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Abstract Elementary interactions are formulated according to the principle of minimal inter-
action although paying special attention to symmetries. In fact, we aim at rewriting any field
theory on the framework of Lie groups, so that, any basic and fundamental physical theory
can be quantized on the grounds of a group approach to quantization. In this way, connection
theory, although here presented in detail, can be replaced by “jet-gauge groups” and “jet-
diffeomorphism groups.” In other words, objects like vector potentials or vierbeins can be
given the character of group parameters in extended gauge groups or diffeomorphism groups.
As a natural consequence of vector potentials in electroweak interactions being group vari-
ables, a typically experimental parameter like the Weinberg angle ϑW is algebraically fixed.
But more general remarkable examples of success of the present framework could be the
possibility of properly quantizing massive Yang–Mills theories, on the basis of a generalized
Non-Abelian Stueckelberg formalism where gauge symmetry is preserved, in contrast to the
canonical quantization approach, which only provides either renormalizability or unitarity,
but not both. It proves also remarkable the actual fixing of the Einstein Lagrangian in the
vacuum by generalized symmetry requirements, in contrast to the standard gauge (diffeo-
morphism) symmetry, which only fixes the arguments of the possible Lagrangians.
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1 The idea of gauge principle

The idea of formulating the basic interactions among elementary particles in terms of vector
potentials, generalizing electromagnetism, is traced back to the pioneers papers by Yang and
Mills [1], Utiyama [2] and Kibble [3].

Starting from a free matter Lagrangian, let us think for instance of the Lagrangian corre-
sponding to the free Dirac field,

L = iψ̄γ μ∂μψ − mψ̄ψ,

which is invariant under the rigid (or global) group U (1), that is, under the transformation

ψ(x) → ψ ′(x) = e−iαψ(x), x ∈ M the space-time,

123



Eur. Phys. J. Plus         (2021) 136:304 Page 3 of 85   304 

we require L to be minimally modified, to L̂ so as to be invariant under the corresponding
gauge (or local) transformation

ψ → ψ ′ = e−iα(x)ψ.

Note that the term in the original Lagrangian ψ̄γ μ∂μψ , due to the derivative acting on the
local parameter α(x), transforms as

ψ̄γ μ∂μψ → ψ̄γ μ∂μψ−iψ̄γ μ∂μα(x)ψ

so that we should require an extra field that includes a derivative of the local coefficient in
its transformation law under U (1), that is

Aμ(x) → A′
μ(x)+

1

e
∂μα(x)

and replacing

∂μψ with Dμψ ≡ (∂μ+ieAμ)ψ.

In the same way, for non-Abelian symmetries, associated with a (let us say) compact group
G, we generalize the discussion above:

ψ → ψ ′(x) = eiφ
aTaψ ≡ U (φ)ψ

with Lie algebra generators satisfying

[Ta, Tb] = Cc
abTc

and modifying the usual derivative with the covariant derivative

A(a)μ → A(a)μ +Cab
c φb A

(c)
μ − 1

g
′′∂ ′′
μφ

a

where by ′′∂ ′′
μφ

a we mean something like θ(a)b (φ)∂μφ
b, associated with the canonical (left

or right) 1-form on the Lie group G.

2 Basics on differential geometry

This first section is devoted to a presentation from scratch of those mathematical ingredients
that are required to a sound understanding of a general setting of basic physical interactions
in Nature. Here, we follow rather standard textbooks on Differential Geometry [4–10] and
Lie Groups [11–13].

2.1 Differentiable manifolds

Let S be a set. A local chart on S is a pair (U, ϕ)/

U ⊂ S
ϕ is a bijection U ↔ V, an open subset of some vector space F .

An atlas is a family A of local charts (Ui , ϕi i ∈ I )

a) S = ∪ {Ui : i ∈ I }
b) ∀ (Ui , ϕi ) ,

(
Uj , ϕ j

)
in A with Ui ∩Uj �= ∅, then ϕi

(
Ui ∩Uj

)
is an open set ⊂ F and

ϕ j i ≡ ϕ j ◦ ϕ−1
i |ϕi(Ui∩Uj) is a diffeomorfism (C∞) (compatibility,Fig. 1).
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Fig. 1 Local chart compatibility

Two atlases are equivalent, A1 ∼ A2, if A1 ∪ A2 is an atlas.
A differentiable structure on S, S, is an equivalence class of atlases on S.
A differentiable manifold M is a pair (S,S) ≡ M . If ϕi (Ui ) ⊂ Rn ∀i ∈ I , we say that

M has dimension n.

Topology on M : A topology on M can be defined by means of a family of open sets:

A ⊂ M is open if
∀a ∈ A, there exists (U, ϕ) local chart / a ∈ U, U ⊂ A .

Differentiable map: Let f be a mapping M → N where M and N are differentiable mani-
folds. We say that f is differentiable if (Fig. 2):

∀m ∈ M, ∀(V, ψ) local chart on M, f (m) ∈ V
there exists (U, ϕ) , local chart on M, m ∈ U, f (U ) ⊂ V /
fϕ� ≡ � ◦ f ◦ ϕ−1 is differentiable as a map from Rn to Rn

fϕ� ≡ local representative of f

Local coordinates: Given a local chart on M and a coordinate system on Rn , {xi }, i = 1, ...n,
the set of composition functions on M , {ui ≡ xi ◦ ϕ} constitutes a local coordinate system
on M (Fig. 3).

Simplest non-trivial example: Let as mention that a non-trivial differentiable manifold (with
non-trivial topology) might have relevant consequences in solving a given physical problem.
We usually solve a certain equation in local coordinates and we have to be aware that not all
solutions obtained locally must be kept as true solutions. In fact, we must restrict ourselves to
those solutions that are globally defined on the full manifold. This can be easily exemplified
in the simplest situation of the S1 (radius 1) manifold in which we analyze which analytic
functions in a local chart can be kept, as such, when considering the compatibility condition
with the other chart.
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Fig. 2 Local representation of f

Fig. 3 Local coordinates

The two chosen charts correspond to the stereographic projection from both north and
south poles. Coordinates from the south pole corresponding to the point ζ ∈ S1 will be
noted x , whereas those obtained from the same point through the north projection will be y.
Looking at Fig. 4, the point ζ is characterized by the angle φ, ζ = eiφ , or by the projection
angles ψ and θ corresponding to the two coordinate systems. The relationship among the
three angles is:

tgθ =
√

1 − sinφ

1 + sinφ
, tgψ =

√
1 + sinφ

1 − sinφ
. (1)

Writing x , for instance, in terms of φ, that is, sinφ = 4−x2

4+x2 , we can express the relation
between both local coordinates as:
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ψ

Fig. 4 Global analyticity

y = 2tgψ = 2

√
1 + sinφ

1 − sinφ
= 2

√√
√
√1 + 4−x2

4+x2

1 − 4−x2

4+x2

= 4

x
. (2)

Clearly, polynomial functions are not, in general, allowed, since positive powers in y lead to
negative ones in x . However, we can find rational functions which are analytic as seen from
both local charts, for instance

4x

4 + x2 ←→ 4y

4 + y2 (3)

and, more generally, the Chebyshev Polynomials Tn( 4x
4+x2 ), and 2nd -class Chebyshev Poly-

nomials −4+x2

4+x2 Un(
4x

4+x2 ), which constitute a basis for the analytical functions that are well

defined on the manifold S1 (Fig. 4).
Tangent Space

Tangent curves: A (differentiable) curve c at m ∈ M is a (differentiable) application from
I ⊂ R to M such that c(0) = m (Fig. 5). We say that two curves c1, c2 at m ∈ U ⊂ M are
equivalent, c1 ∼ c2, if ϕ ◦ c1 and ϕ ◦ c2 are tangent at ϕ(m) in the sense of Rn , i.e.,

D(ϕ ◦ c1)(0) · 1 = D(ϕ ◦ c2)(0) · 1. (4)

This equivalence condition is independent of the local chart (U, ϕ).
We define the Tangent Space at m ∈ M as the space of equivalence classes of tangent

curves at m, that is,

Tm(M) ≡ {[c]m/c is a curve at m}
and the (total) Tangent Space to M as

T (M) ≡ ∪m∈MTm(M).

Note that there is a natural projection: T (M)
π−→ M, [c]m �→ m (Fig. 5).

The triplet (T (M), π,M) constitutes an example of vector bundle .
Also note that in Rn there is a natural representative for each [c]n ; that is to say, [ϕ ◦c]ϕ(m)

has a preferred member:

ce,m = ϕ(m)+ te, e ≡ d

dt
(ϕ ◦ c)|t=0 ≡ D(ϕ ◦ c)(0) · 1 ≡ vm . (5)
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Fig. 5 Tangent space

This allows us to define a vector space structure on Tm(M):

λ[c]m = [ϕ−1 ◦ cλe,m]
[c]m + [

c′]
m = [

ϕ−1 ◦ ce+e′,m
]
.

(6)

Tangent map: Given a differentiable map f : M −→ N , we define the corresponding tangent
map as follows (Fig. 6):

T f ≡ f T : T (M) −→ T (N ) /

[c]m �→ [ f ◦ c] f (m) . (7)

Composition Theorem: Given the applications f, g, h, among manifolds, M
f→ N

g→
P, M

h→ M , we have:

(a) T (g ◦ f ) = Tg ◦ T f
(b) h : M → M identity ⇒ Th : T (M) → T (N ) identity
(c) f diffeomorphism ⇒ T f bijection, T ( f −1) = (T f )−1 .

Locally the following expressions are correct:

f T : (m, vm) �→ ( f (m), D( f )(m) · vm)
d f : (m, vm) �→ D( f )(m) · vm (2nd component of f T )

T (U ) ≈ U × Tm(M) .

Coordinates at T (U ) ⊂ T (M):

{ui , ξ j } ≡ {xi ◦ ϕ, ε j ◦ dϕ}
{xi , ε j } are coordinates at ϕ(U )× Rn .
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Fig. 6 Local representative of f T

Here, {ε j } is a linear coordinate system in Rn : given a basis {ei } in Rn as a vector space,
an arbitrary vector v is written as v = v j e j , and the dual basis provides the linear functions
ε j (v) = v j .
Derivations atm ∈ M, Dm(M): Let us consider the algebra F(U ) of differentiable functions
defined on the open subset of a local chart (U, ϕ) (in case we desire to consider a ring
structure, we must be restricted to the germs of differentiable functions; that is to say, the set
of equivalence classes of functions that coincide in some open subset of U ).
A derivation at m is a linear map:

Dm : F(U ) −→ R
f �→ Dm( f ) /

a) Dm( f g) = Dm( f )g(m)+ f (m)Dm(g)
b) Dm( f ) = 0 if f is a constant .

