o Ap p—2s = _N(l’l —25)(n — 25 — l)an,1172(s+1) =
(158)
: N*n!N!2N + n)! n
ay g = (=1)° - - s =0,..[=]. (159)
’ QN sI(N + $)!I2N)(n — 2s)! 2

The polynomials H," are the Relativistic Hermite Polynomials!!
The energy operator provides the value E,Ilv = (% + N +n)ho.

2 . .
For N = @ — 00, H,f\’ — H, (Hermite Polynomials). The value N = % corresponds
to the extreme relativistic regime.

6.2.3 Particle moving on SU (2): PNLoM

The standard classical approach to a particle moving on a Riemann manifold with metric
gij(x) is established by the Lagrangian (see [38,39] and references therein):

1 S 1
L= Zmgi(ni'i) = 2me(a) Pk (160)
b
gij = eePk
where e( are the vierbeins defining the metric |g"/ = e( ) (b)k
(@) ,J
e; (b) =kj =3 .

Here, SU(2) is parameterized by € € R3 / |e| = 251n‘p

; : €2 . €le; 1.
=0 =,/1- -0+ 4\/1]752 + Enl.jkek . (161)
-7

The form 6 = §"de/ = ORD is the right-invariant canonical 1-form (we could have used
the left forms since £ is chiral.
The inverse “vierbeins” are the right-invariant vector fields

€2 1 d i0 i0
J J _k J _ ,J
o=\ T el | 5g L Xogag T oag - 16D

XR
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The momentum, Hamiltonian and Poincaré—Cartan form are

pi =L =mgiel =moP0V ek = mb 0 ks =moVe | 00 =0
H = %6’ — L= %mgijéiéj = ﬁgijpipj = %m@iei '9k = stsk
(163)
0L i i i o 1 i
Opc = F(de — ¢é'dr) — Ldr = pide' — Hdt = m6;0" — Emeie dr (164)
é
and the solutions to the equations of motion (w = ,/ %H =./6016;):
€l (t) = elcoswt + &' % Hamilton—Jacobi (165)
€'(t) = é'coswt — we'sinwt| transformation ,

where e’ = € (0), & = é'(0) are constants of motion parameterizing the Solution Manifold.
Note that 6" = ' is also constant of motion.
The symplectic form on the SM turns out to be

Q = dA = md; Aﬁ(i)+§nfjk1?iz9(j) Ap® (166)
In local (Darboux) coordinates, we have
A=mds', Q=dm Ads'; 7 =mv; =moF vy (167)

Note that the Hamiltonian, in coordinates (&', ¢ ) will be free from normal-order ambiguities
as regards quantization.
The basic symmetries are the Hamiltonian vector fields associated with &', ¢; and p =

V1— % when lifted back to the Evolution Manifold by means of the inverse of the H-J
transformation.
They lead to the Poisson algebra (beyond Heisenberg—Weyl):

{si,sj}zo {si,p}=0
{eh, 07} = 30 & + 08 (94, o} = kije! (168)
{01, 07} = muly 00
Remark: The (Hamiltonian) function ¢; generate (Killing) symmetries of the Lagrangian,
whereas ¥ only of the Poincaré—Cartan form, that is, gk generate pure contact symmetries.

Group Approach to Quantization now proceeds by exponentiating the Poisson algebra above
arriving at the SU (2)-sigma group centrally extended by U (1):

6‘//:,06‘/+,0/€+%€//\€ p/E,O(é‘/)
v,,=v,+XLSU(2>(€/)v+%€/Z p=2=% =
"o 1 / 1,7 " (169)
=2 +pz—58 -V
{N — g./é.efi%’(Z(p’fl)zfs’-v) ¢e U(l)
i d
O =089 = —me;dvi — 2m(p — dz + —é . (170)
i
The characteristic subalgebra and polarization are:
L L L
Jo =(Xp)) . P = (X, Xi)- 171
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On the Quantum Solution Manifold, G /G, the quantization form is

) d . d
O = —¢'dm; + —5 (or m;de' + —j up to a total differential) . (172)
i i
Wave functions:
V(g e,v,2) = e MEVTRDIg () (173)
Operators:
Eple) =c'g(e)
SU(2)
N i 174
Diple) = —i XFE 20te) (174)
0P (&) = (p — 1) (e) (to be redefined to remove the 1)
Hamiltonian:
. 1 .. 1
Ho(e) = Em(s”wvm(s) = _%AL—B¢(€) =E¢(e) (175)
Integration measure:
3 1
du = 6LED A gLE) A gLED) — Zgel A de? A de3 (176)
0

6.2.4 The Klein—Gordon field

Typical infinite-dimensional systems in Physics appear as mappings from a space-time man-
ifold M into a non-(necessarily)Abelian group target G [36]:

¢ xeM— ¢p(x)eG.
If g is an element in Diff(M) the following semi-direct group law holds:

g’ =glog o group law in Diff(M)
" (x) = ¢'(g(x)*p(x) | * grouplawin G.

Here M is the Minkowski space-time (x% = ¢1, x), and Diff(M) is restricted to the Poincaré
subgroup or just Translations parameterized by (a® = cb, a). G is simply the complex (or
real) vector space parameterized by ¢.

A natural parameterization of the Klein—Gordon group is associated with a factorization
of M as ¥ x R (Cauchy surface times Time): we have parameters (b, a; ¢(x), ¢(x)) (the
Lorentz subgroup of the Poincaré group can be easily added).

It should be stressed that the action of a on ¢(x) just consists in moving the argument by a:
¢(x) — ¢(x — a), whereas the action of b requires the knowledge of the equation of motion
(although not necessarily their actual solutions).

For K-G fields, ¢ (x) satisfies ¢ (x) = (V2 —m?)op(x) | ¢(x) ~ ¢(0,x)
Therefore, we write for ¢’ (b(x)):

i /m2 —_ V2
¢/ (b(x) = "¢’ (x) = coslbey/m? = V21g/ (x) + %d(x) (177)
prea
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so that, the Complete Group Law becomes:

b’ =b +b a, = a, + A}ja, if the Lorentz subgroup
a’=a'+a A= A A were included
@ (X) = p(x) + cos[be/m? — V 212V o' (x) + Sm[j‘i “zmvz leavy ¢ (x) Central
@' (x) = ¢(x) + cos[be/m? — V 21er VY (x)
—+/m? — V 2sin[bcv/m? — e X extension
m? V2'[b\/2 Vz]aV/() .
¢" = ¢'cexp (4 fy & [(j)(cos[bcm] AV 4 Sillbedn V2 aV gy by (1)

p(cos[be/m?2 —V 2]e*V ¢ — /m? — V 2sin[bcv/m? — V 2]e2Y /]>
(178)
Notice that we can read from the group law the expression of the evolved fields

#(x°, %), $(x°, x) in terms of the initial conditions o(x), ¢(x):

: 0 2 _ 2
60, %) = coslx®Vm? — V2p(x) + SO VM Z VI

m2 —V?2

H(x°, x) = cos[x®vVm2 — V2]1¢(x) — vVm? — V 2sin[x"V/m2 — V2]p(x). (179)

Left-invariant algebra:

~ 9 . Ky )
)fé - 38—,7 + /5 djx(p(x)—&ﬂ(Xg - Js d3)c3(m2 -V 2()S<p(x)—5¢(x)
Xy =5+ s ExVe® g + 5 Ex Ve 5

gL _ 8 e
X¢i<x> = 5%® ?‘P(X)u (180)
Xom = 5o 79X E

XL Re(i¢ g)_

Quantization form:
1
0= [ Ex G030 — psico)

—% / d*x (¢ (%) + Vox) - Vo(x) + m?¢*(x)) db
>z

—% /z Fx (X V) — 9(x)Ve(x)) - da + % (181)
Commutators:
[5‘15’ %(x)] = (m* = V)X
% Xbw)] = Xiw
[5‘5’ Xé(x)] = -VXiw
[’?5’ is%(x)] =-VXw
(XL Xb| = -8 -x)E. (182)
The Characteristic subalgebra is Gg = X bL, X 51;), so that
0/Ge = %/}jd3X(¢o(X)3¢o(X) @0 (X)8¢0(x)) + % (183)

@ Springer



304 Page 44 of 85 Eur. Phys. J. Plus (2021) 136:304

where the subscript O refers to the initial value in the integration of (generalized) equations
of motion corresponding to Gg.

Covariant Formulation. The construction above can be repeated in a form more convenient
for the interaction. Now the fields will be defined on the entire Minkowski space-time but
supposed to be solutions of the equations of motion

a, =a, + Aja,
A =AA

¢"(x) = ¢'(Ax +a) + ¢ (x)

¢, (x) = ¢, (Ax +a) + ¢ (x)

"= {’{exp%/z dot {¢;/1(Ax + a)p(x) — dpp(x)¢'(Ax + a)}

= C’ZGXP%/E doy’ /E doy[—¢, (Ax +a)d) A(x — y)$ ()

+¢'(Ax +a)d) A(x — y)du$ ()]

= cep s [ aty [ dtHg Ay + @0 AG - D)
= {iexXp—7 LY z[¢p"(Ay + a)dy A(y — 2)¢u(z
—p(MIA(y — D¢, (Az + a)], (184)
where the invariant function Pauli-Jordan A(x) verifies
OA +m?A =0
Alx =0 A0,X) =0
Ay = 83 BAX) 09 = —83(x) (185)
Ax —y) =—-A0 —x)
Ak s a0 ity &3k TP P
P AGr— ) = Sk — ik-(x—y) 2/ ik (e=y) _ ik-(x=y)
IA(x =) / @) (k™ —m)e(k™)e 200 {e e }s
(186)
where £(k0) is the sign function, w (k) = |Kk| and V is the (infinite) volume of “time.”
Left-generators: (formally distinguishing between d,¢ and ¢,,)
- B ) )
XL = — d*x (00— + 9
L=, ( ST 056)
- ) 1
X5 = — = | d*z0rAG— o
b= o 3 [, 4AG = 96,0
- 8 1
XL o o=—— 4[| a “A(x —2)E 1
o = 54 (x) + 3 /Md 20 (I A(x —2)E, (187)
where we have disregarded the infinite volume V.
Commutators:
~ - 8 1 5
XL XL ]:—a 7—7/ d*20" A(x — 2)9,0,(2)E = —8, X
(%5, %o Kspe 2y T AN TINAE kX

~ ~ 8 1 5
L L 4 = L
[X“ﬂ’ X"’"(X)] = Sy (x) *3 /1;1 d"z0"Alx = )P (DI E = =0, Xy ()

oL g 1
L L 4 _
(Ko K] = —3 /Md ud(u = X)3 Ay — ) E
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1
+3 /M d*20Y AGx — 288z — »E

= 8;‘ A(x —y)E (equal-time commutators) . (188)

Textually, [f( q%( ) X é( y)] = 0, unless we interpret that ¢,, = 9,,¢ (something that happens
along the physical trajectories) and in this case we would have the arbitrary-time commutator:

. 5 1
L L _ _ 4 _al _ =)
[%50 %] = [&b(x) 53 | 4 A = 0808,

1
2m? M
1

=—— | d*ud’ Ay — u)d,su — )+L d4 A — 20,8z —y)
_Zszuuyuvux ) 20; A(x —z)0yo(z —y

8
3¢ (y)
d*udy A(y — u)avd)(z)E]

1 1 1 1
mDA(y—x)—m—QDA(x—y)z—z—m A(y—x)+ A(x—y)
=A@x—y) (189)

where we have “redefined” the fields so as to make explicit the mass m?.
This computation renders clear the necessity that A (x — y) satisfies the equation of motion.