(8)

Dm(M) is a vector space isomorphic to Tm(M). In fact, the correspondence is as follows:

Dm → Dmu
i ≡ ξ i → cξ,m = ϕ(m)+ tξ ϕ−1 ◦ cξ,m ≡ [c]m .

A basis on Dm(M) ≈ Tm(M), {( ∂
∂ui
)}, is constructed in the form:

(
∂

∂ui

)

m
f �→ D

(
f ◦ ϕ−1)(ϕ(m)

) · ei , (9)

so that, a tangent vector is written as:

Xm ≡ Dm = Xi
m(
∂

∂ui
)m . (10)

Vector fields on M, X (M): They are mappings associating a tangent vector on the tangent
space to any point on the manifold, that is:

X : M −→ T (M) / π ◦ X = IM .
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Analogously, we define

Derivations on M, D(M): They are R-linear maps

D : F(M) −→ F(M) /
D( f g) = f D(g)+ gD( f )

D( f ) = 0 if f is a constant .

X (M) is isomorphic to D(M). The proof makes use of the isomorphism Tm(M) ≈ D(M)
running on m:

∪m [Tm(M) ≈ D(M)] .

Algebra of Derivations D(M) ≈ X (M): Given two derivations (or vector fields, although
thinking of them as derivations), the product

(D1, D2) �→ [D1, D2] /
[D1, D2] f = D1D2 f − D2D1 f , f ∈ F(M)

is internal (although none of the summands, separately, are a derivation), bilinear (R-linear)
and anti-symmetric, and it is named Lie bracket, mainly when acting on X (M). In local
coordinates, the Lie bracket is written as:

[X, Y ] =
(
Xi ∂Y

j

∂ui
− Y i ∂X

j

∂ui

)
∂

∂u j
. (11)

It satisfies the following four properties characterizing a Lie Algebra:

[X, Y + Z ] = [X, Y ] + [X, Z ]
[X, f Y ] = (X. f )Y + f [X, Y ] f ∈ F(M)
[X, Y ] = − [Y, X ]
[X, [Y, Z ]] + [Y, [Z , X ]] + [Z , [X, Y ]] = 0 (Jacobi identity)

(12)

Given a basis {X(i)}, we have:
[
X(i), X( j)

] = Ck
i j X(k) , (13)

where Ck
i j are constants called structure constants.

The tangent map is a Lie algebra homomorphism: That is,

f T ◦ [X1, X2] ◦ f −1 =
[
f T ◦ X1 ◦ f −1, f T ◦ X2 ◦ f −1

]

T (M)
f T−→ T (N )

X1,2 ↑↓ πM πN ↓↑ Y1,2 , Y ≡ f T ◦ X ◦ f −1

M
f−→ N .

Here, we have assumed that f has an inverse, but even if it is not invertible, Y can be defined
so that Y ◦ f = f T ◦ X and still named the transformed vector field of X . In this case, it also
holds that

[Y1, Y2] ◦ f = f T ◦ [X1, X2] .

Example: Lie algebra of rotations in R3

J(i) = η k
i j.x

j ∂

∂xk
⇒ [

J(i), J( j)
] = η k

i j. J(k) . (14)
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Example: Lie algebra of the Galilei group in R3 × R
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

H = ∂
∂t

P(i) = ∂
∂xi

J(i) = η k
i j.x

j ∂
∂xk

K(i) = t ∂
∂xi

⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
H, P(i)

] = 0,
[
H, J(i)

] = 0,
[
H, K(i)

] = P(i)

[
P(i), J( j)

] = η k
i j. J(k),

[
P(i), K( j)

] = 0

[
P(i), P( j)

] = 0

[
J(i), J( j)

] = η k
i j. J(k),

[
J(i), K( j)

] = η k
i j.K(k) .

(15)

Example: Lie algebra of the Poincaré group in R3 × R: (xi = −xi , x0 = x0 ≡ ct)
(we just write the differences with the Galilei group)

P(0) = ∂

∂x0 , K(i) = x0 ∂

∂xi
+ xi

∂

∂x0 ,
[
P(i), K( j)

] = δi j P0 . (16)

Example: The diffeomorphism algebra of R

L−1 = ∂

∂x
, L0 = x

∂

∂x
, L1 = x2 ∂

∂x
, ... Ln = xn+1 ∂

∂x
⇒ (17)

[Ln, Lm] =
[
xn+1 ∂

∂x
, xm+1 ∂

∂x

]
= xn+1(m + 1)xm

∂

∂x

−xm+1(n + 1)xn
∂

∂x
= (m − n)xn+m+1 ∂

∂x
= (m − n)Ln+m . (18)

Example: The diffeomorphism algebra of S1

The difference is just the way we wright the generators,

ζ ∈ C / |ζ | = 1, Ln = ζ n+1 ∂

∂ζ
, ∀n ∈ Z . (19)

Tensor fields on M :
Associated with the vector space Tm(M) on any m ∈ M , it is possible to construct the

entire tensor space Tm(M)rs ≡ T r
s (Tm(M)), that is, the space of the tensor of {rs }-type (r-times

contravariant, s-times covariant):

Tm(M)
r
s ≡ Tm(M)⊗ Tm(M)⊗ r

�... Tm(M)⊗ T ∗
m(M)⊗ T ∗

m(M)⊗
s
�... T ∗

m(M) . (20)

Tensor fields are then defined in an analogous manner to the vector fields:

trs : M −→ T (M)rs ≡ ∪mTm(M)rs / T (M)rs
πr
s ◦ trs = IM trs ↑ ↓ πr

s
M

In particular, we shall consider very frequently �(M)p ≡ {t0
p} and �(M) ≡ ⊗p�(M)p .

Locally, λ = λi1i2...i p dui1 ∧ dui2 ∧ ... ∧ duip (a ∧ b ≡ a ⊗ b − b ⊗ a).

2.2 Differential calculus

Interior product iX : Given a vector field on M , X ∈ X (M), the interior product by X is
defined as the following endomorphism of �(M):
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iX : �(M)→ �(M) /

α ∈ �(M)p �−→ (iXα) ∈ �(M)p−1

(iXα)
(
X1, ..., X p−1

) = α (X, X1, ..., X p−1
)
. (21)

Properties:

iX+Y = iX + iY F(M)− linear
i f X = f iX
If h M → N , h∗(iYα) = iX (h∗α) ⇒

in particular, h may be the restriction to an open set,h = |U , ⇒ the interior product commutes
with the restriction to U , that is, iX is a local operator; note that h∗α(X) = α(hT X).
iX is characterized by

iX f = 0
iXd f = d f (X) = X. f

This is a consequence of iX being local. In

fact, locally, any differential form can be written as a product of functions, αi1i2,...i p , and
differentials of functions, duik .

Exterior Differential D : Let α ∈ �(M)p with p ≥ 1. We define the exterior differential
Dα ∈ �(M)p+1 as:

Dα : (X1, ..., X p+1
) �−→

p+1∑

i=1

(−)i−1 Xiα
(
X1, ..., X̂i , ..., X p+1

)
.

+
∑

i< j

(−)i+ j α
([
Xi , X j

]
, X1, ..., X̂i , ..., X̂ j , ..., X p+1

)
. (22)

For p = 1, the expression (22) reduces to

Dα (X, Y ) = Xα (Y )− Yα (X)− α ([X, Y ]) . (23)

In particular, if α = d f , f ∈ �(M)0 ≡ F(M),

Dd f (X, Y ) = Xd f (Y )− Yd f (X)− d f ([X, Y ])

= XY f − Y X f − [X, Y ] f = 0.

If h : M −→ N , h∗ ◦ D = D ◦ h∗ ⇒D is a local operator.

D is characterized by
Df = d f
D(d f ) = 0, ∀ f ∈ F(M) ⇒ D2 = 0 .

From now on, D will be named d since it extends the ordinary differential.

Note: De Rham Cohomology. In the vector space (Abelian group) �(M), a quotient space
can be established:

Closed forms Z p(M): α such that dα = 0, α ∈ �(M)p
Exact forms B p(M): α such that α = dβ β ∈ �(M)p−1.
Obviously, Exact ⇒ Closed but not the other way round. The quotient

H p(M) ≡ Z p(M)

B p(M)
(24)

is called the pth-cohomology group of M .

Lie Derivative LX : Combining the interior product and the exterior differential, we define
the Lie derivative by the vector field X as the following endomorphism in �(M) preserving
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the order of the differential forms:

LX ≡ iXd + diX . (25)

This operator is local so that

LX is characterized by
LX f = X. f
L Xd f = d(X. f ) .

Exercise: Prove that if α ∈ �p (M) , p ≥ 1,

(LXα)
(
Y1, Y2, ..., Yp

) = X.{α (Y1, ..., Yp
)} −

∑

i

α
(
Y1, ..., [X, Yi ] , ..., Yp

)
. (26)

In particular, if p = 1:

(LXα) (Y ) = X.α (Y )− α ([X, Y ]) (27)

(A more general definition of LX , nextly).

2.3 Integration of vector fields

Let X ∈ X (M) be a vector field. Then, there exists an open set V ⊂ R × M � {0} × M and
a differentiable mapping � /

� : V −→ M

(t, u) �→ ϕt (u) satisfying:

one parameter group

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a) t �→ ϕt (u) is an integral curve of X, that is,
dϕt (u)

dt = X (φt (u))
(

dc(t)
dt = X (c(t))

)

(b) ϕ0(u) = u
(c) if (t ′, u), (t ′ + t, u) and (t, ϕt ′(u)) ∈ V

ϕt+t ′(u) = ϕt (ϕt ′(u)).
ϕt (u) ≡ �(t, u) is the one-parameter group generated by X . We usually call et X ≡ ϕt and
say that X is the infinitesimal generator of �.

Formally, d
dt e

t X |t=0 = X .