6.2.5 The Dirac field

(just sketched, A of the Lorentz subgroup discarded)

a'"=d +a

V') =y @)+ ¥ (x+a)
Y (x) =Y x)+ ¥ (x +a)
Y (x) = Yu(x) + ¥, (x +a)
Vi (x) = Yu(x) + ¥, (x +a)

" ’ -1 4 4 i . z
"=t §eprf d y[ d*z {¥' v+ a)liy"o] + mlA(y — )Y (2)
] 2 Ju M
— Y Wliy"d;, +mIA(y — )Y (2 + a)}. (190)

It is customary to use the invariant function S(x) = (iy*9, + m)A(x), which satisfies the
Dirac equation:

Gp—m)ip+mA=0+m>)A=0. (191)

Remark: If we consider ¥ and ¥ as Fermionic variables, then the relative sign in the cocycle
would be +
Left-generators:

)

X 1 T .0 AqX —
Xjw = sv) 2 /M d* 29 ()[iy” 82 + mlAGz — x)E
}N(L _87_’_1/(14 [i vax+m]A(x_ )W( )E
v T 5&()6) 2y Iy 9, QY ()&
oL d / ( )w
Xaw =5 o+ ) 1//<x)8w( ) du (x )w( J)E (192)
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Right ones:
xR —87+1/ d*y U (Wify +mIA(y —x +a)E
VO T Sy —a) 2,0 YYUA Y =
- ) 1
R - s 4 _r: . =
Xow = Sux—a) 2 /Md lifr +mlAKx —z —a)Y(2)E
xR — 9 193
an = 5 (193)

Arbitrary-time commutators:

o 5
R sk 1_ 0 [ 4 _
I:Xam X‘//(X):I = oak Md yé(y +a X)(Sl/f(y)
1 ] ~
- 5/ &P By +mIdE A —x +a)8 = 3, X
M
SR SR | _ _ _ o %R

[Xaﬂ, XW)] = =0 xR

[Xg(x), Xg(y)] — = (P +mAE — y)E = S(x — y)E. (194)

7 Gauge theory of internal symmetries

Internal symmetries refer to transformations moving only the internal (fiber) components of
a matter field [1,28,41,42]. In our language, they are generated by vector fields of the form:

9 0
— Yo _ y« B
X = X(”)E)(p"‘ = X(a)ﬂw R (195)

Here, {¢“} are the coordinates of the fiber of E % M on the space-time M, usually the
Minkowski space with coordinates {x*}, u =0, 1,2, 3. The generators above are supposed
to close a (finite-dimensional) algebra:

X, Xyl =C5X (), (196)

to be referred to as the rigid or global symmetry algebra.

The Minimal Interaction Principle establishes that a matter Lagrangian £,,,;, invariant
under a rigid group G can be converted into a new one, [lm,m, invariant under the corre-
sponding local (usually called gauge) group G (M), that is, a group generated by F(M) ® G,
F (M) being the algebra of functions on M, G the Lie algebra of G. The Lie algebra of G (M)
satisfies:

[ “X@. 8P X =FDePXw), Xp)l= V" C5 X0 (197)
where the actual generators of G (M) are locally written as
X, f@: MR,

Note that the ordinary Lie bracket really realizes (197) since X () = X ‘(’a) BBW’ with X éZ) =0,
for any internal symmetry. Otherwise, the components X 51)387 would have derivated the

function g® (x), giving rise to additional terms in (*) (see later on the space-time gauge
symmetries).
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The essential consequence of the dependence on x* of the local group parameters lies on
the different realization of the jet extension of (@)X (a)> Which now differs from f @x (@:

F@OX @) #f@ X (4. In fact, computing f@ X, according to the standard formulas we get:

a af(a)
FOXw = FOXip0" 55+ (Xt + Xl 3 )8 1%
so that )_((a)[,mm, = 0 does not imply f@(x)Xg)Lmar = 0. The extra term

@
X’ 5 2z

We must introduce extra compensating fields AW , the gauge vector bosons, transforming
under G (M) as:

must be canceled out somehow.

(@) W ea g _
SA,)Y = XAjf) = fVCp A — Foa (199)
This way, the complete generators of G (M), acting on ¢* and A,(f) , are:
fOXa = [OX@ + X (200)

A(u) 3A(u)

The transformation properties of AL“) do correspond to those of a derivation law on the
sections of E associated with a connection 1-form on the original principal bundle P. The
corresponding Christoffel symbols are

4y =AY (X@a)§ (201)

However, connections are not the only way of realizing the vector potentials Aff). We shall
construct such fields from the group G (M) itself a bit later!!.
Utiyama’s Theorem

We establish this theorem in two parts, the first of which refers to the matter field
Lagrangian, Lmar» whereas the second tell us about the Lagrangian, £, governing the (free)
gauge fields themselves.
Utiyama’s Theorem I: The new Lagrangian ﬁmm, describing the dynamics of the matter

fields along with their interaction with the vector potentials A,(f),

mart((p W,uA(a))— matt((p 90;4 A(a)X(a)ﬂ(pﬂ) (202)

is invariant under the local group G (M), that is,
FO@) X Lnart (@7 0}t AL = 0. (203)

Proof Consider the following change of variables y:

P = ¢* g% = ¢
_ @ y b _ B@ P
$h= ol + AP X 0" & el =0 — BUX(,), 6"
B{@ = A@ A@ = B@ (204)
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and the Jacobian:

3 3 3
— = +BOX
dg® A (@) 3(]55
3 0
dps 0P
3 3 3
N A L (205)
aA Bl TP g

After this change of variables,
ﬁmatt (9%, ('0/1«’ A(a)) = Linan (9%, ‘Pﬁ + A(a)X(a)y Y) = Linan (9%, ¢5)

= Lonarr © X (9%, ¢}, AL). (206)

We must now compute f@ X Lonar:

f(a)

f(a)X(a)‘Cnultt = (

Bf(”) 9 N
) Y cmatt (@y s @8 B Affd))

) a4 (c)
+ C, A
f be axi g /(f)

b b) yvB
(f(ﬂ)xa 94 29° + B X 3¢V)+(f(”)x<a>ﬂ(¢5*B;(L)X@WV)
are B ) pa g DB B
+ Oxt (a)ﬂqb )3¢a f CthE dxh )(d (a) +X((1a)l3¢ ¢a E”‘”’t(¢a’¢lt)
af@ 9
) (@ ®) © _ 9
(fa X?a)/s‘i’ﬁ age T Xiop®h 3¢a PGB — ) @
I
+ (FOBY Xy X@)pef - f(“)B(b)(X(a)X(b))ﬁ¢ﬂ)d¢
i
9 @ 9 af @ 9
®cs BOXY 6P 4+ g9 _ x< 48 % N, o 4B
+ f be (a)ﬁ(]ﬁ 3¢z It (a)lg(f’ ¢D£ Fym (a)/3¢ B(f’ﬁ mart (P v¢ﬂ)
@ i @ i ) pa go_ @D « 4B
=\s X(ll)ﬂ¢ ¢ +f X(a)ﬁ¢ﬂ d(ba +(f CbLBM I )aB(a) Linan (¢ ’¢M)
n
(ﬂ”x(a)ﬂqbﬁ 305 £ w)ﬁmanwwﬁ)
=X @ Lumare ($*. ¢) = 0. (207)

Thinking of Aff) as connections, we may say that under the Minimal Coupling, the covari-
ant “derivative” of ¢“ substitutes the ordinary one in L£,;,4;:

o gt Fuﬂqaﬂ =@, + A(“)X‘(" )ﬁgoﬁ =g (or¢f). (208)
On jet extensions,
9,9% > D% =0,¢" +F°‘ﬁ(p (209)

Notice that under G (M), <pg transforms as a tensor:

Sl = f(“)X(a)ﬁ(pﬂ . (210)
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We have introduced new fields A,(f) which must be controlled by a given Lagrangian
Lo(A%™, AP)) 5o that the total Lagrangian will be £yqr + Lo

Stor = / d4x (Lo + [:matt) . (211

Lo should be constrained by the condition of being invariant under G (M) (note that Lonart i
already invariant). Thus, the second part of the theorem says: O

Utiyama’s Theorem II: The necessary condition for Lo to be invariant under G (M) is that
it depends on A,(f) and Affl(), only through the specific combination

F@) =AY — AW + c“ (AP A — AP A (212)
named curvature tensor or intensity tensor.

Proof We have to solve the equation

A 3,60 - aﬁo . af(a)
(a) _ — (£ a pl0) _ =
SOl =Xt X gt =IO = 500
(b) 2r@ 5
+(fPci A, + Cp AP L S B

mo9xv AxVIxH aAl(f)U

for arbitrary £, which implies that

9Ly y 0L
a) VP cp AL +C¢A© =0
bc AEL”) bc v aAff,)v

Bf(b): Lo —CoA© Lo
Ixt g AD T pal)
32 f®  aL 9L

c) VvV : + =0. (214)
axvaxt galy Al

=0

(a) in turns implies that £ is invariant under the rigid group G.
(c¢) implies that £y depends on AD® only through the difference A,(f,)v — A]()b,)L
(b) then implies the equation

0Ly % A© 9L

O (N — 215)
aA(b) betv a(A(a) _A(a))
which is of the form 3f = kx3 ‘)f , with general solution f = f(y + %kx2). Therefore,
Lo = Lo(F%). (216)

The additional condition for £y of being invariant under the rigid Poincaré group (or any
other kinematical space-time rigid symmetry) means a further restriction: £o must be a scalar.
For internal symmetries the Yang—Mills Lagrangian

1

LM — —ZFIE‘]‘))F(b)"“kab , (217)
where k,;, is the Killing metric, is usually adopted. O
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The Euler-Lagrange equations of the total Lagrangian L,,;, = matt((/)a»(pﬁ +
A(“)Xﬂ )Vqﬂ’) + Eo(Flg,,)) corresponding to the independent variables ¢“ and A(a) are:

(S(/JZ 9 Lmare +A(a)Xﬁ Liatt _ d 9 Lomare -0 (218)
DY n Ha)a 8(/)5 daxcm 3</J,°j
Lo d Lo oL
BA: ~ACh G — 1 | | = Xl e 219
8F X aFlw (pu
In particular, for the Yang—Mills Lagrangian £ we have:
oL
nv (d) matt
Flayw + A CleFlyy = =Xlpe” 5007
o3
or, using the covariant derivative notation, D,,,
aL aL
a;’;” -D (aD’”Z;) =0; D,Fly =l (220)
"
where the current J is defined as
7 8[/matt a[/matt a»cmatt
=" = Xt 35 oa = X oa (221)
A, m% 2

It is worth noticing that the Euler—Lagrange equations of the Lagrangian £;,;, after the
change of variables used for proving Utiyama’s theorem, would be those of the free fields
¢ and B. In fact, L;o; = Lypan (@, ¢p) + Lo(B, F), without interacting term!!. However,
this is a consequence of the fact that the mentioned change of variables does not preserve
the structure 1-forms of the jet-bundle; variational calculus is not invariant under an arbitrary
change of variables.

Some remarks on Local vs Gauge symmetries. Let us test explicitly the Gauge symmetry
of L, under the group G(M) and compute the corresponding Noether invariants, as an
exercise.

3 b (© _ 3f9 »
Generator of G(M) (no sumon (a)): Y = f(")X(a)ﬂgoﬂW + (f( )CZCAV — 5 )8A5g)

@
Noether Current: J# = Y* < aL "” +y A Lo

9AL),
AL y f@N arLo
_ t@ ft Zomart B pa g0 _
= fOXE 0 3 +<f cy Al o ) aa,

af@ 1
b 1Y . b) =LV
= f(a)J(a)matt + (f( )CZCAEJC) N JaxV )F(a) - <1f Lo= _ZFIEV)F(h))

(a) ;mrigid (a) v
= [~ b, fO Rl

(a)tot

Conservation: 9, J " |so1.