Exercise:

LXα = limt→0
ϕ∗
t α − α

t
(28)

LXY = limt→0
ϕT−t Yϕt − Y

t
= [X, Y ] . (29)

Proposition (Frobenius Lemma): Given X ∈ X (M), written in a coordinate system {ui }
around m ∈ U ⊂ Rn / X (m) �= 0, there exist new coordinates {u′1, u′2, ...u′n} such that

X = Xi ∂

∂ui
= ∂

∂u′1 . (30)

Before going to a general proof, let us give an instructive simple example.
Example: M = R × R3 × R3, coordinates {t, xi , p j }, vector field

X = ∂

∂t
+ pi

∂

∂xi
. (31)
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Integral curves

⎧
⎨

⎩

t = τ
xi = K i + Pi

m τ

pi = Pi
{Ki , P j } constants of motion.

We perform the change of variables in R × R3 × R3:

(t, xi , p j ) ←→ (τ, K i , P j )

∣
∣
∣
∣
∣
∣

τ = t

K i = xi − pi

m t ⇒
Pi = pi

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂
∂t = ∂

∂τ
∂τ
∂t + ∂

∂Ki
∂Ki

∂t + ∂
∂Pi

∂Pi

∂t = ∂
∂τ

− Pi

m
∂
∂Ki

∂
∂xi

= .... = ∂
∂Ki ⇒

∂
∂pi

= .... = ∂
∂Pi − τ

m
∂
∂Ki

X = ∂

∂t
+ pi

∂

∂xi
= ∂

∂τ
− Pi

m

∂

∂K i
+ Pi

m

∂

∂K i
= ∂

∂τ
!!

Proof We shall proceed to a constructive proof in Physical terms (Mechanics à la Cartan)
leaving a more formal proof to the seasoned reader.

In Mechanical terms, Frobenius Lemma would say that a vector field (associated with a
dynamical system)

X = ∂

∂t
+ Xxi ∂

∂xi
+ X pi ∂

∂pi
goes to X = ∂

∂τ
(32)

under the change of variables, constituting the

Hamilton–Jacobi Transformation

⎧
⎨

⎩

t ←→ τ

xi ←→ K i

pi ←→ Pi
(33)

for the Principal Hamilton function (in the language of canonical transformations in Analyti-
cal Mechanics [14,15]). After this transformation, the new variables {K i , P j } behave as con-
stant Canonical Coordinates and Momenta. In fact: The vector field X = ∂

∂t + Xx ∂
∂x + X p ∂

∂p
(we have omitted the index i) provides the uniparametric group ϕ in terms of which we
construct, explicitly, the change of variables

x = ϕx (K , P, τ ) dϕ
dτ = Xx (x, p, t)

p = ϕ p(K , P, τ ) dϕ∗
dτ = X p(x, p, t)

t = ϕ0(K , P, τ ) = τ dϕ0

dτ = 1 ,

(34)

where we have assumed that the possible component of X in ∂
∂t , X

0, does not vanish in those
local coordinates and the entire vector field has been divided by X0. Applying the tangent
coordinate transformation we arrive at:

dx

dt
= ∂x

∂K

dK

dt
+ ∂x

∂P

dP

dt
+ ∂x

∂τ

dτ

dt
= ∂x

∂K
× 0 + ∂x

∂P
× 0 + ∂x

∂τ
× 1 = Xx

dp

dt
= ∂p

∂K

dK

dt
+ ∂p

∂P

dP

dt
+ ∂p

∂τ

dτ

dt
= ∂p

∂K
× 0 + ∂p

∂P
× 0 + ∂p

∂τ
× 1 = X p

⇒ ∂

∂τ
= ∂t

∂τ

∂

∂t
+ ∂x

∂τ

∂

∂x
+ ∂p

∂τ

∂

∂p
= ∂

∂t
+ Xx ∂

∂x
+ X p ∂

∂p
. (35)

��
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3 Lie groups

A group is a composition law on a set G /
a ∗ b ∈ G
a ∗ (b ∗ c) = (a ∗ b) ∗ c
a ∗ e = e ∗ a = a
∀a ∈ G ∃a−1 ∈ G / a ∗ a−1 = a−1 ∗ a = e .

A Lie Group is a par (G,S) where G is a group (with the composition law ∗) and S is a
differentiable structure on G, respect to which the mappings

∗ : G × G → G and −1 : G → G
(a, b) �−→ a ∗ b a �−→ a−1

are differentiable.
Equivalently, the maps Lg ≡ ∗|{e}×G , Rg ≡ ∗|G×{g} are required to be differentiable.
The transformations Lg a �→ g ∗ a ; Rg a �→ a ∗ g are called

left-translation; right-translation and do commute:

Lg′ Rg = RgLg′ !!
In addition, Lg−1 = L−1

g ; Rg−1 = R−1
g .

The tangent space at the identity, Te(G), is called the Lie Algebra.
G is an ordinary manifold, so that we may define any object as in M . In particular, vector

fields X : G −→ T (G).
X ∈ X (G) is left-invariant if L∗

g X = X , that is

LT
g ◦ X ◦ Lg−1 = X . (36)

In the same way, X ∈ X (G) is right-invariant if R∗
g X = X , that is,

RT
g ◦ X ◦ R−1

g = X . (37)

The set of left-invariant vector fields will be named X L(M)
” ” ” right-invariant ” ” ” ” ” X R(M) .

Proposition X L ,R(G) is a finite-dimensional subalgebraofX (G) isomorphic to Te(G) ≡ G,
so that

X L(G) ≈ G ≈ X R(G)

Proof Given an element in Te(G), Xe, we construct X on G in the form X (g) = LT
g Xe. This

vector field, so built, is in X L(G). In fact,

L∗
a X (g) = LT

a ◦ X ◦ L−1
a (g) = LT

a X (a
−1g) = LT

a ◦ La−1∗g Xe

= LT
a ◦ LT

a−1 ◦ LT
g Xe = LT

g Xe = X (g) (38)

Lie algebra structure: X L ,R where subalgebras of X (G) and isomorphic to G ≡ Te(G). Let

us denote χ this isomorphism. We can translate the Lie bracket from X L ,R(G) to G:

∀Z , Z ′ ∈ G, [Z ′, Z ] ≡ χ−1[ZG , ZG ] , (39)

where Z L ,R
G is the translated of Z by Lg, Rg , respectively.

This way, we have [Z ′, Z ]L ,RG = [Z ′L ,R
G , ZL ,R

G ]. Given a basis of G, {Z(i)},
[Z(i), Z( j)] = Ck

i j Z(k) . (40)
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Note that in terms of vector fields, from L to R there is a global minus sign on Ci
jk :

[ZL
(i), Z

L
( j)] = −[Z R

(i), Z
R
( j)] = Ck

i j Z(k) .

In practice,

ZL
G(g) = LT

g Z ≡ D(Lg)(e) · Z
Z R
G(g) = RT

g Z ≡ D(Rg)(e) · Z , (41)

where Lg is the mapping

Lg : G −→ G
a �→ g ∗ a

;

here a plays the role of x in a function f (x) and g that of f . Similar comment holds for
L ↔ R.

If we write g′′ = g′ ∗ g,
XL(g′) = ∂g′′

∂g |g=e
∂
∂g′

X R(g) = ∂g′′
∂g′ |g′=e

∂
∂g

(after writing XL(g′) we can rename g′ by

g). ��
3.1 Some examples

Example I G ≡ SU (2)
The group SU (2) is a double covering of the group SO(3) of rotations in the space R3.

We shall parameterize the group by the components of a vector in the direction of the rotation
axis and a module related to the rotation angle; that is, g ≡ {εi }, |ε | = 2sinφ2 . A rotation
in R3 with this parameterization is written as:

R(ε )ij =
(

1 − ε 2

2

)
δij +

√

1 − ε 2

4
ηi. jkε

k + 1

2
εiε j . (42)

From the product of two rotations R(ε ′)R(ε ) = R(ε ′′), we deduce the composition law:

ε ′′ =
√

1 − ε ′ 2

4
ε +

√

1 − ε 2

4
ε ′ − 1

2
ε ′ ∧ ε . (43)

Now we proceed to compute the left and right generators:

XL
(i) =

⎡

⎣

√

1 − ε 2

4
δ
j
i − 1

2
η
j
.kiε

k

⎤

⎦ ∂

∂ε j
(44)

X R
(i) =

⎡

⎣

√

1 − ε 2

4
δ
j
i + 1

2
η
j
.kiε

k

⎤

⎦ ∂

∂ε j
. (45)

Example II G ≡ Galilei Group
Galilei transformations [16,17] relate inertial reference systems, that is, reference sys-

tems where the Newton Laws hold. We shall write the transformations in R × R3 × R3,
parameterized by the ten parameters {B,A,V, R(ε )} corresponding to a translation in time,
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translation in space, change in velocity and rotation of the axis. By composing two of them,
a composition law is obtained from which we compute left and right generators:

t ′ = t + B B ′′ = B ′ + B

x ′ = R(ε)x + Vt + A ∗⇒ A ′′ = A ′ + R′A + V ′B
v ′ = R(ε)v + V V ′′ = V ′ + R′V

R′′ = R′R

(46)

XL
B = ∂

∂B + V · ∂
∂A X R

B = ∂
∂B

X L
Ai = R j

i (ε)
∂
∂A j X R

Ai = ∂
∂Ai

X L
V i = R j

i (ε)
∂
∂V j X R

Ai = ∂
∂Ai + ∂

∂V j

X L
εi

=
[√

1 − ε 2

4 δ
j
i − 1

2η
j
.ki ε

k
]
∂
∂ε j

X R
(i) =

[√
1 − ε 2

4 δ
j
i + 1

2η
j
.ki ε

k
]
∂
∂ε j

+ η k
i j.A

j ∂
∂Ak + η k

i j.V
j ∂
∂V k

(47)

3.2 The adjoint representation: Killing form

An action of G on a manifold M is a Lie group homomorphism from G to the group of
diffeomorphisms of M :

� : G −→ GD(M) ,

such that the mapping � : G × M −→ M
(g,m) �→ �g(m) ≡ �(g,m) is C∞ .

The tangent mapping �T |e : Te(G) −→ TI (GD(M))

provides a Lie algebra homomorphism: G −→ GD(M) ≡ X (M)
Z �→ ZM .

As a particular case, M can be G, G or G∗
With a given g ∈ G, we associate the (nonlinear, in general) mapping on G,

adg a �→ g ∗ a ∗ g−1 ≡ Lg Rg−1a ≡ Rg−1Lga .

Now, we take the tangent of ade at e:

(adg)Te Xe = LT
g Rg−1 Xe ≡ RT

g−1L
T
g Xe.

It defines an action of G on G named Adjoint Representation of G:

Ad : G −→ GD(G)
g �→ (adg)Te .

(48)

The tangent of Ad at the identity g = e is called Adjoint Representation of G and noted ad .
ad is a Lie algebra homomorphism that turns out to be

ad(X)· = [X, ·] (ad(X)(Y ) = [X, Y ]) . (49)

The Killing form is defined as:

k : G × G −→ R
(X, Y ) �→ Tr (ad(X)ad(Y )) .

(50)
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It is bilinear, symmetric and satisfies:

k ([X, Y ], Z) = k (X, [Y, Z ]) , (51)

which means, somehow, that Ad is unitary with respect to the scalar product k (ad is Hermi-
tian). In coordinates, ki j = Ck

imC
m
jk .

To be precise, k is a scalar product only when |k| ≡ detk �= 0, which happens iff G is semi-
simple, that is, it contains no Abelian invariant subgroup. If |k| = −1, G is also compact.
Invariant Forms: They are dual to left- and right-invariant vector fields. If {XL ,R

(i) } is a basis

of X L ,R , {θ(i)L ,R} will be the dual basis, that is, θ(i)L(XL
( j)) = δij . They are explicitly

calculated as:

θ(i)L(g) = D(Lg)(e)
∗θ(i) , θ (i) = dui (e, ·) . (52)

Invariance properties:

(La)
∗θ L = θ L (Ra)

∗θ L = θ L · Ad(a−1)

(Ra)
∗θ R = θ R (La)

∗θ R = θ R · Ad(a)
LXR θ L = 0 LXL θ L = θ L · ad(−X)
LXL θ R = 0 LXR θ R = θ R · ad .

(53)

The set of invariant forms are codified by a single 1-form, that is, the
Canonical1-form: θ L ,R = θ(i)L ,R ◦ Z(i) or θ L ,R = θ(i)L ,R ◦ ZL ,R

G(i).

Note that θ L ,R is a G-valued 1-form, the θ(i)L ,R being ordinary R-valued 1-forms.

Note also that θ L ,R(ZL ,R
G ) = Z ≈ ZL ,R

G , that is to say,
θ L ,R is the G-valued 1-form that is the identity on X L ,R(G).

Exercise: Compute ki j and θ L ,R for G = SU (2) and realize that θ(i)L ,R(XL ,R
( j) ) = δij and

that

ki j = −δi j .
3.3 Central extensions of Lie groups

We say that G̃ is an extension of the Lie group G by H if H is a normal subgroup (that is,
invariant under conjugation: ghg−1) and

G̃/H = G .

Note that G is not necessarily subgroup of G̃.
G̃ is a central extension of G by H , if H is Abelian and is in the center of G̃ (that is, the
elements in H commute with all the elements in G̃). Very special situation appears when
H = U (1) [18].

Central Extensions of G by U (1): In that case, the group law for G̃ can be written as follows:

g′′ = g′g g ∈ G
ζ ′′ = ζ ′ζ�(g′, g) ≡ ζ ′ζeiξ(g′,g) , ζ ∈ U (1)

(54)

where the local exponent ξ(g′, g) is named 2-cocycle of G valued on U (1). The properties
which establish the 2-cocycle definition can be derived from the condition of the expression
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above being a group law for G̃:

ξ : G × G −→ R /
ξ(g′′, g′)+ ξ(g′′g′, g) = ξ(g′′, g′g)+ ξ(g′, g)
ξ(e, g) = 0 = ξ(g′, e) . (55)

Coboundaries: A cocycle ξcob satisfying

ξcob(g
′, g) = (δη)(g′, g) ≡ η(g′g)− η(g′)− η(g) (56)

is called coboundary. Coboundaries define trivial extensions. In fact, a change of variables

ĝ = g ĝ′′ = ĝ′ĝ
⇒

ζ̂ = e−iηζ ζ̂ ′′ = ζ̂ ′ζ̂

destroys the central extension turning G̃ into G ×U (1). The function η is the generating
function of the coboundary.
The name cocycle comes from the fact that the set of central extensions of G by U (1)
are parameterized by the 2nd -cohomology group of G with values on U (1) (according to
Bargmann):

H2(G,U (1)) = Z2/B2 Z ≡ cocycles
B ≡ coboundaries

that is to say, cocycles that are not a coboundary.

“Pseudo-cohomology”: However, there are coboundaries which are generated by a linear
function on G and they do modify the structure constants of the Lie algebra, as if they were

“true” cocycles [19,20]. This subset of coboundaries (in fact a subgroup of B2) defines a
(true) cohomology group H2(GC ,U (1)) of a contracted group GC of G.

The typical situation could be that of a family of generating functions η on G that go badly
under a certain lie group contraction, that is, η → ∞ in a contraction limit, but ξcob ≡ δη

has a well-defined limit.
Paradigmatic Example: The Poincaré group with η = mcx0. GC is then the Galilei group

and δη a non-coboundary cocycle for c → ∞.

4 Principal bundles

In this subsection, we shall follow the presentation of principal bundles given by Koszul [21]
(see also [9]).

A principal bundle is a differentiable manifold P on which a Lie group G acts from the
right, along with a differentiable mapping p from P onto a differentiable manifold M such
that:

∀m ∈ M, there exists U � m and a diffeomorphism γ satisfying:

γ : U × G −→ p−1(U )
p ◦ γ (m, s) = m
γ (m, st) = γ (m, s)t , s, t ∈ G .

(57)

The application p is called projection, M base, G structure group, p−1 fiber over m (Figs.
7, 8).
Properties:

123



Eur. Phys. J. Plus         (2021) 136:304 Page 19 of 85   304 

P

M

G

M

( )

( )

U

U

x

x
x

x
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(m)

m

m

s
γ

Fig. 7 Principal-bundle local chart

P

M

G

( )Ux

x

x
x

x
ξ

ξs

σ

ρ
ρ(ξs)

ρ(ξ)

= ρ(ξ)s

p

Fig. 8 Local mappings σ and ρ

(a) Each fiber is stable under G, G acts without fixed points on P , that is, ξs = ξ for some
ξ ∈ P ⇒ s = e

(b) G acts transitively on the fiber
(c) ∀m0 ∈ M there exists U � m0 and σ : U → P / p ◦ σ (m) = m , ∀m ∈ U
(d) ∀m0 ∈ M , there exits U � m0 and ρ : p−1 (U ) → G / ρ (ξs) = ρ (ξ) s , ∀ξ ∈

p−1 (U ) , s ∈ G.

Exercise: Prove (a)–(b)

Example (a) Trivial bundle: P = M × G , p = π1 (projection over the first factor)
(b) G → G/H : G being a Lie group and H a closed subgroup
(c) Reference Bundle: Let M be a manifold, Tm (M) the tangent space at m ∈ M , Pm ≡

{basis in Tm (M)}. We define P ≡ ∪m∈M Pm .

In all cases, P/G = M .

Homomorphism between principal bundles: A homomorphism H between two principal
bundles P, P ′ with the same structure group G is a (differentiable) mapping

H : P −→ P ′ / H(ξs) = H(ξ)s . (58)

It is clear that H takes fibers into fibers defining h : M → M ′:
P

H−→ P ′
↓ p ↓ p′ (commutative diagram)

M
h−→ M ′ h ≡ projection of H
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Proposition If h is a diffeomorphism, H is an isomorphism.

Conditions for triviality: We say that P −→ M is trivial if P is isomorphic to M × G.

Proposition The following conditions are equivalent

(1) P is trivial
(2) There exists a differentiable (global) section σ of P over M
(3) There exists a differentiable map ρ : P → G ρ(ξs) = ρ(ξ)s.
Proof left as an Exercise
Transition functions: Reconstruction Theorem
Let P

p→ M be a principal bundle with structure group G and {Uα} an open covering of
M , with the corresponding

γα : Uα × G −→ p−1(Uα) (local chart)
ρα : p−1(Uα) −→ G (those satisfying ρα(ξs) = ρ(ξ)s) (59)

If ξ ∈ p−1(Uα ∩Uβ), we have

ρα(ξs)[ρβ(ξs)]−1 = ρα(ξ)ss−1ρβ(ξ)
−1 = ρα(ξ)ρβ(ξ)−1 ⇒ gαβ(ξ) ≡ ρα(ξ)ρβ(ξ)−1

(60)

do not depend on the particular element ξ taken on p−1(p(ξ)), that is, they define

gαβ : Uα ∩Uβ −→ G , (61)

the transition functions on P
p→ M relative to the covering {Uα} of M . ��

Proposition The transition functions satisfy

gαγ (m) = gαβ(m)gβγ (m)
gαα(m) = e ∀m ∈ Uα ∩Uβ ∩Uγ
gαβ(m) = gβα(m)−1

, (62)

properties that characterize the so-called 1-cocycle on {Uα} valued on G.

The name transition functions comes from the fact that they address the change between
local charts: in p−1(Uα ∩Uβ) we have

σα(m)ρα(ξ) = ξ = σβ(m)ρβ(ξ) σα(m) = γα(m, e)
ξ = γα(m, ρα(ξ)) ⇒

σα(m) = σβ(m)ρβ(ξ)ρα(ξ)−1 ≡ σβ(m)gαβ(m) (63)

as well as

γ−1
β γα(m, s) = (m, gβα(m)s) (the change of local charts) .

Local expression of a homomorphism: Given H : P → P ′ and open coverings

{Uα}, {Uα′ } of M, M ′, for m ∈ Uα ∩ h−1(Uβ ′), we have:

γ−1
β ′ ◦ H ◦ γα(m, s) = (

h(m), ρβ ′ (H(σα(m)s))
) = (

h(m), ρβ ′ (H(σα(m))) s
)

= (
h(m), ρβ ′ (H(σα(m))) s

)
.
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Fig. 9 Local expression of H

Denoting hβ ′α(m) ≡ ρβ ′ (H(σα(m))), we have:

γ−1
β ′ ◦ H ◦ γα(m, s) = (

h(m), hβ ′α(m)s
)
, (64)

to be compared with f Tϕψ(x, e) = (
fϕψ(x), D(ψ ◦ f ◦ ϕ−1)(ϕ(m)) · e) (Fig. 9).

The functions hβ ′α : Uα ∩ h−1(Uβ ′) → G satisfy:

hβ ′α(m) = hβ ′γ (m)gγα(m) ∀m ∈ Uα ∩Uγ ∩ h−1(Uβ ′)

hβ ′α(m) = gβ ′γ ′(h(m))hγ ′α(m) ∀m ∈ Uα ∩ h−1(Uγ ′ ∩Uβ ′) . (65)

The pair (h, {hβ ′α}) defines H globally on P .