.urigid .urigid v v
=3 f(a) J@yiot f(a)a“ Jaytor — 8MVf(a)F - a"f(a MF( )

— 8Mf(a) .urigid +0-0— 3 f(a) .vrigid -0

(d)ll?f (a)t()t
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Noether Charge: Q@
id 0 d i
= [Laon i R = [ @R R
_ d'ﬁ ( (a) O”gld (a)a'FOi) _ d3 ( (a) .0 rigid (ll)a Fl()) 0
- X f (a)tot f 5 (a)) — I X f ](a tot f (@) — %>
conﬁrmmg that the symmetry above is gauge indeed.

However, let us also demonstrate that there are local symmetries which are not gauge,
that is, their associated Noether charges are non-trivial. To this end, consider the massless
Klein—Gordon field:

1

The generator X = % is a symmetry. In fact, X = 35 ¢, so that X£ = 0. But is the local

generator X/ = f(x) 5 A symmetry? We compute the corresponding jet extension and the
Lie derivative of the Lagrangian:

— a a9 2
Xc=|(rf— — ) L= " =9, nt* 222
(42 i) = o 23, -
and we realize that only if f is a solution of the equations of motion, f,,¢* is a gradient,
that is, h* = fH¢. But in this case, the Noether charge is a non-trivial quantity (see the

symmetries parameterizing the solution manifold of the Klein—Gordon field).

7.1 Example of the Dirac field

Free Dirac field £° = L0 = ivy "y, — myy
The Euler-Lagrange equations of motion become:

AL . AL - _

My =iyyt =n"; e —my = i3, Yyt +my =0 (223)
i:O' %:iy“lﬁ —my = iy*y, —my =0. (224)
31//u ’ aw I3 I3

It is assumed (as corresponding to the Ordinary Hamilton Principle) that v, = 9, but
not derived from the equations of motion.
The Poincaré—Cartan form is derived in the standard manner:

oL oL - -
Opc = ——(dY — Y dx”) A O + ——(d — Ydx") A6, + Lo
A Yy

= iYy" @y — ¥odx”) Ay + @Yy Y —my Yo
= il/_/)’#dw A 9/4 - il/_fyﬂl/fuw + ilpy'ullfuw - ml/_fl//a)
= iyy*dy A b, —myyo =iYyy*dy A6, — Ho. (225)
Remark "H is not the ordinary Hamiltonian driving the time evolution. Evolution is driven
by the Noether invariant associated with the invariance under time translation Py = j(%) =
ivy - VY + myry. Even more, if we rewrite the Poincaré—Cartan form in the way
oL

Opc =The ANy = {aw, dy — Yrpdx") + ;T(dw Y,dx” )+£dx"} A, (226)
2 n
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asif 7, ,ﬁ‘c where a “c.onser\./ed current,” the “conserved charge,” [y, do}, 7, [f ¢ Plays the role of
a Quantum-Mechanics Poincaré—Cartan form:

®pc = pdg — Hdt
oL
/E do, The = /Z d3x [T%(dlﬂ — Yodx?) — cdxo]
_ f ExiG70dy — iTy Podx® + (v y, — mip)dx]
>
_ / Sxlify dy — Ty - Vi + miy)de®], (227)
)

with H = iyTa - Vi + my Ty

Coupled Dirac field: £ = L, = iy (Y —i Ay ) —myyr = iy, Dy —mip s

oL
a0 =iy" Dy —my = iy"ouy —my = —yHy A, (228)

L - - L ; - o
=yyrAy—my; — =iyy" = iyt +my =yyrA, (229)
oy Yy

The Poincaré—Cartan form associated with the coupled Lagrangian becomes:

. L
Opc =

23 (d¥ — Podx”) A O, + :—E(du/ — Ydx¥) A b, + Lo = iYy*(dy — Y,dx”) AG,
1/’/1. wll

+APy" (P — iALY) —mPPo = iy dy A b, — iy Yo + ity Yue +ivyr Agvo
—myyo = iyyrdy Af, — ym — y* Ao = iYytdy A6, — Hpo
= Opc +ng[Lw (230)

with g = myy — jb Ay, jh = Uy y.
Integrating again O pc over the Cauchy surface, we have:

/ do, Th = / d3x[£(dw — Ydx?) 4 £dx°)
b b Yo
= /E Exlivydy — ivy vodx® + iUy (W — i Ay — mPdxO]

_ f ExliTy0dy — Ty -V +miy—j A 231)
x

with Hp = iy - Vi +myy—jhA,.
7.2 Brief report on the Group Quantization of Electrodynamics
One way of proceeding in facing the quantization of a system whose full symmetry (to be

precise, the basic symmetry evolved in time) is unknown consists in quantizing the basic sym-
metry that characterizes the Solution Manifold and then realizes the right-enveloping algebra,
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which preserves the representation space (Hilbert space) of the basic algebra of quantum oper-
ators. In other words, the exponential of the complete Hamiltonian will act perturbatively
on the wave functions defined on the Solution Manifold (The complete Hamiltonian is a
constant of motion in any isolated system and, thus, it is well defined on the SM).

This procedure, proposed here, is related to the approach followed in “Landau’s series”
text books when dealing with formal perturbation theory in that which concerns with exact
propagators and exact vertices in the Heisenberg picture (see [44]).

Another way would be that of closing perturbatively the classical Poisson algebra, expo-
nentiating the approximate algebra at each order and applying GAQ at the corresponding
order. This more precise method will not be considered here.

Quantum Basic Symmetry: General case (Space-time symmetry excluded; internal indices
of the matter fields are not explicit)

Since we aim at representing just the basic symmetry on SM and then realize the quantum
evolution perturbatively, we ignore the semi-direct action of the Poincaré group and think of
the arguments of the fields, x, on the Cauchy surface, only as (infinitely many) indices. In the
same way, spatial derivatives do act as infinitesimal translations on those indices, whereas
time derivative of the fields correspond to different field coordinates with initial values on
SM. Roughly spiking, ;¢ is not independent of ¢, although dp¢ indeed is. Nevertheless, we
intend to take the Lorentz covariance as far as possible in the proposed group law:

U'=U'U U=e T Ay =TuAy

All=U'AU + A AL B A = AL + AP+ Lo +
Fl,=UF,U"+F), D¢ = 0, +igAL Ty

o =UD+ ¢ p 5 ¢ =V Tg (232)
P =U""1p* + ¢ Ay =iU, U™ = AR

¢y =0, +U'dy—gAud Uy =iAU; Ul =—iUT'A,

B =+ U\ — 840 |8 = —UT (@ — gALT )

¢ = ¢ceib0(8 8 pibman (8'8) g, = %fz dgv(A;iFUw} — Flmlg

~ 1
Enann = 5 | do™{¢'(U'™'¢% + gA,d") — QU'¢F + ¢ (U'¢p + gAudp) — *U' ™9}
2 s
(233)

It must be stressed that the co-cycle éma 1+ can be written as if it where the sum of the co-cycle
for the free matter &,,,/, plus an interaction term proportional to the coupling constant, that
is:

~ 1
Emart = Emant + EgAu(¢*¢/ + ¢I*¢) , (234)

but the “interaction” term, itself, is not a co-cycle. The reason for this fact is that the unex-
tended group, for which &, is a co-cycle, is a deformation of the direct product of the

unextended groups corresponding to the free matter and free gauge fields. We leave as an
exercise the verification of the co-cycle condition (55) for &,,,;; and &y, that is,

£(¢ 9 +E(g xg.8") & . gxg"—&@. ¢ =0.
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7.2.1 Scalar Electrodynamics

For Scalar Electrodynamics, we have:

¢"=9¢'+¢
Al =Au+A,
Fily = Floy + Fuv §0 = 7 [y doy (A}, F'I ) -
¢'=e"p+¢ Emann = 3 [ do™{9/ (¥ g + eAug™) — de !V g
¢//>k = el¥ ¢* ¢/* +¢/*(efl(p ¢l/- + eAMq{)) _ ¢>kelg0 ¢l/L}
d)//* ¢/* + el(p ¢>k _ eAqu’*
"=t ;etéo(g 8 e té‘mau(g »8)
(235)
Left generators and ® form:
xb=1%
XL” _ % (¢ e 33,*) — Lag FUMB|XE | Ryl =esl XL XY | KL= el XL,
ng = aF + L@rAY — iV AM)E
Xy = e_”"a% _ %e—zw(/,u,,w O =% [y dot{(¢} + A d*)5¢
Xy = ewd,i - ie"p(,b,m“ © +(pp + eAud)se*
Xy, = e*"f’ Gt ae At E —¢* 8y + eAud) — $($); + eAud*))
Koy =¥ 5 + leipira —4 J5 do (A, SFW — FlomsA, )+ 9
(236)
Right generators:
XR—i—z¢—+¢ —i¢ ;
= [Ty
g a9 dg* 3¢ "oy
- ad 1
R __ ~ [vi] =
= — — F =
Ay dA, + 4""
~ d 1
F = — —(A"A” — AV AME
W 9F,, 4
~ ] d 1
XR = — A, — + — (¢ + A pPAME
¢ =39 “a¢ﬂ+2(¢“+e u )i
g _ 0 L0 1 PRy
o* = ?ﬁ —e Mw—f-i((bﬂ-f—e M(l&)l’l =
~ a 1
Xy, = — — —¢*AHE
"= 3, SO
X 0 lgw‘" (237)
* = — —¢pn" &
YT agy 2

with structure constants which are the opposite to the left ones.

Noether invariants:

i”R® =
X‘ﬂ

1
5 (0@ +eAud™) +i0" (@ + eAug)

+id P —id*ud +iep*pA, — ie¢*¢AH) n*
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= S @ 9. — B0

. 1 N 1 . . 1
l;(ﬁM@ = ZF[W]nU + ZF[W]nV —e¢p*pnt = E FURIG e pit
1 N R N R N R
igr ©=—=(Auny, — Aviy) — =(Apny — Apity) = Apiiy, — Apiy
Fuv 2 2
) 1 e . 1 R 1 N
l)‘((;e@ = <§(¢Z +eAu ™) + EAMQS*) n* + 5((]5; +eApMnt — Eeqb*AMn“

(s + eA )it

lef*@ = .. = (¢ +eA p)at
op © = 1 * 1 KNAUL AL
ngu = (_Ed) - E(b mt = —¢n
igr © = —pn*t . (238)
e
Note that the commutators [ X f . X R] —eXR b will only imply the quantum commutators:

[Ao, ¢ =—ed, [Ao, ¢*] = —ed*, (239)
where the association of right generators with quantum operators is:
Ao~ KB A~ XR | By~ RE, G~ XE

¢ ~XE G~ XL, §*~XE ¢~ XE. (240)

7.2.2 Time Evolution from the Solution Manifold

The methodology to be here sketched is quite general and can be applied to any physical
system whose basic operators do not close algebra in “finite”” dimension with the Hamiltonian.
In that which follows we shall consider the time evolution of either a classical function
f (g, p) on the classical Solution Manifold or a function f(g, p) of quantum operators
q, p represented on (polarized) wave functions W of classical variables (¢ or p, or some
combination). In the same way, a bracket [ , ] will mean Poisson bracket as regarding
classical evolution, or quantum commutators in the case of the quantum evolution.
Schematically: (Time evolution by Magnus Series [45])
With a given function on the solution manifold we associate the following “evolutive” version:

F(g. p) on sm SOMIYEYeISION L UM Fy = 2OF,  (241)

where

FO = F(07Q’p)Ef(q7p)
Q1) = lim,_, Q" ()

By
Q) = 20— 5 / dtladQ[,, . )( H(t1)) (242)
where By are Bernoulli numbers and the “powers” of ad y means

ad}(g) = ¢, ad}(e) =1/ gl ad%(g) =Ilad' (o), gl. (243)
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Magnus series (versus Dyson-like series) offers “unitarity” even at finite orders (at the
classical level we would say “symplecticity”).