Remark If H is an isomorphism of P such that h is the identity on M , the expressions above
reduce to:

hγ ′α(m) = hγ ′β(m)gβα(m) m ∈ Uγ ′ ∩Uβ ∩Uα
hδ′α(m) = gδ′γ ′(m)hγ ′α(m) m ∈ Uδ′ ∩Uγ ′ ∩Uα ,

(66)

which express the relationship between the transition functions corresponding to two iso-
morphic principal bundles, ({Uα}, gαβ) and ({Uγ ′ }, gγ ′δ′).

As a Corollary, the transition functions gαβ and g′
γ δ corresponding to two isomorphic

bundles, subordinated to the same covering {Uα}, are related by a family of functions {hα :
Uα → G} such that:

g′
βα(m)hα(m) = hβ(m)gβα(m) . (67)

In fact: it suffices to define hα ≡ hαα .
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We come from motivating the following cohomological characterization of Principal Bundles
on M , that is, the Ȟ1(M, {Uα}; G}:

Non-equivalent principal bundles on M , with structure group G, are characterized by
1-cocycles gαβ , that is, satisfying:

(δg)αβγ (m) ≡ gαβ(m)gβγ (m)g
−1
αγ (m) = e ∈ G (68)

which are not coboundaries, that is,

gαβ(m) �= (δh)αβ(m) ≡ hα(m)gαβ(m)hβ(m)
−1 for some family {hα} .

In the limit of refinement of {Uα}, with a minimum of elements and minimal intersection, it
defines the Čech Cohomology Space Ȟ1(M; G).

Reconstruction Theorem: Let M be a manifold, {Uα} an open covering and G a Lie group.
Given a cocycle {gαβ} relative to {Uα}, valued on G, there exists a unique (except for an
isomorphism) principal bundle P → M , with structure group G having {gαβ} as transition
functions.

Proof (just sketched): We construct � ≡ ∪αUα × G and take quotient by the following
equivalence relation ∼ :

(α, m, a) ∼ (β, m′, b) if

m = m′ ∈ Uα ∩Uβ

a = gαβ(m)b . (69)

The quotient �/ ∼ is P , the projection being p(α, m, a) = m. ��
4.1 Associated vector bundles

Let P
p→ M be a principal bundle characterized by ({Uα}, gαβ), and λ : G −→ GL(F)

a linear representation of the structure group G on a vector space F .
The set ({Uα}, λ◦gαβ ≡ ḡαβ) constitutes a 1-cocycle relative to {Uα} and valued on GL(F).

The quotient ∪αUα × F/
−∼, where now

−∼ is defined as:

(α, m, v)
−∼ (β, m′, v′) if

m = m′ ∈ Uα ∩Uβ

v′ = ḡβα(m)v , (70)

defines a vector bundle E
π→ M , with fiber F associated with P trough the representation λ.

G-functions on P: Let E
πE→ M be an associated bundle with fiber L by means of the

representation λ, and let �(E) be the linear space of sections of E , that is, mapping from
M to E such that πE ◦ σ = IM . The following commutative diagram corresponds to a
homomorphism between vector bundles:

P × L
q−→ E

σ ′ ↑ ↓ p1 πE ↓ ↑ σ
q is the natural projection on the equivalence classes
defined by (ξ, v) ∼ (ξs, λ(s−1v))

P
π−→ M

In fact, q defines E !!
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Given σ : M → E , there exists σ ′ : P → P × L / q ◦ σ ′ = σ ◦ π and, therefore,
σ̃ : P → L / σ ′(ξ) = (ξ, σ̃ (ξ)).

The mapping β : �(E) → L(P) ≡ {σ̃ : P → L} is a homomorphism from the F(M)-
module �(E) to the F(P)-module L(P).

Definition A differentiable function on P with values on L satisfying the condition

ψ(ξs) = λ(s−1)ψ(ξ) (71)

is called G-function and we say that ψ ∈ LG(P).

Proposition The application β : �(E) → L(P) is injective and verifies LG(P) = Imgβ,
that is

�(E) ≈ LG(P) .

From now on, we shall identify sections of a vector bundle E withG-functions on the principal
bundle P from which E is an associated vector bundle.

Vector fields on a Principal Bundle. The different structures of the base manifold M and
the fiber G of a principal bundle P manifest themselves in the behavior of the components
of a vector field, in a (principal-bundle) local chart, under a change of coordinates. As we
shall see, the components along the fiber keep some identity as vertical components, whereas
those along the base cannot be considered as horizontal since this character changes in going
from one chart to other. The reason for that lies in the expression of the

change of chart: Denoting the local coordinates as (xμ, sa), we have:

(xμ, sa) �→ (xν
′
, sb

′
) ≡

(
xν

′
(x), sb

′
(x, s)

)

sb
′
(x, s) = g(x)b

′
a s

a .

Then, a vector field X on P , will be written alternatively as

X = Xμ
∂

∂xμ
+ Xa ∂

∂sa
= Xν

′ ∂

∂xν′ + Xb′ ∂

∂sb′ (72)

and the tangent application to the change of coordinates above reads

∂
∂xμ = ∂

∂xν′
∂xν

′
∂xμ + ∂

∂sb′
∂sb

′
∂xμ = ∂

∂xν′
∂xν

′
∂xμ + ∂

∂sb′
gb

′
a
∂xμ s

a

∂
∂sa = ∂

∂xν′
∂xν

′
∂sa + ∂

∂sb′
∂sb

′
∂sa = gb

′
a (x)

∂

∂sb′
⇒

Xμ
∂

∂xμ
+ Xa ∂

∂sa
= Xμ

(
∂xν

′

∂xμ
∂

∂xν′ + ∂gb
′

a

∂xμ
sa
∂

∂sb′

)

+ Xagb
′

a (x)
∂

∂sb′ ⇒

Xν
′ = ∂xν

′
∂xμ X

μ

Xb′ = gb
′

a (x)X
a + ∂gb

′
a

∂xμ s
a Xμ .

(73)

This way, even though Xa = 0, in the new basis X acquires a non-null vertical component

Xb′ = ∂gb
′

a
∂xμ s

a Xμ !!.
In other words, the property of X being “horizontal” is not preserved under a change of

coordinates.
Only vertical vector fields preserve their structure in changing coordinates.
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Therefore, it makes sense to define the vertical subspace T vξ (P) at a point ξ ∈ P .
The submodule X v(P) admits a basis made of generators of the action of G on P:

X v(P) is generated by
{
ZL
P(a), a = 1, ..., dim G

}

where by ZL
P(a) we mean the generator of G associated with Z(a) ∈ G. Note that G ≈ T vξ (P).

ZL
P(a) are called principal vector fields, although not all vector fields in X v(P) are principal.

X v(P) is a free module (it admits a basis) of F(P)-dimension dimG.

4.2 Connections on principal bundles

In the last section, we motivated the need for some extra structure in order to define properly
the notion of horizontality as regards the components of the vector fields on a Principal
Bundle. This extra structure corresponds to a connection.

A connection on a principal bundle is a 1-form on P , �, X v(P)-valued, such that:

(1) �(X) = X if X ∈ X v(P)
(2) �(aTP X) = aTP�(X) , a ∈ G , aP the action of a on P .

(74)

That is to say, � is a projection of X (P) onto X v(P) invariant under G.
This allows us to define a horizontal submodule X h(P) such that:

X (P) = X v(P)⊕ X h(P) . (75)

In fact, X h(P) ≡ Ker � and Xh ≡ X−�(X). Note that�(X−�(X)) = �(X)−�(X) = 0.

Connection 1-form: Denoting χ the isomorphism T vξ (P) ≈ G we define

γ ≡ χ ◦ � . (76)

It is a G-valued 1-form on P with the properties:

(1) γ (ZP ) = Z
(2) aP∗γ = Ad(a−1)γ .

(77)

Curvature 2-form: K ≡ dγ + [γ, γ ]
Transformation properties ofγ : γ is a 1-form on P , G-valued. Locally we may characterize
γ by means of a set {γα} of 1-forms on M . In fact, given {Uα} � M , we define:

γα ≡ σ ∗
α γ on Uα

θαβ ≡ g∗
αβθ on Uα ∩Uβ .

Proposition On the intersection Uα ∩Uβ , we have:

γβ = Ad(g−1
βα )γα + θβα . (78)

Example 1 Case of G = GL(n) as the structure group of the Reference Bundle. We shall
use the matrix elements as coordinates, so that we have:

{ui } → {sij }
{e(i)} → {e( j)(i) }
{ε(i)} → {ε(i)( j)} = {dsij (e, ·)}
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We compute the explicit expression of the left translation and its tangent:
(
Lgs

)i
j = s(g)iks

k
j ≡ giks

k
j ≡ si

′
j ′

(
Lg−1s

)i
j
= g−1i

ks
k
j

(
LT
g−1

)i ′m

j ′n
= ∂si

′
j ′

∂snm
= g−1i

kδ
k
nδ

m
j = g−1i

nδ
m
j

≡ s(g−1)inδ
m
j ≡ (s−1)inδ

m
j ,

where we have relaxed the notation so as to identify sij and s(g)ij , as usual. Then, we obtain:

θ = θ
(i)
( j) ◦ e( j)(i) ≡ θ(i)m( j)n ds

n
m ◦ e( j)(i)

θ
(i)m
( j)n = s−1i

nδ
m
j

θ
(i)
( j) = s−1i

nδ
m
j ds

n
m = s−1i

nds
n
j

and finally, and in global and symbolic form, though rather standard,

θ L = g−1dg and analogously θ R = dgg−1 . (79)

Let us compute g∗
αβθ on the intersection Uα ∩ Uβ . For simplicity, we denote {xi } the coor-

dinates on Uα and {x̄ j } those on Uβ , then

[
gαβ(x)

]m
n = ∂xm

∂ x̄n
,
[
gβα(x)

]i
j = ∂ x̄ i

∂x j
,
[
gTαβ(x)

]i

jk
= ∂2xi

∂ x̄ j∂ x̄ k

X = Xi ∂

∂xi
= X̄ k ∂

∂ x̄ k
| gTαβ(x)X = ∂2xi

∂ x̄ j∂ x̄ k
X̄ k ∂

∂sij

(g∗
βα
θ)(X) = θ(gT

βα
(X)) = θ

(
∂2xi

∂ x̄ j∂ x̄ k
X̄ k ∂

∂sij

)

= (s−1)ij (gβα (x))ds
j
k ◦ e(k)(i)

(
∂2xm

∂ x̄ p∂ x̄n
X̄n ∂

∂smp

)

= ∂ x̄ i

∂x j

∂2xm

∂ x̄ p∂ x̄n
X̄nδ

j
mδ

p
k ◦ e(k)(i) = ∂ x̄ i

∂x j

∂2x j

∂ x̄ k∂ x̄n
X̄n ◦ e(k)(i)

= ∂ x̄ i

∂x j

∂2x j

∂ x̄ k∂ x̄n
d x̄n(X) ◦ e(k)(i)

⇒
[
g∗
βαθ

](i)

(k)
= ∂ x̄ i

∂x j

∂2x j

∂ x̄ k∂ x̄n
d x̄n .