For t-independent Hamiltonians, as corresponds to objects on SM, we arrive at a rather
simpler formula:

F(1) = Egioi?t—ﬂkadg(fb), (244)
which constitutes the Inverse Hamilton—Jacobi transformation by H.
In particular, we can compute the “arbitrary-time” commutator of two (field) operators
AP0, AP K. O] = [UOAP U D), UOHAPEUTE], (245
or the exact propagator of the field A as
D(x,x") = (0|T A(x)A(x")|0), (246)

where T stands for “time-order” in the traditional way, to be further developed in terms of
the free propagator D(x, x').

8 Massive Gauge Theory

Weak Interactions were originally described by a “current-current” term in the Lagrangian to
account for the property of being very local. To turn them into a gauge theory would require
a very massive intermediate particle, a fact which makes quite difficult the corresponding
renormalizability beyond the Abelian case [46]. To avoid this difficulty, a mechanism [47,48],
imported from solid-state physics, was introduced in Particle theory [49]. For a review, we
recommend Ref. [50].

8.1 Giving dynamical content to the gauge parameters: Massive Gauge Theory and the
Generalized Non-Abelian Stueckelberg formalism

The group G' (M) of the 1-jets of G(M): We start from the local or gauge group G (M) as
the group of mappings from the space-time M to the rigid symmetry of a supposed matter
Lagrangian L.

As in the case of the formulation of the variational calculus, where we construct the bundle
of 1-jets of the sections of E, I'(E), we proceed in much the same way with G (M). We think
of G(M) as if it was a space of (some sort of matter) scalar fields on M, though valued on a
non-flat internal space. Then, we construct

JI(G(M)) = w

)

~

1. . . .
where ~ is the equivalence relation (quite analogous to (89))

. m=m'
(g.m ~ (. m) g(m) = g'(m) (247)
d,g(m) = 9,8 (m) .

JY(G(M)) has dimension dim M +dim G +dim M x dim G and can be locally parameterized
by {x*, g%, gb}.
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We now consider the group of sections of the bundle J LGewmy) - M, GY(M), parame-
terized by {g“(x), gﬁ )}

Group Law:

g (x) = g'(x)gx)
g x) = g, (0)gx) + &' ()gux), (248)

where g, (x) above is not, necessarily, ,,g(x).
Equivalently, we may define new coordinates:

g g, gu g lgu=A4,. (249)
Notice that, now, A, is not, necessarily, g‘1 g = 95 OLx) = Olf (x)dx*). Explicitly,
the left-invariant canonical 1-form on the group G (M) is written as
oL@ (x) = 0/ ()dg” (x) = 6,V (1)8,.8" ()dx" = oL@ (x)dx" (250)
with G,f(a) = 9,f<“)a,igb . In terms of the coordinates {g¢, A,(f)(x)}, the group law reads:

g'x) =g x)gk)
Alx) = g ()AL 0 + AL (). 251)

Note also that the group G (M) is naturally contained in G' (M) by means of the jet extension:
FN(G(M)) € G'(M). In fact, if the element A;L (x) in the group law corresponds to a jet
extension

A@) = ¢/ ()AL @) + g ()8 (). (252)

Then, if we think of A, in the group law as an ordinary Yang-Mills physical field, of g as
an ordinary gauge transformation, to be call g, and of Aﬁ as the transformed of A, A;L, we
can read:

AL () = g(0) AL () + g7 ()8 (x) (253)

just as corresponds to the transformation law of a physical Yang-Mills field.

Ordinary connections can be derived from G ' (M) by simply taking the quotient by G (M)
(that is to say, by j1(G(M)) € G'(M)).

However, we should not take the mentioned quotient but, rather, A, and 6, will live
together and they will combine in the proper way in due time.

Massive Gauge Theory
We may repeat Utiyama’s theory on the grounds of some exotic matter g% (x). The action
of G on the scalar fields g¢(x) proceeds as the own right action with generators X (Lb). This

way, the generators of G(M) on (g¢, Aff’)) take the expression

DX = fOxE + (rPcp A - o, o (254)
(a) (a) bc EP aAl(f) s
and the minimal coupling is realized as
gy — i+ ADX, (255)
to be compared with the standard expression for ordinary fields
or > @t ADXE (=t + ADXY o). (256)
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It should also be compared the expressions of the group generators acting on g and ¢:

linearity g 0
o

3 el
X(a) - X(a)(g)@ vs X = X‘(la)((p) A

the main difference being that now X (Lal; (g) is an invertible function (though nonlinear, in

general) of g. In fact, the inverse matrix is [X Lb)]_1 = QbL @ 1) This means that the minimal

OL(a)

coupling stated in terms of 6, instead of gl‘i, becomes:

L(@ L@ 4 A@
oL@ s L@ 4 A (257)

which is an affine coupling (it is not linear in g as ¢, + A, @ was in @).
So then, giving dynamics to the “exotic matter” g through a kinetic term in the
Lagrangian, L« 47, of the form

2L @oL O pivky, = ;20““)9“‘ Lp2re

@ =34 Tacl0™01, 258)

1
L“mart” = 5 n

the Minimal Coupling Principle provides mass to the fields A, without damaging gauge
invariance !!. (In the expression above, 1, stand for the metric in the space-time manifold
M and kg, for the Killing metric in G).

In fact, L£«,,4» becomes LA“ma,,-’:

A 1
Lomarer = SO = ALY

A
SH O @ ~Aw) (259)

which contains the mass term %,uzA,(f)Af;). It is a Minimal coupling with affine character.
This Lagrangian L« ,;;» addresses part of the Non-Abelian Stueckelberg Lagrangian in
massive gauge theory:

A 1
Cuym = Loma + Lym = 51> O — AP0 — Al — 4F,£‘;>F<’;§ (260)

After the change of variables Au =U T(AM — 0,)U, that is, the “unitary gauge”, this

Lagrangian is written

Lyym =— 4F,5“J (A)FlL) (A) + MZAWA’(;),

as corresponding to a Non-Abelian Proca Field.

(261)

8.1.1 Standard attempt to the quantization of massive gauge theory: Nonlinear Sigma
Model (N-LSM)
The Lagrangian £, = 10”‘1)95;; = IQR(a)H(I;L , then chiral) is usually referred to as
o —Lagrangian, the origin of the name belng traced back to the low-energy models for strong
interactions, where a set of field (o, ), SU(2)-valued obeyed a Lagrangian of this kind.
The Euler-Lagrange equations for £, = % 8abn™’ 00 9,¢", where Lab = 9§”>91§d>kcd,
kqp = Killing metric in G, become

O¢® = Log* or 90 =0. (262)

A similar scheme, but with external scalar fields ¢“ behaving as our g¢, had been consid-
ered in the Literature in an attempt to make the massive gauge theory renormalizable. This
scheme is called non-Abelian Stueckelberg formalism as it generalizes the Abelian case,
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+ "radiative" diagrams

+ "radiative" diagrams

+ "radiative" diagrams involving
the Higgs field

Fig. 12 The role of the Higgs field

the Massive Electrodynamics, introduced by this physicist. The main difference is that the
Abelian case is renormalizable under Canonical Quantization whereas the non-Abelian one
is not [51,52].

Canonical Quantization renders divergent the amplitude for processes of the form (L
stands for the longitudinal components of A,,)
where (A:;, AL, Ag) are the gauge fields associated with a “root” of the semi-simple group
G (Fig. 10).

In the specific case of the Standard Model, it would read:
and the infinite contribution has to be substracted by means of processes involving the Higgs
field (Figs. 11, 12):

8.1.2 Brief note on the Higgs—Kibble Mechanism

A conventional field has a self-interacting potential V (¢) = m? |@ |2 (like the spring potential
V(x) = kx?) (Fig. 13):
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vy ~ V@©=mil

Fig. 13 Standard self-interacting potential

V(@) = lol >+ Mgl

/N v/ o
S

Fig. 14 Potential with degenerated vacuum

but that of the Higgs field is a bit different, Vg (¢) = w22 + rlpl, corresponding to

an imaginary mass (Fig. 14). The minimum of the potential is degenerated, at a distance

V= — “72 of the origin, which implies that we have to decide which one should be the best
1.

“We break down” the symmetry by moving the origin to one of the local minima:

¢=v+n (vconstant) — Vy(¢) = —2u2n2 +.. = m% = —2u2> 0.

When ¢ couples to a field W, according to the Minimal Interaction Principle, the inter-
action term |¢|? turns to v2W2 + ... giving mass to W,.

In the same way, coupling ¢ to a fermion v ala Yukawa, that s, kY, the displacement
of ¢ leads to the mass term x v/, where « is a constant, providing the mass «'v to the fermion.

General case: G semi-simple group of dimension r
H € G of dimension s, preserving the vacuum

¢ representing G in dimension n
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n (Higgses) n — (r — s) massive real fields
& (Goldstone bosons) r — s massless real fields, which will be gauged away

A, (massless vector bosons s

A, (massive vector bosons) r — s

When n = r we shall have as many n’s as A,,’s (n-(n-s) = s), provided that n > r, of course.

8.2 Group Quantization of Non-Abelian Stueckelberg Field Model for Massive Gauge
Theory: Thinking of SU (2)

The original non-Abelian Stueckelberg model was addressed by the Lagrangian given above
(260)

F@ gy
0 = Aw) ~ 755 Flo

Lyym = Lomar + Lym = %MZ(G,S?) Ay,
but O,Sa) were made of external scalar fields ¢® (x) behaving under the group G just like the
own group parameters ¢“(x) do.

Here we just turn ¢ into group parameters ¢ = g“ and find the complete group law bearing
the corresponding Solution Manifold as a co-adjoint orbit. Then, we apply GAQ instead of
CQ [53].

Inspired on the symmetry of the particle S3-sigma model we directly guess the proper
symmetry for the Massive Yang—Mills field theory associated with SU (2) gauge group
(generalizations for other semi-simple groups are also possible).