Denoting �k
i j the components of γ :

γα = γ (k)(i) ◦ e(i)(k) = �k
i jdx

j ◦ e(i)(k) , γβ = γ̄ (t)(r) ◦ e(r)(t) = �̄t
rndx j ◦ e(r)(t) .

The transformation property

γβ(X) = Ad(g−1
βα )γα(X)+ θβα(X) ⇒ (80)

γβ(X) ≡ �̄t
rnd x̄

n(X) ◦ e(r)(t) = �s
mndxn(X)◦

g−1
βα Zgβα

∂xm

∂ x̄r
e(r)(t)
∂ x̄ t

∂xs
+ ∂ x̄

t

∂x j

∂2x j

∂ x̄r∂ x̄n
d x̄n(X) ◦ e(r)(t)
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= �s
mu
∂xu

∂ x̄n
d x̄n(X)

∂xm

∂ x̄r
∂ x̄ t

∂xs
◦ e(r)(t) + ∂ x̄ t

∂x j

∂2x j

∂ x̄r∂ x̄n
d x̄n(X) ◦ e(r)(t) ⇒

�̄k
i j = ∂xn

∂ x̄ i
∂xs

∂ x̄ j

∂ x̄ k

∂xm
�m
ns + ∂2xm

∂ x̄ i∂ x̄ j

∂ x̄ k

∂xm
, (81)

where we have computed Ad(g−1)Z as g−1Zg, as corresponding to the action of a linear
group. The symbols �k

i j are non-tensorial (due to the affine term in the transformation law)
and are called Christoffel Symbols.

Example 2 Case of structure group G = U (1). This is a very special, though simple, case
relevant in both gauge theory and quantization. The elements of the group are parameterized
globally by ζ ∈ C, / |ζ | = 1, and locally by ζ = eiφ . The canonical 1-form and the
transition one are:

θ = dζ

iζ
, θβα = dgβα

igβα
(Ad = I )

and the transformation rule,

γβ = γα + dgβα
igβα

.

4.3 Derivation law on associated vector bundles

Derivation law on an A-module M: We provide the more general (algebraic) definition and
then specify the more relevant cases.
Let

K be a commutative ring
A be an algebra over the ring K
M be a module over A (A − module) .

A derivation law on M is a mapping

∇ ∈ HomA (Der A, HomK (M, M)) . (82)

Two derivation laws differ in an element of

HomA (Der A, HomA (M, M)) . (83)

It must be remarked that a derivation law is not tensorial since the elements in
HomK (M, M) are only linear with respect to the scalars in K . Conversely, the elements
in HomA (M, M) are linear with respect to “scalars” in A, so that the difference of two
derivations laws is a tensor. This extent will be nitid in the following

Example

K ≡ R (M ≡ differentiable manifold)
A ≡ F(M) ⇒
DerA = X (M)
M ≡ X (M) .

A derivation law then turns out to be a derivation law for vector fields (usually referred to as
“connection”):
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∇ ∈ HomF(M) (X (M), HomR(X (M), X (M)))
∇ : X �→ ∇X /

∇X : Y �→ ∇XY . (84)

Taking a local basis in X (U ),
{
X(i)

}
, we have:

∇X(i) X( j) ≡ �k
i j X(k) X(i) ≡ ei

∇Xi ei (Y
j e j ) = Xi∇ei (Y

j e j ) = Xi ∂Y
j

∂xi
+ XiY k�

j
ike j ⇒

∇i Y
j = ∂Y j

∂xi
+ � j

ikY
k . (85)

More generally, M is the module of sections, �(E), of a vector bundle E over M , with
basis {χα}: ψ = ψαχα ∈ �(E)

∇eiχα ≡ �βiαχβ ⇒
∇iψ

α = ∂ψα

∂xi
+ �αiβψβ . (86)

If now P is a principal bundle over M with structure group G, ρ is a linear representation
of G on GL(F), and E is a vector bundle associated with P , through the representation ρ,
with any connection γ on P we may associate the following derivation law on �(E), ∇γ :

∇γXψ = X.ψ + ρ(γ (X))ψ (87)

�αiβ = γ (a)i ρ(Z(a))
α
β

∣∣∣∣∣∣∣
γ =

(A(a)μ dxμ)

γ
(a)
i dxi ◦Z(a) (88)

A(a)μ ≡ vector potentials or Yang–Mills fields.

5 Variational calculus

After a more traditional exposition of variational calculus as in standard textbooks [22],
we recommend intermediate texts as [23,24] and, finally, more formal papers as [25] and
references therein.

5.1 Jet bundles

Let E
π→ M be a vector bundle on M , x ∈ M , and�x (E) the space of all local (differentiable)

sections about x . In �x (E), we define the following equivalence relation
1∼:

ψ
1∼ ψ ′ ⇔ ψ ′(x) = ψ(x)

∂μψ
′(x) = ∂μψ(x) , (89)

and consider the quotient space J 1
x (E) ≡ �x (E)/ 1∼, and the natural projection

π1 : J 1
x (E) −→ M

(ψ, x) �→ x .

123



  304 Page 28 of 85 Eur. Phys. J. Plus         (2021) 136:304 

The union J 1(E) ≡ ∪x J 1
x (E)

π1−→ M is called the bundle of 1-jets of �(E) (the space of
sections of E).

J 1(E)
π1−→ M is parameterized locally by {xμ, ψα, ψβν }.

Given a section ψ : M → E , we can define its 1-jet extension

j1(ψ)(x) = (ψα(x), ψβμ(x) = ∂μψβ(x)) , (90)

which is an immersion of �(E) ↪→ �(J 1(E)).
The structure 1-forms {θα},

θα = dψα − ψαμdxμ , (91)

characterize the jet extension of sections and vector fields:

θα| j1(ψ)(M) = 0 .

In the same way, given X ∈ X (M), j1(X) ∈ X (J 1(E)), is the only field that projects on X
and preserves the 1-form system {θα}:

j1(X) ≡ X̄ , X̄ = X + X̄αμ
∂

∂ψαμ
, (92)

L X̄θ
α = Cαβ θ

β ⇒
Cαβ = ∂Xα

∂ψβ
− ψαμ ∂X

μ

∂ψβ

X̄αμ = ∂Xα
∂xμ − ψαν ∂X

ν

∂xμ +
(
∂Xα

∂ψβ
− ψαν ∂X

ν

∂ψβ

)
ψ
β
μ .

(93)

The jet extension is a Lie algebra homomorphism:

j1([X, Y ]) = [ j1(X), j1(Y )] . (94)

Lagrangian (density): A Lagrangian density is a real function L on J 1(E). Then, we define
the Action functional

S : �(E) −→ R /

S(ψ) = ∫
j1(ψ)(M) L( j

1(ψ))π1∗ω , (95)

where ω is a volume n-form on M and π1∗ is its pull-back to J 1(E). (Usually, M is the
Minkowski space-time and ω = dx0 ∧ dx1 ∧ dx2 ∧ dx3).

5.2 Hamilton principle

The Ordinary Hamilton Principle establishes that the critical sections of the variational prob-
lem are the points of �(E) where δS, the “differential” of S , is zero, that is:

ψ ∈ �(E) / δS(ψ)(X) ≡
∫

j1(ψ)(M)
L X̄

(
L( j1(ψ))ω

) = 0 , ∀ X ∈ X (E) . (96)

As is well known, critical sections satisfy the Euler–Lagrange equations:

d

dxμ

(
∂L
∂ψαμ

)

− ∂L
∂ψα

= 0 , (97)

where d
dxμ stands for “derivative with respect to xμ along the section ψ .”

Exercise: Derive the Euler–Lagrange equations!!
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Hint: Realize that the variations δxμ, δψα and δ∂μψα correspond to the components
Xμ, Xα, Xαμ of X̄ . The fact that ψαμ behaves as ∂μψα under variation is related to the

fact that X̄ is j1(X).

5.3 Modified Hamilton principle: the Poincaré–Cartan form

The Modified Hamilton Principle assumes the independent variation of ψα and ψβν . That

means that we look for critical sections in the module �(J 1(E)), rather than �(E), where
the variations are caused by arbitrary X1 ∈ X (J 1(E)) that are no longer jet extensions.

The Modified Hamilton Action L1 : �(J 1(E)) −→ R is defined as the integral

S1(ψ1) =
∫

ψ1(M)
 PC , (98)

where the Poincaré–Cartan(–Hilbert) form is a (n =dim M)-form defined by

 PC = ∂L
∂ψαμ

(dψα − ψαν dxν) ∧ θμ + Lω , (99)

where θμ ≡ i ∂
∂xμ
ω.

The Poincaré–Cartan n-form can also be written as

 PC = ∂L
∂ψαμ

dψα ∧ θμ −
(
∂L
∂ψαμ

ψαμ − L
)

ω . (100)

When L is regular, that is, det

(
∂2L
∂ψαμψ

β
ν

)
�= 0, we may define the covariant Hamiltonian

H ≡ πμα ψαμ − L , (101)

where πμα ≡ ∂L
∂ψαμ

are the covariant momenta and the form  PC can be written as

 PC = πμα dψα ∧ θμ − Hω . (102)

Remark The Poincaré–Cartan form might be redefined as

 PC =
[
∂L
∂ψαμ

(dψα − ψαν dxν)+ 1

4
Ldxμ

]

∧ θμ ≡ T μPC ∧ θμ (103)

for future relationships.