The o-sector is the more relevant one. The £SU D iocal group law (a central exten-
sion by U(1) of a group LSU (2);pcq1) for elements of the form U= W, v, U~ 1 Zy) ~

(¢%, 9( ), zZv), U € SU(2);pcq can be written in the form:

1
" (%) = p(X)g" (X) + p' (X" (x) + fn“bcw’b (X (x)
0,7 (%) = 0, ) + p' )L (x) + n La# (00 () + %zM ®)¢” (%)

A
4

¢ = et S5 40" 16 =Dz (0 —¢" ®65” (%)3ap]

¢ (x)
4

(%) = 2,(x) + 2u(®) — 9“0 )8 p(x) =,/1—

x € ¥ = Cauchy Surface .
(263)

Note that (¢, 0, z) is a non-central extension of (¢, 8) by z.
*##*% Remark: The unextended local group £SU (2);5cq1 can be formally rewritten as:

1 b -
En,"bcw’ ¢°

A
0/ =0/ +{(1 — MR(@)E + 1X (@)} + Zgo/”zu

(p//a — pgo/a_i_p/q)[l_’_

=2, + L+ A" = 1)z — 200 8ap . (264)

where R(gp) is the adjoint rotation in SU(2). For A = 1, we obtain the (generalized) gauge
symmetry of Massive Yang-Mills fields, whereas for A = 0 we recover the ordinary gauge
symmetry of the Massless ones.***
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Complete Group Law: (Including the Yang—Mills fields)

By U, we shall understand U = (U, U,U~", z,) = (¢%, 9}}’), Zv)

U'x) =U'®xU® (=0, =U0,U"+0,+00): 2, =z, + 2, +0()
Alx) = U'®) AU (x) + A, (x)
F,(x) = U'X) Fr (U F(X) + F, (X)
¢ =¢'ret [ dotJ, (O A" F';U,A,F)
1
Ju= I 4 IT = SUAY = 0" U FW U = FL U AT = 01U

+U'(Ay = 0,)U"" — (p' — Dz, (265)

Lie algebra commutators: Sigma Sector

[Xprs Xppyy] = NapXoend(x —y)

1 .
I:X(pa(x), Xelib)(y):l = EnfabXQ,(f)(x)s(X -y + SaszM(x)(S(X -y + (Sab(SMoX;S(X -y)

[Xéé“)(x)’ Xe(ﬁb)(y)] =0
1
[Xpe00. Xzun] = 15000 x—Y)
[ Xy Xeum] = 0. (266)

It should be remarked that X« are non-basic generators; they are derived, as operators,
1,2,3

from Xya. Note also that the pafémeters z,,(x) do not contribute to the SM.
Adding Vector Bosons: (only nonzero commutators)

I:Xwa(x), XAZ(Y)] = nagXAL(X)S(X - y)
[Xwa(x)» XE_?(y)] = Nap XEs 0 +3ap0j8(x =W)X, Ef = Fy;
[XAif(x» XEi’(y)] = 8ij8apd (X —y) X . (267)

Massive Yang—Mills fields interacting with Fermionic Matter

As commented above, the relevant modification concerning the quantization of massive
Yang-Mills interaction lies on the vector boson sector. Let us justify this fact by looking at
the group action of this sector on the (Fermionic) matter fields.

The group law of the massive gauge symmetry must be completed with the Fermionic
sector in the way: (U acting on ¥ is assumed to be the standard linear action. The arguments
of the fields are omitted whereas no confusion could arise)

’lp_// — U/'l/f +1///
Y =U Yy + U+, . (268)

Then, the full expression of the generators of the symmetry group (omitting the local indices
for the sake of simplicity) is as follows:
X 4 5 9 9

9 0xb 9 3
_ _yb 9 @ ¢ 9 o B_° B % ya B 2
X@) = Xpo = X{, 37 + o Oh 2l + X(p¥ By + g ouv ave Xs Vi ave
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ad i
o _ d _ : :
Yo, = Xe,(f’) = be)X(C) ool | X‘("a)ﬂ = EU&W (Pauli matrices)
m
1 3 IX{,
7" =X, | 98 o, (269)
8¢H ag

reproducing the £SU (2);ocq1 Lie algebra (266). In fact:
B 0 ad 0
2 m d c d no_m
(X, Y] = Xpy = agn XX @500 ~ XX 78('0(1 (Trp’" Xy ) W

- 1 8 3 3
b . a ﬁ U a b c

—_x¢< x4 ii n L_XC d aX(“)ﬁll,ﬂ 9
() (C)a(pd a(pd (u)a(pﬁ. ) (c) awa

1 .0 1 X ()/3 d
—Sap | =po¢— | — =n,Y" — x¢ x4 DLy b
ab <4P‘/’ %) 2" Yo = XX 5 a v oy

1
= —8upZH — 3 Mab. cyt (270)

(c)
as expected!!
Then, neither X gl = Y(‘Z )» hor the extra generator Z*, act on the matter fields; they only
"

affect the Goldstone sector.

8.2.1 Electroweak Interactions: Some remarkable new facts

Electroweak interactions are mediated by a vector potential B, associated with the invariance
under a local U (1) group, as well as three massive Yang—Mills fields W(i), W,io), associated
with a local SU (2) group. However, the rigid symmetry is not properly the group SU(2) ®
U (1), but a particular mixture where the U (1) subgroup of SU(2) and the external U (1)
group combine in a way intended to provide a final electromagnetic vector potential, and a

new W,SO)—like in the form:

A, = sin(ﬁW)WlSO) + cos(¥w) B,
Z, = cos(z?w)W(O) —sin(Pw) By,
W = & (271)

with a certain angle ¥y named Weinberg angle.

The mass of Z,, and W&i) will be provided through the generalized Stueckelberg mech-
anism associated with the new SU (2) subgroup.

Denoting the new (after the Weinberg rotation) rigid group SU (2) ® U (1), we shall call

2SU2)iocal é U (1)1ocar the relevant (unextended) symmetry addressing the electroweak
interaction.

** There is, nevertheless, an obscure handling in the Standard Model in that which refers
to the Weinberg rotation, mainly if we pretend to describe the quantum theory by means of
a Group Approach: The Weinberg rotation could not be performed without the associated
proper rotation in the Lie algebra and, accordingly, in the SU (2) ® U (1) group, thus leading

to what we have called SU (2) é U(l).
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Fig. 15 Quantization of the
Weinberg angle

In fact, a proper geometric analysis of the possible mixture of the involved U (1) subgroups,
the Cartan subgroups, concludes that ¥y should be quantized with a non-trivial ground value
of 30° (Fig. 15).

Graphically, this can be easily depicted by looking at the possible closed geodesic curves
on the Cartan Torus taking into account that the “velocity” in one direction is twice than in
the other

** Another remarkable fact related to the group approach to quantization of the elec-
troweak interactions is that the mass generation in the Stueckelberg-like treatment involves
the vector potentials but not, a priori, the Fermionic matter. Then, we have to be able to
provide some group-theoretical algorithm to give mass to fermions.

In fact, as will be widely developed in the last chapter, devoted to possible generalizations
of the gauge formulation of Gravitation, we resort to another mixing of the rigid symmetry,
that time involving the Electromagnetic U (1) group and the Translation subgroup of the
Poincaré group:

T @ U(1).

This mixing leads to a momentum operator P} = Py + « Q, combining the old energy and
electric charge, so that the new mass operator for a charged fermion v is:

My = (g + 2mox Q + k> Q).
Then, for “originally” massless particles (mo = 0) we get
M2y =20%y . (272)
This mass-generation mechanism might be further developed involving more “sophisticate”
mixings.
9 Gauge theory of space-time symmetries

As reports concerning a gauge approach to Gravity, more recent that the pioneer papers by
Utiyama [2] and Kibble [3], we would recommend Refs. [54-58].

9.1 Generalization of the Gauge Invariance Principle
General global symmetries are generated by vector fields of the form

B a . .
X = X&)(x)ax—u + X‘(xa)ﬁwﬂ W (linear action on the fiber) (273)
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Iz
where X @

are function only of x*. This fact causes essentially two new phenomena:
a) Lx,o=23,Xgo#0 (in general)

b) X -contains new termsin X(,

so that f X ,)(Lw) is now much more different from f X (a)(Lw).

The Lie algebra of the local group G (M) also departs from the tensor product (M) ® G.
In fact, given two generators X (4), X(p) in G, the commutator of the corresponding local
generators is:

3g 3f( )
[f X, 8P X = f 9P X0y, X1+ X = i X0 — Xy~ PPTRAC)
Iz I
— f(a)g(b) (Xv 8X(b) _xV 8X(d))+<f(a) 3g _ g(a) af(b))xv x* 9
(@ gy ®) v ox? oxV @20 | gy
ag© af© 9
(@) ,(b)~ ¢ (a) _ gl = v a
+(f e, b+(f A )X(a) Xl 35 (274)

Note that since X, is a function of only x*, the action of f @x (a) ON space-time is of
the form:

F@Omxk

@au—fw>—— (275)

This means that the space-time action corresponds to a subgroup of Diff(M). The vertical
action, however, remains as in the internal case, that is,

g(M)vertical ~ ]:(M) ® gvertical )

Therefore, the general local symmetry algebras are contained in diff(M) ®g G(M)vertical
with commutation relations (semi-direct action):

9 T dgh afry\ 9
[f“(’”axﬁ 0| = (f” it a)T
9 8 9
(a) (a) ,(b)
[fa (X)Xaa a ot’g (X) (b)a fa C X‘(xa)aw
KR f<“> KB

As a consequence of the differences above with respect to the internal case, we have to
introduce compensating fields Aff) with modified transformation properties, and also new
compensating fields, noted hff,? ¥, both sets associated with each generator of the global group,
as before.

The transformation properties of {A'", h{%"} must be:

f @

Xy =54 = fOc, AL — o —Af,“)aﬂ(f(b)X” ), (277)
8f(“
= sh@v _ (a) Q) i <b>(>
Xya = 0hii)" = =8, + Wi 05 (SO XG) = f ROY . (278)

h(a)v

The expression for 8k, can be taken to the form:

b
8f L gy +Mvh(a)a Moh(a)v Bf() o h(a)v

— sp@v _
Xh}fg” =0oh,, = Sxi P o™ up u'top gt ®©)Top >
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where

v
w2 7 +f<b>%
o 9x° () dx°

is the expected transformation matrix for a tensorial index. This means that only the v index
above is tensorial!!. The final expression for the local generators is:

FO% = X+ X 0 —=

(@ + X, @y — -
Al e gnlY

a d
— f(ll)X“ 7+f(a)X?a)/3(/’ﬂ7

@ g xn A%
af@ af® X7 P
by a 0 _ _ pAl@yv _ ) pla) D)
+(f o = G~ A K g TS ) G

b v o
n 3f(“)8u n af ¢ )h(a)GXU n f(b)(aX(b)h(a)(r _ aX(b)h(a)u) 0 .
gxm P gxo kP (b) gxo P gxH P 3]1;:1'0)11

(279)

Utiyama’s Theorem
As in the case of internal symmetries, the theorem of Utiyama will be established in two

parts, one for the matter Lagrangian, the other for the Lagrangian driving the compensating
fields.

Utiyama’s Theorem I: Given a matter Lagrangian L, depending on (¢%, gaﬁ), the new
a)yv

Lagrangian Zmat (9%, (pl‘i, Aff), h,(Lp ), invariant under the local algebra G(M), describing
the dynamics of the matter fields, as well as their interaction with the compensating fields
{A,(f), hffp) "\, takes the following structure:

Limac(@®, ¢ AL 1D") = ALma (9%, 02, AD BOY) (280)
where

Linatt (0%, ¢ A WOV = Lonan (9% kp (0 + AL XE, 50P)),
Vo gV (a)v yo
ky =0, +hjio X -
A =det(gl), (281)

the objects q!' being the inverse Ofk;li’ ie.,

kyay =8,
kigg =85 .