The Modified Hamilton Principle defines critical sections as those sectionsψ1∈ �(J 1(E))
on which the functional derivative of S1, δS1, is zero:

(δS1)ψ1(X1) ≡
∫

ψ1(M)
LX1 PC = 0 ∀X1 ∈ X (J 1(E)) ⇒

iX1 d PC |ψ1 = 0 . (104)

The equations of motion above generalize the Euler–Lagrange ones in the sense that if L is
regular

iX1 d PC |ψ1 = 0 ∀X1 ⇒ Euler–Lagrange equation
ψ1 = j1(ψ) .

(105)
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Let us remark that PC reduces to Lω on jet extensions since PC = πμα θα ∧ θμ+ Lω and
θα| j1(ψ) = 0.

In the regular case, iX1 d PC |ψ1 = 0 can be taken into the Hamiltonian form:

∂H
∂π

μ
α

= ∂ψα

∂xμ
,

∂H
∂ψα

= −∂π
μ
α

∂xμ
. (106)

We shall remark that in the Ordinary Variational Calculus people define only πα ≡ π0
α , the

time component, and the non-covariant Hamiltonian H = παψ
α
0 − L (παψ̇α − L). The

extra Hamiltonian equations we have, simply provide the definition of covariant momenta.
Note: The non-covariant Hamiltonian H will be obtained in our scheme as the time com-
ponent of the conserved current associated with the invariance under time translations (see
later).

5.4 Symmetries and the Noether Theorem: Hamilton–Jacobi transformation and Solution
Manifold

A symmetry of the variational problem is a vector field Y 1 ∈ X (J 1(E)) such that

LY 1 PC = dαY 1 , αY 1 (n − 1)− form . (107)

We actually say that  PC is semi-invariant if αY 1 �= 0.

Theorem (Noether): If Y 1 is a symmetry of  PC , the quantity JY 1 ≡ iY 1 PC − αY 1 is
conserved along the solutions.

Proof LY 1 PC ≡ iY 1 d PC + diY 1 PC = dαY 1 . Restricting this expression to solutions,
we have:

iY 1 d PC |sol. = 0 = d(αY 1 − iY 1 PC )|sol .

The quantity JY 1 ≡ iY 1 PC − αY 1 is the Noether Invariant.
Note that JY 1 is an (n − 1)-form and we can define the dual current (we shall omit the

subscript) J ≡ (iY 1 PC − αY 1).
If we denote j ≡ iY 1 PC = ∂L

∂ψαμ
(Y α − ∂νψαY ν)θμ + LYμθμ, that is, the conserved

current for strict invariance, we can write the vector current

jμ = ∂L
∂ψαμ

(Y α − ∂νψαY ν)+ LYμ . (108)

In terms of J , the constancy of iY 1 PC − αY 1 along solutions becomes

∂μ J
μ|sol = 0 ⇒

∫

�

dσμ J
μ ≡ Q , (109)

where� is a Cauchy surface, is a constant. It is named conserved charge associated with the
symmetry. ��
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5.5 Examples

The free Galilean particle:
E = R × R3 → R , J 1(E) = R × R3 × R3 → R
{t, xi } {t, xi , ẋ j }
θ i = dxi − ẋ idt L = 1

2mẋ2

d

dt

(
∂L
∂ ẋ i

)
− ∂L
∂xi

= 0 ⇒ d

dt
mẋi = 0 , ẋ i = dxi

dt
⇒

d2

dt2 x
i = 0 ⇒

⎧
⎨

⎩

xi = K i + Pi

m τ

pi = Pi
t = τ

(
pi = ∂L

∂ ẋ i
, H = pi ẋ

i − L = p2

2m

)
. (110)

The expression above concerning the trajectories of the free particle can be read as an invert-
ible transformation in R × R3 × R3 to be referred to as the

Hamilton–Jacobi transformation ⇔ (xi , p j , t)↔ (K i , Pj , τ ) . (111)

This Hamilton–Jacobi transformation permits the pass to the Solution Manifold parameter-
ized by the basic constants of motion.

After this (H–J) transformation, PC comes down to the Solution Manifold, except for a
total differential:

 PC = ∂L
∂ ẋ i
(dxi − ẋ idt)+ Ldt = pidx

i − p2

2m
dt = Pid

(
K i + Pi

m
τ

)
− P2

2m
dτ

= PidK
i + P2

m
dτ + Piτ

m
dPi − P2

2m
dτ = PidK

i+d

(
P2

2m
τ

)
. (112)

Its differential is

d PC = dPi ∧ dK i ≡ ω= d�, (113)

that is, the symplectic form on the Solution Manifold.
� ≡ PidK i is the Potential 1-form or Liouville 1-form.

Reminder: At this moment, we must remind the reader some few words on Symplectic
Manifold (to be completed with traditional references like Ref. [5] and/or Ref. [4]):
Let (S, ω) be a symplectic manifold.
X on S is locally Hamiltonian if iXω = α, a closed 1-form.
X on S is globally Hamiltonian if iXω = −d f , (an exact 1-form).
Since det(ω) �= 0, given f : S → R, the equation

iX f ω = −d f determines X f .

The correspondence f �→ X f is a homomorphism with kernel R.
Poisson Bracket: f, g �→ { f, g} / i[x f ,Xg]ω = −d{ f, g}.
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Symmetries of the free particle:

X(B) ≡ ∂

∂t
, X(A) ≡ ∂

∂x
, X(V) ≡ t

∂

∂x
, X(ε) ≡ x ∧ ∂

∂x

X̄(B) = X(B) , X̄(A) = X(A) , X̄(V) = t
∂

∂x
+ ∂

∂ ẋ
X̄(ε) = x ∧ ∂

∂x
+ ẋ ∧ ∂

∂ ẋ
(114)

L X̄(B)
 PC = 0 ⇒ J(B) = i X̄(B) PC = 1

2
mẋ2 = P2

2m
L X̄(A)

 PC = 0 ⇒ J(A) = i X̄(A) PC = mẋ ≡ P

L X̄(V)
 PC = d(mx) ⇒ J(V) = mx − i X̄(V) PC = mx − pt ≡ K

L X̄(ε)
 PC = 0 ⇒ J(ε) = i X̄(ε) PC = x ∧ p = K ∧ P . (115)

Note that all Noether invariants are written in terms of the basic ones K,P.
The free scalar field (Klein–Gordon)
Klein–Gordon fields are sections φ of the line (R for real fields, C for charged ones) vector
bundle over Minkowski space-time M [24] (see for instance [26–28] for a more physically
minded presentation)

Klein–Gordon
E = R × M → M , φ ∈ �(E)
Lagrangian L = 1

2φμφ
μ − 1

2m
2φφ

.

The Euler–Lagrange equations lead to:

d

dxμ

(
∂L
∂φμ

)
− ∂L
∂φ

= 0 ⇒ �φ + m2φ = 0 , with solutions:

φ(x) =
∫

d3k

2k0 {a(k)e−ik·x + a∗(k)eik·x } , k0 =
√

k2 + m2 (116)

a(k) = i
∫

�

dsμeik·x
↔
∂μ φ(x) , a∗(k) = −i

∫

�

dsμe−ik·x ↔
∂μ φ(x) , (117)

where � is a Cauchy surface, usually R3 (x0 = 0). The “constants” a(k), a∗(k) parame-
terize the Solution Manifold.

The Poincaré–Cartan form can be written as

 PC = πμdφ ∧ θμ − Hω , (118)

where H = 1
2πμπ

μ + 1
2m

2φφ is the covariant Hamiltonian.

Space-time symmetry: The K–G Lagrangian is invariant under the Poincaré group generated
by

X(μ) = ∂

∂xμ
; X(μν) = δσρμν xσ

∂

∂xρ
(119)

with jet extension:

X̄(μ) = ∂

∂xμ
; X̄(μν) = δσρμν xσ

∂

∂xρ
+ δμν,σ ·

ρφσ
∂

∂φρ
.

L X̄(μ)
 PC = 0 , iX(μ) PC =

(
LXσ(μ) −

∂L
∂φσ

∂νφX
ν
(μ)

)
θσ

θμ = i ∂
∂xμ
ω ≡ dσμ

ω ≡ volume on M
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⇒ jσ(μ) ≡ δσμL − ∂L
∂φσ

∂μφ =
(

1

2
∂νφ∂

νφ − 1

2
m2φ2

)
δσμ − ∂σφ∂μφ conserved

⇒ Q(μ) ≡
∫

�

dσν j
ν
(μ) ≡ Pμ constant

In particular

H = ∫
d3x

( 1
2 φ̇φ̇ + 1

2∇φ · ∇φ + 1
2m

2φ2
)

P = ∫
d3x φ̇∇φ . (120)

In the same way

L X̄(μν)
 PC = 0 ⇒ jσ(μν) ≡ −δεκμνxε∂σ φ∂κφ + 1

2
δεσμνxε∂κφ∂

κφ conserved

⇒ M(μν) ≡
∫

d3x( j0
(μ)xν − j0

(ν)xμ) constant . (121)

The space-time symmetries play the analogous role of time translations in Mechanics and the
corresponding Noether invariants do not contribute to the Solution Manifold, that is to say:
SM cannot be parameterized by Noether invariants associated with space-time symmetries.
“Internal” symmetries: (Such symmetries are rarely reported in Literature and considered
as “hidden symmetries” [27])

The following vector fields on the bundle E are non-trivial symmetries:

Xa∗(k) ≡ ieikx
∂

∂φ
, Xa(k) ≡ −ie−ikx ∂

∂φ

X̄a∗(k) = Xa∗(k) − ikνe
ikx ∂

∂φν
, X̄a(k) = X̄∗

a∗(k) (122)

with Noether invariants

Qa∗(k) = ∫
d3x j0

a∗(k) = i
∫

d3xeikx (φ̇ − ik0φ) = a(k)
Qa(k) = ... ... = a∗(k) . (123)

Alternatively, the “configuration space” counterparts are

Xπ(y) ≡ i
∫

d3k

2k0

{
eik·xeikx ∂

∂φ
− h.c.

}
= Cos[x0

√
m2 − ∇2]δ(y − x)

∂

∂φ

Xϕ(y) ≡ −
∫

d3k

2k0 k
0
{
eik·xeikx ∂

∂φ
+ h.c.