Proof Since space-time transformations can modify the integration volume, the invariance
condition on the action now means:

SO X (ALmat) + ALmadyu (f X)) = 0. (282)
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Otherwise, the proof follows the same scheme. Let us consider the change of variables x:
Y =
D% =k (9 + AVXE 50" = @) + RV X)) (@ + AL XE 50)
B = A
H{) = h{)7 (283)
and the corresponding change of the partial derivatives:

a a

= KBOXE

dg® P + (@) 8@5

9 0

dpr V9D

3 d 3
— = kXY P

@ @ @p
dAY By DY
S - X{, )q%“a— (284)
= Lo :

omnT  oHS T P

Using this change of variables, we can write:

Linat (9%, 9%, AL RD") = Linat (0%, k} (0 + AL XY 10P)) = Linat (D%, D)
= Lomat 0 X (9%, @5, AW B . (285)

Let us compute f(TX(a)Zmati

2 2
+ L OX O (o LB XD, )

)P Oy )

f(a)X(a)ﬂmal = (f(a)X(a) dxh

X"
by @
(f X0 @) = B X(y, @) = [ ——E (] @

af @
o Xl (@] @G — Bé’”X:’,,)ydﬂ)

v 0'

_B(b) X%

by
af @

o
o Xawp

(I)V) —

3f(a) 3f(b)
B (b) () _ v pla)
® )k” ;UG B — S — S Xy B

of @ Y p@
dxr gxw T DTV

Xy
b .
f(b) ( ) (u)) (a) + (f(h>cbacB;(f) —

af® v af @ g®o

X/, 9
() (b> (a) B v
-f Bk Xiawp® 5ga + Goui S0 t e Hin' X@
P
Xy D¢ 9 af® af@
(a)_ (@) HW®o _ ra) (a) H(b)u sv H(b)axv
e M — )aH,ﬂ},’)“ Sl @

X! 9
+f@ - (:) HD — f<“> (a)H(b>”)X(b) K aq)y) Linat (%, @)

? 9
_(f@xn ) B @ g
_<fax“an+fax7a)ﬂ¢ gor T X

0X?
f(a) (11) )

7 )cmm(@“, %) =X)Lt (%, D) (286)

@ Springer



304 Page 68 of 85 Eur. Phys. J. Plus (2021) 136:304

Then, the invariance condition (given that for an arbitrary field Y, Y(Aﬁa)) = Y(Aﬁ)w +
(divY)wAL)

FOX ) (ALt + Almar 0 (f X () = 0 (287)
becomes:

AFDX ) Lonarr + Lmart fO Xy A + Almare Xfo 0 f O + Alopars f @, Xy = 0
or
Af(a)(X(a)[:matt + Emalla X(a)) + [:Amatt(f(a)X(a)A + AXZI)ap.f(a)) =

where the first term is zero, due to the rigid invariance, so that

SOXa A+ A3 fOX() =0, (288)

For the sake of simplicity, we shall assume that A depends only on the fields hffg " but not
on their derivatives. This way, the expression (288) reduces to:

) (b) p
(af(a 81) + af hl(lale'Xz) f(b)( X(b)h(a)a _ aX(b)h(a)V)) aA

axH P 9x° oxo K axw P ahl(fp)"
af@ u
+AS X, = 0.

Since f@ are arbitrary, we can factorize the functions and their derivatives:

X} 0X? dA
o . (0@ B, @ _
w SO (S P - hUaPV) ah(;‘,i” —0 (289)
b U v 808480 + h'O7 X}, +AX%, =0 290
) yo ¢ Gudpdy ®) 7 @v (a)v =0 (290)

= Xx? A Egs. (289) and (290) become:

Taking into account that (a)u (@) 3R, °

90X} X% .\ 9A
ke O o “”) ~0 291
0 (k2 -k e (291)
A
b) X(h)kz ok, + AX(b) 0, (292)
whose solution is (save for a constant):

A= det(q;) . (293)

[m}

The generalized Minimal Coupling Principle claims for the replacement of 9,,¢% with
the generalized “covariant” derivative:

b
D¢ = @y + AL X(p0" + hiia" X000l + hiig" Xy A Xy 0"
= o + AL XG50 + hDXE 0
= k(o) + AL XY 0P) = k) Dyg® (294)
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where we have introduced the notation A,(f) = kl‘iAf,“).
Big Remark: The compensating fields h,(fg” are not of common usage. We have introduced
them in order to generalize more properly the theory of internal gauge symmetry: this way,

the pair (Aff), hg:,)g) is associated with the generator X, of the rigid group. However, the

fields h,(fil“ always appear in the theory in a sum over the index (a), so that the association

of the field hfj’(}” with X 4) loses consistence. In fact, it is possible to sum up all the #(@’s in
a simpler quantity, precisely k), = §,, + hfngX ()"

The objects k/‘i will recover an algebraic role as associated with the symmetry group under
a slightly different viewpoint (see below) and, for the time being, they simplify in general

the transformation properties. In fact, the variation of kl‘i, 8k,‘i, restrict to:

aF@ X! aX¢
Xi = 8k, = XU kG AR (k” —9_ k”—(‘”)

" oxe Hogxe 7 dxk
aX¢
= k7o (fOX () — ky f O (295)

Let us repeat Utiyama’s Theorem I, very briefly, in terms of k,”i:

Given Ly (9%, gaﬁ) invariant under G, the minimally coupled Lagrangian
Linart (9%, 9%, AL k) = ALmar (9%, k), (97 + AV XE, 50P)) , A = det(g),

leads to an invariant action Sya = f a)A[Ema,, .
In fact, the change of variables

q)()l — (pa
% =k (¢ + AVXE, 500
@ _ 4@
B = Al
K, =k, (296)

accomplishes the same task as before, that is,

FDOX ) Lonart (9, 9u, A k) = F DX () Lonare (D, ) -

We must find now the structure of the Lagrangian driving the dynamics of the fields

(A k) themselves.

Hoo P
Utiyama’s Theorem II: The Lagrangian Lo(Aff), Aff,)v, k. k,, ;) of the free compensating

fields invariant under the local group G(M) must be, except for a factor A, an arbitrary

function Lo(T ‘LU, }'v(i?), where

T =T — A kB XG,) — k9, XT,)

T‘TW = qg(kf’rk; — kﬁ’rk‘f)

Fi9) = kpkG FL (297)
and F is the already known object

1 :
Fl) =A@ — A — 5C,,”C(,ax}f)Agc) — AP AD).
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Proof We require that

FOVay (AL0) + ALodu (f@X[) =0
or
AF@OXay Lo+ AL f DX () + Lof @ Xy A + ALK () f© =0,

from which, the first two terms fixe £(, whereas the other two fixe A, as before. Then, let us
solve

axH
F @Yy Lo+ Lof @ —L @

oxH

Using the standard expressions for jet extensions:

0Xpy  IXey, a(f(“)X(a)

__— v B
Xk,‘i.a T 9xo + akg &0 Ix° M,P
0X 0X b xP
X o = A AL by _ 9(f X)) A@
Aff),, oxV 8A§)b) PV 9xv M IR
we have:
n
aLy aLy dLy — 9Ly 8X(a)
X, — + Xey > + X @) ——— + X + Lof@—=
A ga@ T g T Al g g@] T e g oF " axw

af@ af® X AL,
— Bye a A0 _ _Al@xv _ £) p(@) (b) 0
a (f et = e — A X G ST A AL

o x xe f(a) -}-f(")(k” 8X"a) o BX(a)) Lo
(@71 g xo “ooxe 7 oxr ) ) ok},

PG 52 F@ X0 9r® 52 £(b)
+< f €, A0 I y@w df @0 O°f

axv xiaxy 0 gxv axw ¢ T gyugyy
2v0 0
i @%b g0 X +f(b)(c a4 _ X(b)A<a))
Coaxv 0 gxm O dxryxv Y gy O
b
_ar® 0 AW _ af A@ f<b) <a>> Lo
s b
xH v ox (b) XV 3A/(f)v
OXior 0 08 0 PO OO 0 Xy 0K
axo M gxb X RaxP9xe ' 9x© ( K oaxt O gxn )
L@ (k o Xl kua’((a) kX af o (x ax(va) , X0,
“a Ogxo "0 gxrgx @ g Ko axt "0 fxn
3f(a) P v (a)aX(a) v 9Lo (a) (a)
— o Xk I 5k ) ot +f Lo=0. (298)

Since the functions f@ are arbitrary, we arrive at the following system of differential equa-
tions:

X AL 90X} X% N\ 57
®) . C, 4 A© _ A(a) (b) 0 k () _k (b) 0
A ( be O fxnr 3A§f) + #9x? 0 ok},
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ax? X’ a2x? 9
+<Cb”cAff,)u A0 0 y@ T @ T ) 0

0, :
Vo 9xk P xv dxHxV aAEZL
6
ke Xy XG0 X e
“axfaxe axeaxe 0 k0 TOT axn
AX? N\ oL axh
v b) 0 (a)

- L =0 299
1P gxo )ak;,(, NI (299)
af® Lo oo, Lo

b) S — AWxY Tk xy
axf b vo2b) BAé“) () dky,

o o
+<519)CbacA£f) _ SZA»?)% _ 5€A(G)% —_s0pA@ xP

axV P gxh np,v(b)
)
0@ xo VLo (1o ax(“,,)HH(kan(vh)_kvax(b))
) Y PRGN P pY
oL
0 0 o 0
+k/L,GXFb)_80kZ,pX(b)> kY =0 (300)
nw,o
32 f® a @ yp 9Lo Lo 0 on L0
c) ax? 0y +AVX N ———+ —— | -k Xy ———
9x0 b p (b 3A((;a,(), 8A((ff; 1 (b) kY,
0Ly
_kUva = 0 . (301)
Iz ()3",3,9

Equation (299) establishes the invariance of Ly under the rigid group G, and using (301) and

then (300), it is proven that Lo = Lo(7" ‘;w, F ,(ff,)) , so that the action for the compensating
fields becomes:

So =/L0a)E /ALO(T;W,?;‘Q)Q). (302)

Note that the tensorial objects 79, |, F, @

Jov» Fuv naturally appear in the commutator of covariant
derivatives:

[Dy, DIp® = T, Do¢® + Fl5) X 50"

and their tensorial character is manifest when they transform under the local group:

0X° ax’ ax’
(@) (@) (@)
879, = f(“)(x)< 8x§ T, — W‘j 7%, — axj Tjw) (303)
ax’ ax?
. b b
57 = 1@ (Cb“f&‘v) — - 3;”)?&“,3) (304)

In terms of the fields {A,(f), k;‘i}’ these objects are written in the form:
79, ="T%, - A%3,X7, + A%0,X7,
1 . .
i) = ALK = AL KG = SC (AP AL — ADALD) = ALTS, . (305)

[m}
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9.1.1 Geometric interpretation

The objects g l‘i and the inverse, k%, can be given the role of tetrads, so that we may define a
metric tensor g in the form:
Suy = 61,(161577@ , g,uv = k(lrLk;nap ,

where 7 is the Minkowski metric tensor.
We also may define a connection I" compatible with the metric as:

re, = q;j(Ag@apx?a)kg —kJ.). (306)

The compatibility relies on the metricity condition g,,,., = 0, where the covariant derivative
; 1 is defined as an extension of D,, such that

Qo = Dokl + T kS (Dykl = kb — A9, X7 k). (307)
This constitutes a metric-affine theory equipped with curvature and torsion:
Rp(r/w = Fp(rp.,v - Fp(ru,u - Fpkur}\(rv + Fpkvr)h(ru (308)
90;/.1) = FG,u.v - FUU;}. ’ (309)
which can be written in terms of the arguments of Lo:
R, = kbalqlqs Fad 0 X0, (310)
0%, = k§ahay T, . (311)
(T is not the Levi-Civita connection associated with g, nor R is its curvature)
Equations of motion of k! and A/(f):
We start from the total Lagrangian L;,; = I:m,m + Lg, where
Linat = ALman (9%, k}, (05 + AL XE 50F)) (312)
Lo = AL)(TY,,, FS) (313)
— v aA Vv
A =det(q)) (317‘ =—Aq)). (314)
The Euler—Lagrange equations of motion for k, A are:
dLo Lo 0Lo
K 2A KEF@ — A q°T", +2A gg kA1
v 3]:5?,) o7 A aT(:M ne oAp 87—%” 0%p" Au
d 3£0 Ao v v
T (2A 87_);]‘) q,ky | —q,ALo = =T, (315)
aLy 9Ly d aLy
(a) . uph e A0 n 6 _ ¢ _ oM
Al 2A © kpkyC, A, +2A 570 kpy 0 X (4 T 2A7(a) =S
op op afp.v
(316)
where the matter currents are given by:
L aL R
v o matt matt v
TH’ = W = qu: (WD(T(OO( — (Saﬁma”) (317)
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L L
w _  Obman o Vemart g B
Sw =@ = Mgy g K@sd” (318)
"

For the special case Lo = ALy (]—',(ﬂ,)), the equation for k soundly simplifies and generalizes

General Relativity equations for nonlinear Lagrangians:

oLo 5 @ 1 1
k ——q'Ly=—=-T". 319
aF@ T T 2T T e
Note that for the linear case Ly = Affff,v), it becomes:
1
Fi7 = B FGT = —AT T (320)

which looks very much like R} — 18R = T}" 11 (T} = T/

Conservation laws: Given the matter Lagrangian £, (9%, (pff), invariant under the rigid
group G, we derive the general expression for conserved currents:

oL
o M XM Lonar - (321)

(rigid) _ 3£matt o
v 3<pﬁ (a)

J = - of + X0
(a) (@)B (a)
a awg

The local symmetry permits the construction of extra conservation laws for ( or identities
among) the currents above ’27)’ S S(“a):

T = 0TI + 067,08 = FYSG, (322)
n no_F 0
Stayn — Sy = T apdh Xk . (323)

where 7\ = kb 7., 6, = 0% -
9.2 Gauge Theory of Gravitation

In that which follows, we shall restrict ourselves to rigid groups G acting only on space-time
(except for some attempt to gravitational mixing, to be briefly considered later).

There are many possibilities for the kinematical group G related to possible asymptotic
symmetries of space-time: G may be Poincaré, de Sitter, Anti-de Sitter, Weyl (Poincaré +
Dilatations) or even Conformal (SO(4,2)) group, apart from any invariant subgroup of them.

Note that we shall have to address more “gravitational fields” than those strictly required,
so that many constraints among them must be handled.

9.2.1 Translations: (Teleparallelism)

We start with (and pay special attention to) the simplest case of the translation subgroup,
G = T*, of the Poincaré group. The group index (a) now reads (u), the unbracketed indices
W, v, g, ..., representing coordinate ones.

The generators of the rigid translations have components X E’m =34, . ‘()‘u) s =0,
corresponding to

0
X = PR (324)
The local algebra then becomes (Non-Abelian):
[f(H)X(u), g(U)X(V)] — (f(M)aug(V) _ g(M)auf(V))X(v) ) (325)
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We shall consider non-trivial compensating potentials A,(f) even though the covariant
derivative of the matter fields coincides with the ordinary one, that is, D, ¢% = (pf"u , so that
the generalized compensating derivative just becomes

Dug® = kig . (326)

Keeping Al(,” ) will prove relevant, in particular, in mixing gravity and internal interactions
(see later), although it should not represent an increased number of degrees of freedom. We
expect the need for some (natural) constraints.

According to the general scheme, £y must be an (scalar under the rigid group) arbitrary

function of 79, F, ,([,f) which now acquire the expression:

v

79, =17

L FS) =Kk AY) — A (327)

If we assume the constraint (compatible with the equations of motion)

(o) _
A9 =57+, (328)
we obtain
T(L.v = ‘7:;(5)) = Tgvu , (329)
and, therefore,
Lo = ALO(T"W . (330)

Resulting Geometry (Weitzenbock space-time): The connection, curvature and torsion, all
indexed by the superscript 7%, are:

ro® = —gfks |, =k5qf, (331)
RO =0 (null curvature) (332)
00D =k3qlqiT . (pure torsion !1) . (333)

On the other hand, we have at our disposal the metric tensor g, in terms of which a
Levi-Civita connection I''“~€) can be constructed, as well as the corresponding curvature
RE=O) that is:

_ 1
8uv = q;’zCISnp(r s ra}(ﬁ 0= Eggp(gpv.u + 8ouv — guv,p) ) (334)

which is symmetric in © and v and, therefore, provides null torsion, although non-trivial

curvature tensor RU,EI;LEC)). The relationship between T'\7® and 175~ is:
rod® = polf=0 4k, (339)
where
K, = %(gagm)) 7T _ g 0T, (336)
with 6,77® = T@ g 1o

Teleparallelism: The “gauge” symmetry, through Utiyama’s Theorem, is only able to fix the
argument of Lo as the Cartan Torsion, but the actual functional expression still remains to
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be determined. Among all possible Lagrangians there is one that reproduces the Hilbert—
Einstein Lagrangian (except for a total derivative). This Lagrangian is called Teleparallelism
Lagrangian, and is given by:

Tel Tel 1 1
LY = AL = aTH T, (Z”M”Ue’?/w + 58" 8] — 15;5?,;7“%) . (337)

where the numerical coefficients have been determined by hand in order to achieve our
purpose, that is:

L(()Tel) = V=gRL™O) 43, (2A0,") , 6, = ghe°, . (338)

It must be noticed that the equations of motion of a particle, derived from the Gauge
Theory are:

du
dTM =T Dusu’ (339)

and it turns out to be equivalent to those of geodesic motion in the pseudo-Riemannian
geometry addressed by '(¢=C):

d
% =1L Ou,u’, (340)

although the formers do not correspond to a geodesic motion.

9.2.2 The Poincaré Group

In the case G is the Poincaré group, the index (a) splits in () for the translation subgroup,
and (puv) for the Lorentz one. The generators of the rigid group are:

3
Xoo = X35 (341)
Xy = X0y~ 1 x%, 342
) = L g A o (342)
with
v _ v
X (W) — ‘Su
Er;w) = ag;w),pxp = (5vap — 87 Npp)x”
Xy = X?‘W)ﬂw’g ~ [ Vv]%‘/’ﬁ)~ (343)
According to the general theory, Lo = Lo(TZ,. Fi2), Fio)). The simplest possibility

corresponds to the particular choice £y = Lo (]-',%p ) ),

1
o= AFHY (344)
Fig" = KIS
= kl'k} (Agfg) — AP — (ATOAGP — Aff”‘)Affp))n,(g) . (345)
The equations of motion become:
1
b AFET = ST = —TIK (346)
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A) AKYTO, — kAT, + KT, + Ky k) — ki) AC

" © "
—(kbky + ky kA p)v) = 2$(Up) , (347)
where
J— 0 o o
7:; = W(A‘Cmal (0™, Dye™)) (348)
"
0
Séz-p) = —W(Aﬁmm((p“, Dv‘ﬂa)) (349)
A,
are the matter currents already defined.
In terms of 7* 0(, 00 the equation associated with A is written as:
0 0 0
AT, — kT — ki Th,) =25, (350)
from which it follows the conservation law:
d Lo
w [N oo
e Son Tlep) =0 Jiop == (351)
m

This means the conservation of the total spin density, S;_ | corresponding to the matter, and

L
(op)
f (’; ) corresponding to the gravitational fields itself.

Riemann—Cartan Geometry: We have again two geometric objects at our disposal. On the

one hand, the metric tensor g,, = qﬁqg Npo and, on the other, the connection associated
with the Poincaré gauge group:

|
i =af (EAgm)af)X?wkg - kfw) = —afk . +af AV mpkg
=T50® 4 gh Ay k8 (352)

and the corresponding curvature and torsion:

1 o
RPS, = kpabagnds Efa()?)f’xx&o = k) qrqtas FoL nes (353)
P r~O0(P
G(T,U(AJ) = kgq;/iqup()\ k
=k§qhay (T, + AP (K, — Ksnen)) - (354)

Omitting the (P) superscript and using the following derived currents:

Tuv = 8ou Ty = 8oukSTY = g o0 T (355)
R A
Siv =4395S(op) » (356)

the equations of motion acquire the form:

1 ~
A (R,W ~ EgWR> =T . (357)
A _H3A Iy "y
AO*,, =28, —§:50, — 818" (358)
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from which we conclude that the source for the torsion is the spin of the matter.

Comparison with the standard theory: We shall limit ourselves to the case of absence of

matter. In the vacuum case, the equation of motion for the field Affp ), becomes:
0 6 0
kT, —KhT ) — kT, =0 (359)

and can be solved explicitly in terms of the Cartan torsion 7, ,:

, 1
o = 59 Top + Tore = Trop) (360)

H vacuum _ 4 (A@)vacuum
W.lth.A((rp);./. = Ay : .
Ricci rotation coefficients in the standard theory.

Then, in the vacuum, we arrive at

Mo Nops Topr = T’;A Nuo > thatis to say, AE’(‘;;‘;‘I‘L‘“ are the so-called

1
Ry — Eg,wR =0 (361)

0", =0. (362)

The second equation implies that F"w is symmetric and, therefore, it coincides with the
Levi-Civita connection associated with g,,,. Likewise, R, coincides with the Ricci tensor
providing the ordinary Einstein equations.

Remark on the “gauge theory” of the Lorentz group: The Lorentz group is not an invariant
subgroup of the Poincaré group and if we desire to keep the rigid invariance under the whole
Poincaré group, making local the Lorentz subgroup entails necessarily the local character of
the Translation subgroup and, then, of the total Poincaré group.

9.3 Beyond the Poincaré group as rigid symmetry

Naively, the more natural generalization of the Poincaré group as the starting rigid symme-
try is the group GL(4, R), which had been considered in Literature long ago. It leads to
Edington Geometry. The simplest and best motivated generalization is that addressed by the
Weyl group, made of Poincaré and Dilatations transformations.

Even more interesting proves to be the generalization of GR combining the Weyl group
with the mass-generating scheme, discussed above, giving dynamics to only the field asso-
ciated with the dilatation parameter [56,57]. This constitutes some sort of

“Stueckelberg” model for the Weyl group (Brief comments): We consider the Weyl group
as G and start from a very special “matter” Lagrangian constituted by the partial-trace o -
Lagrangian associated with the dilatation subgroup of W. That is to say:

Lemarrr = Trw p(0,6™) = 01D @01 (363)
The minimal coupling principle entails the minimal substitution:
Leparr = (Gladi/) _ Al(ftil))(g‘gdil) _ AWy (364)
where 0577 s just 9, %!

As far as the Lagrangian L is concerned, we resort to the simplest, yet new possibility:
Lo = Lo(F P, FED)
— ]:l%v) + fl%il)fézll)il)nuanvp — kzkﬁF(“v) + F/S_(]l)il) F;il)il)guagvp i (365)
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where Fig" = 3,A8" —a,A5".
Note that we have chosen a Lagrangian linear on F, L(ff,g) , as in standard Gravity, but quadratic
(dil) . .
on F,, ’, as in Electromagnetism.
The equations of motion for k turn out to acquire the expression:

1 4
(vo) v (OA) _ p(dil)v
F/ur — E(SMF(T)» = TM s (366)

where the right-hand side is the energy-momentum tensor for some sort of dark energy:
. . . 1 . .
T/Edll)v = _F(gdll)vF/(Ld”)a + E(SlliFétitl)F(dtl)(rA ) (367)

Exercise: Is there any configuration for Afjm) allowing for a cosmological constant term?

9.4 Extending Diffeomorphism invariance: New approach to Teleparallelism

We shall mimic the extension of the gauge group G (M), G (M), which gave rise to non-trivial
symmetries, that is, symmetries with non-null Noether invariants.

Let us remember that G' (M) was constructed out of J!(G(M)), the group of 1-jets of
the mappings ¢“ : M — G, the local group.

Now, the role of the gauge group is played by T#(M) or, roughly speaking, Diff(M).
This group is gauge, in the strict sense that the corresponding Noether invariants are trivial,
except for the subgroup of “rigid transformations,” which give rise to quantities like energy
or angular momentum.

We then define, in an analogous way to the case of jet bundle of Variational Calculus, the
1-jets of the diffeomorphisms of M, considered as mappings § : M — M:

Diff(M) x M
TU(Diff(M)) = # , (368)
where the equivalence L is defined by (to be compared with (89)):
| x=x
E* )~ E" X)) = EM(x) = & (x) (369)

WEL(x) = 96" (x),

V(E*, x), (", x") € Diff(M) x M.

A coordinate system on J L(Diff(M)) is (x*, €, £}, where the objects 3 parameterize
those transformations on 7 (M) which are non-necessarily the tangent mapping of a trans-
formation £ on M; that is, &}° # &), except for the jet extensions of &, j!(£), for which
E\ﬁt = 31;-‘;: K.

The relevant, infinite-dimensional, symmetry group consists in the “local” J ! (Diff(M))
group:

Diff' (M) = ' (J' (Diff(M))) = (M — J'(Diff(M))} . (370)

It contains Diff(M), as jet extensions, in a natural way!!. In fact, any generator in the Lie
algebra diff(M), X r = fH*(x) %, can be canonically lifted to diff' (M):

. a ]
Lift _ rp Lep
Xt =+ 0 e (371)
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in such a way that the Lie algebra commutator [X s, Xo] = (f*09,8" — g"0,f")0y, is
preserved, that is:

[X X ]thl [XI};IH XLlfl] (372)

9.4.1 Invariance under Diff(M): Standard Gauge Symmetry

Before going into the new, extended symmetry let us recover the standard Teleparallelism
Theory from Diff(M).

We could seek Lagrangians Lo (x*, ", Eg , 0,8V, 0y Eg), invariant under Diff(M) although
the dependence on {£V, 9,£"} can be dropped out for the sake of simplicity. We then look
for Lagrangians £(x*, gl f;’f ) invariant under the jet extension (in the sense of variational
calculus) of the lifted Xl)ziﬁ, that is

xte=o0. (373)

Explicitly,

f“(x)— + 3pf”(X)Ep

&)
+ (E0850, 1 (x) + £, 0, [ (x) — £ 85 7 (X)) 3%‘ =0 (374)
:> V,0
L
" . _ &P
a) oy f"*(x): %} oeF -F(S“7 §5,.0 g)asﬂ7 0 (375)
AL AL
" . —
b) By fl(x): & — P +£° P =0. (376)

b) = the Lagrangian Lo must depend on (£, £/',) only through the combination

o, = EgEL — & 0El (377)

Then, a) acquires the form
S ;E + & (& 500 — &7 8, ); 0= (378)
Ly = Eo(T",w) (379)

(ED =87

380
cogl = st (380)

T =85Th, = 4“;’(55953 - 55,955) {

Using Lo = ALy, A = det(67), we arrive at exactly the same situation as in the gauge
theory of T* with the trivial identification

g =kl 95 = q/‘i , (381)

allowing for the special choice for the Lagrangian, L‘(Tel)

However, the actual form of £ still remains to be determlned by a symmetry group.
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9.4.2 Invariance under Dlﬁd (M): Einstein Theory in vacuum

Let us resort to the additional symmetry in the group Diff' (M) which is not the jet extension
of Diff(M). Among the possible generators of this type of symmetry we shall select the
following set:

X =1 )Suas“ , (382)
where [ (x) are “infinitesimal” parameters that are not the derivative of diffeomorphisms
and satisty [, (x) = =1, (x), Lo = Nuely.

The imposition of invariance under Diff(M) has already been done with the result that
Lo = Lo(T), though arbitrary. Now we impose the rest of the symmetry in two steps:

1) Invariance under the rigid X }(global), that is, with constant /’s
_ L
X/} Lo=17° (s“ +EN —) =0 (383)
[(global) v 35\; a,p af#,p
The simplest solution is

LY (T) = AT®,, T, + BT®,, T"", + CT%, ,T,""

nvto a,uu

(indices move with the metric) n (384)

2) Invariance under local X ll(x) fixes A, B, C, although we must demand only semi-invariance
(just like in the free Galilean particle):

oLt
- 2
X[ (ALY ) = ANdpl,PEF —3— = divh; . (385)
80,0
Equation (385) can be explicitly solved, giving:
B C

A= 5 B = -5 M= —4CAEl 017" (386)

By choosing C = —1, we arrive at a Lagrangian equivalent (up to a total derivative) to the

Hilbert-Einstein Lagrangian associated with the metric g, = {lf Fed Nop-

As an extra bonus, the extended Diff' (M) symmetry provides infinitely many non-null
Noether invariants:

J;;l = AIJ()(ESTH " = 2E0TH V) — i)' (387)

Final comments: We have got an infinite set of Noether invariants defining coordinates on
the solution manifold of Einstein equations in the vacuum. The completeness of this set is
still lacking, but it is worth noticing the similarity of the generators X ll(x) with those used in
the Klein—Gordon field to parameterize its solution manifold.

In fact, there, the generators X ,«(y) = e’k" 8 , provided the Noether invariants a(k) (and

Xqa(xy — a*(k)), and they can be viewed as Xl = l(x) 3% where [(x) is a solution of

the Klein-Gordon equation. Comparing with X} ;=1 LT (0ES

solutions of Einstein equations.

The question naturally arises of whether a particular solution submanifold, corresponding
to a set of particular solutions, could be parameterized by such Noether invariants. If this
really happens, we could proceed to the group quantization of this submanifold !!.

8$,L , 17 are suggested to be
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10 The general case and unification
10.1 No-go theorems on symmetry mixing

The possibility of unifying internal gauge interactions with Gravity, as a gauge theory asso-
ciated with a space-time symmetry group, was tied to the existence of a finite-dimensional
global symmetry group containing the Poincaré group and an internal unitary (compact)
group in a non-trivial way, that is, not a tensor product. This possibility was soon discarded
by the publication of a series of papers establishing the now known as “No-Go theorems”
on symmetries (see, in particular, [59,60]). The situation is quite different in dealing directly
with infinite-dimensional groups where those theorems do not apply.

10.2 Electrogravity mixing

Thinking of Quantum Theory as a more exact theory than Classical Theory, and starting from
the rigid symmetry of “quantum matter” we arrive at a non-trivial consequence consisting in
a non-trivial mixing of space-time and internal gauge interactions. A first attempt was given
at the Quantum Mechanical level [61], and then this idea was extended to field theory in the
form of a generalized gauge theory [58]. ~

Let us substitute the U (1)-extended Poincaré group, P, by the standard Poincaré group
P. The Lie algebra of P is:

[Mp,v, ﬁp] = nvpﬁu - nupﬁv - ()\unvp - )\vnup)E = C,Uj, pﬁo— + Cp.?)), pE , (388)

where

C.y )= hllpe — Autlvp « (389)

E is the (central) generator of U (1), and A, is a vector in the Poincaré co-algebra belonging
to a certain co-adjoint orbit.
We shall take A, in the simplest, though non-covariant, way:

pp—— (390)

the constant x being the mixing parameter. Then, the new structure constants are C u(.,b op =

—k(np MISS, — o u82), and give rise to the following curvature components:

FI(L?;/J) = Afﬁ%) _ Ag):l/i) — oo (AI(Z»G)AI()UP) _ AEJW)ALUP)) ’ (391)
F = AP — A +ini (AP AP — AD AP . (392)

Note that F, ;(L?,)) involves, apart from the free term A, , — A, ,, the potentials A{L associated

with translations, which are omitted in the standard theory. Besides, the electromagnetic
strength of gravitational origin find its source in the Coriolis-like gravitational potentials;
that is to say, those of rotating massive bodies.

The geodesic motion, for instance, can be derived by considering matter Lagrangian
corresponding to a single particle: L4 = ﬁ pupvn™’. We easily arrive at:

dut _ e X Ke
o i = T - LBl - Sl — B 099

where we have separated A" into two different pieces: A = A"+« BE ™, cor-

responding to the ordinary electromagnetic field added with the new mixing term. We refer
the reader to Ref. [58] for specific details.
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11 Appendix: Derivation of the Euler-Lagrange and Poincaré—Cartan equations

E-L equations:

oL oL oL
Ly(Lw) = (L3 L LLyw=1X" X
X( ) ( X o + xw { 3x“+ 81//0‘} + anﬂ
+LAX* A O,
X XV
:{X“aﬁ-}_ 8[1} +{8 _ 38 }8£ ¥ A
dxt oy« 0x° ax ) oYy
oL [aX“¥
ety B B _phB Iz
+8¢“{31///3 vaﬁ}(dlll O0F) N0, + LAXH NG,
oL oL oL o oo
= {X Ey + X 8@00‘} aye dX* —ydX") A O,

o
alf {giﬂ w“al//ﬁ 6F A6, + LAX" A6,

/ Ly (Lw) / {X 0L | o 2E xed (2£ 0, ) +a 25 xog
(Lo — w—
jlaon M i A 81//" oy~

+X"d (1//“ 0 ﬁu) —d (w‘;x“ Ma eu) — X*d(L6,) + d(X“E@M)}
0L 0L
— my a —
= /M X { o Td (wﬂ v ev) d(ﬁeﬂ)}
o] L AL
+/MX {waw—d (ameﬂ)}

[ d L ac S d e Ly 7.
=/M[X”'”“{dxvaw_ﬁ}”” {dxvaws'_ﬁ}‘”]‘o

d L oL

T gy v
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As can be seen, the same result is obtained varying the Lagrangian with vector fields X¢ a?pa
(with X* = 0), and we avoid a lot of calculations.
Cartan-like equations (Modified Hamilton Principle):

L ) L
o dy® — Y2dx") + Lo = Wdl// Ay + (L — aw z/fu)a)

E o
dOpC—d<8¢M>/\d¢ A0H+d<£—awawu>
d oL ad L
_ - B
_< T (M/")d "y P <wﬁ>dw
d L
- B a
+ 31#5 <3wﬁ>dwu}Adw e

L aL L 9 [ oc
+| ol + oody + —dyl — g dx”
ax vy

Opc =

oy P ox” \ oy
’ aiﬂ(aﬁawﬁ)dwﬁ'ij<awu> ﬁ} o }

i G | R C B
+83W (;/ffj)dl//ﬂmw/\eﬂ “% )dwﬂ/\w

. CJec o [ac g 0 [0 o

re =~ () e )| -
{3 )t o )
_Qz(aaé)x“dwﬂ/\e +— (m)dwﬁ/\dw Nixibut g i (aa )X’fdvf“/\%
_;W (881/;)}(%1#5 A Oy + 5(

a oL
Xdy P A6,
1/’# 81//]) <8¢ﬁ> W A

(dx" Aix16y = X6, — 84 X%05)

) AL B AL ] AL 9 ayr
5 _ |95 _ _uf oL
o (o \oy® o (ac)awl],,
- - — Xw
ayh \oyy | axr  gyb \oyg ) dxr
v | oL 9 L L v ayl 9 L
Coxv | oy axm \ ayg Vi aw ayl t o axn oy P g
0 [ ac\ aye ayf a f(oc\ oyl L0 (o) aye ayl
T yP oy | dxi axV TV gyl \aye | axv - gyl \dye | axv dxn
3

oL \ ay oyl |,
- B ARy AxH 9xV X'o
oul \ 9V ) axt ax

, 9 AL
>dl//€/\d1ﬂa/\lX19M wﬂav/ﬂ 81//“>ng
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Obviously, for regular Lagrangians, that is, those satisfying ‘

Xb 3L [aw_ ]

I Ay 8¢“__;1, o| ¥bo =
gyl \ v ) axr gyl 8¢p Vi v

dxH

oylovg

« )L d L 31//ﬁ_ﬂ_
X ‘{34)‘1 dx,L<3l//a>} 3¢“(M3>[8x“ %}—o

x4 22 o,
axV | dx# 31#5 Bw“

0, we arrive at the
ﬂalpll #

solutions of the Ordinary Hamilton Principle.
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