}
= Sin[x0

√
m2 − ∇2]√

m2 − ∇2
δ(y − x)

∂

∂φ

(124)

with Noether invariants

Qπ(y) = ϕ(y)
Qϕ(y) = π(y) . (125)

Note that π(x) = φ̇(x0 = 0, x) , ϕ(x) = φ(x0 = 0, x) and that k and y in the subscript are
indices, whereas xμ is the variable in the base manifold M of E .
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The Hamilton–Jacobi transformation: Passing to the Solution Manifold
By writing the Klein–Gordon solutions in a proper way, and adding the trivial transformation
x0 = χ0, the following transformation (H − J ) has an inverse ((H − J )−1) :

φ(x) = Cos
(
χ0

√
m2 − ∇2

)
ϕ(x)+ Sin

(
χ0

√
m2−∇2

)

√
m2−∇2 ϕ̇(x)

φ̇(x) = Cos
(
χ0

√
m2 − ∇2

)
ϕ̇(x)− √

m2 − ∇2 Sin
(
χ0

√
m2 − ∇2

)
ϕ(x)

x0 = χ0

(126)

ϕ(x) = Cos
(
x0

√
m2 − ∇2

)
φ(x0, x)+ Sin

(
x0

√
m2−∇2

)

√
m2−∇2 φ̇(x0, x)

ϕ̇(x) = Cos
(
x0

√
m2 − ∇2

)
φ̇(x0, x)− √

m2 − ∇2 Sin
(
x0

√
m2 − ∇2

)
φ(x0, x)

χ0 = x0

(127)

The tangent H–J transformation becomes:

∂
∂ϕ(x) = Cos

(
x0

√
m2 − ∇2

)
∂

∂φ(x) − √
m2 − ∇2 Sin

(
x0

√
m2 − ∇2

)
∂

∂φ̇(x)

∂
∂ϕ̇(x) = Sin

(
x0

√
m2−∇2

)

√
m2−∇2

∂
∂φ(x) + Cos

(
x0

√
m2 − ∇2

)
∂

∂φ̇(x)

(128)

∂
∂φ(x) = Cos

(
x0

√
m2 − ∇2

)
∂

∂ϕ(x) + √
m2 − ∇2 Sin

(
x0

√
m2 − ∇2

)
∂

∂ϕ̇(x)

∂

∂φ̇(x)
= −Sin

(
x0

√
m2−∇2

)

√
m2−∇2

∂
∂ϕ(x) + Cos

(
x0

√
m2 − ∇2

)
∂

∂ϕ̇(x) .

(129)

Acting with H–J on the objects on �(E) we arrive at the Solution Manifold endowed with
a symplectic structure and Hamiltonian symmetries. In fact, the “integral on the Cauchy
surface” of PC comes down to the SM except for a total differential after applying the H–J
transformation:

ϑPC ≡
∫

�

dσμ

{
∂L
∂φμ

(dφ − φνdxν)+ Ldxμ
}

=
∫

d3x{φ̇dφ − 1

2
(φ̇2 + ∇φ · ∇φ + m2φ2)dx0}

≡
∫

d3x{φ̇dφ − Hdx0} =
Liouville form �∫

d3x ϕ̇(x)δϕ(x) +total differential (130)

and the differential dϑPC actually comes down defining the Symplectic form: " ≡ δ�
Hamiltonian vector fields: iX f" = −δ f

f = ϕ(x) ⇒ Xϕ(x) = δ
δϕ̇(x)

f = ϕ̇(x) ⇒ X ϕ̇(x) = δ
δϕ(x)

constitute the basic local symmetries . (131)

(They are not gauge; in fact, the Noether invariants are non-trivial)
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Note that they go back to the Evolution Manifold by means of the transformation (H − J )−1.
“Functions” such as

∫
�

d3x ϕ̇(x) or
∫
�

d3xϕ(x), that is, the integrated basic symmetries,
generate rigid symmetries.
For instance, for the massless Klein–Gordon field,

f = ∫
d3xϕ(x) ⇒ X f = x0 ∂

∂φ
+ ∂

∂φ̇

f = ∫
d3x ϕ̇(x) ⇒ X f = ∂

∂φ

as vector fields on the bundle J 1(E) . (132)

By the way, even in the massive case, Y f = f ∂
∂φ

is a symmetry of the Lagrangian if f is a
solution of the Klein–Gordon equation:

Ȳ f = f
∂

∂φ
+ ∂μ f

∂

∂φμ

Ȳ f L = −m2 f φ + ∂μ f φμ = ∂μ(∂μ f φ) if ∂μ∂
μ f + m2 f = 0 .

When f is not a solution, symmetry under such a vector field Y f requires the introduction
of compensating Yang–Mills fields.

5.6 Current algebra (on the example of the massless Klein–Gordon field)

We write the complete symmetry of the Klein–Gordon field in the form of a semi-direct
product group:

Poincaré ⊗S “Current Group”.

The space–time rigid symmetry provides charges:

P0 = 1
2

∫
d3x{ϕ̇(x)ϕ̇(x)+ ∇ϕ(x) · ∇ϕ(x)} ≡ ∫

d3xP0

Pi = ∫
d3x ϕ̇(x)ϕi (x) ≡ ∫

d3xPi

X(μ) = ∂

∂xμ
(133)

M(μν) =
∫

d3x(Pμxν − Pνxμ)|x0=0 | X(μν) = δεσμνxε
∂

∂xσ
δεσμνxε

∂

∂xσ
+ δεσμνφε

∂

∂φσ

(134)

The internal symmetries lead to rigid charges:

Qφ =
∫

d3x ϕ̇(x) Xφ = ∂

∂φ
(135)

and

Qφ̇ = ∫
d3xϕ(x)

Qφi = ∫
d3xxi ϕ̇(x)

Xφμ = xμ
∂

∂φ
+ ∂

∂φμ
(136)

as well as local ones associated with the Hamiltonian vector fields (131):

Qϕ(x) = ϕ̇(x) , Qϕ̇(x) = ϕ(x) | local symmetries. (137)

In other words, given a rigid symmetry, the integrand of the corresponding Noether invariants,
that is, the zeroth component of the currents, j0, are in turn Noether invariants of a current
algebra!!.
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6 Symmetry and quantum theory

Canonical quantization proved to be inadequate very soon for dealing with nonlinear systems
in general, except for certain perturbative conditions. See, for instance the historical paper on
“No-Go theorems” [29] as well as, more recently [30,31]. Here, we shall adopt a symmetry-
based algorithm more appropriate to formulate basic physical systems irrespective of their
(non-)linear character, provided that we are able to parameterize their Solution Manifold by
means of Noether charges associated with symmetries [32–36].

6.1 Group Approach to Quantization

The basic idea of GAQ consists in having two mutually commuting copies of the Lie algebra
G̃ of G̃ a central extension by U (1):

X L(G̃) ≈ G̃ ≈ X R(G̃) .

Then, a copy, let us say X R(G̃), constitutes the (pre-)Quantum Operators acting by usual
derivations on complex U (1)-functions on G̃.

The other copy, now X L(G̃), is used to reduce the (pre-)quantum representation in a
compatible way ⇒ true Quantization

In fact, given a group law, g′′ = g′g, we have two actions:

g′′ = g′g = Lg′g left action

g′′ = g′g = Rgg
′ right action ,

and they do commute:
[
X̃ L
a , X̃

R
b

]
= 0 ∀a, b = 1, ...dim G.

This property also implies:

L X̃ R
a
θ Lb = 0 {θ La} dual to {X̃ L

b } and

L X̃ R
a
(θ Lb ∧ θ Lc ∧ ...) ≡ L X̃ R

a
ω = 0 ⇒ ω invariant volume.

The left-invariant form θ L(U (1)) plays the role of generalized Poincaré–Cartan form or quan-
tization form  .

The classical Noether invariants are i X̃ R
a
 , as they are invariant along the equations of

motion, that is, X̃ L
a in the characteristic subalgebra G :

G = 〈X̃ L / i X̃ L = 0 = i X̃ L d 〉
G̃/G ≡ Quantum Solution Manifold .

Wave functions ψ are U (1)-functions (ψ(g̃) = ζ�(g), ζ ∈ U (1)) invariant under the right
action of a polarization subgroup P:

P is a maximal subgroup of G containing the characteristic
subgroup G and excluding the U (1) central subgroup ,

ψ(Rgg
′) = ψ(g′) ∀g ∈ P .

G̃ acts on ψ from the left, ĝ′ψ(g) = ψ(Lg′g), providing an irreducible representation of G̃.
At the infinitesimal level, theU (1)-function conditionψ(g̃) = ζ�(g) is written as#ψ = iψ ,
where # stands for

X̃ L
(ζ ) = X̃ R

(ζ ) = iζ
∂

∂ζ
− iζ ∗ ∂

∂ζ ∗ ,
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which is the central generator of the group G̃ , ζ ∈ U (1).
Starting from a complex function ψ(g, ζ ) on G̃, we must impose the Polarization conditions
in the form:

X̃ L
a ψ = 0.

X̃ L ∈ P generate a left-invariant subalgebra P containing G and excluding the vertical
generator #.

If such a polarization subalgebra does not exist, then we may search for a higher-order
subalgebra in the left-enveloping algebra substituting a first-order one.
On the space of polarized wave functions, the right-invariant generators X̃ R

a operate defining
the true quantum operators associated with the group variable a, â. They generate a unitary
and irreducible representation of the group G̃, that is, a quantization of the physical system

with basic symmetry G̃

6.2 Some examples

6.2.1 Non-relativistic harmonic oscillator (1+1 dimension)

Group law: (central extension by U (1) of the Newton group)

t ′′ = t ′ + t

x ′′ = x + x ′cosωt + p′
mω sinωt

p′′ = p + p′cosωt − mωx ′sinωt
Newton group

ζ ′′ = ζ ′ζe
i

2h̄ (x
′ pcosωt−p′xcosωt+( p′ pmω +ωx ′x)sinωt) (138)

X̃ L
t = ∂

∂t + p
m
∂
∂x − mω2x ∂

∂p ; X̃ L
p = ∂

∂p+ x
2h̄#

X̃ L
x = ∂

∂x − p
2h̄# ; X̃ L

ζ = iζ ∂
∂ζ

− iζ ∗ ∂
∂ζ ∗ ≡ # (139)

X̃ R
t = ∂

∂t

X̃ R
x = cosωt

∂

∂x
− mωsinωt

∂

∂p
+ 1

2h̄
(pcosωt + mωxsinωt)#

X̃ R
p = 1

mω
sin
∂

∂x
+ cosωt

∂

∂p
− 1

2h̄
(xcosωt − p

mω
sinωt)#

X̃ R
ζ = iζ

∂

∂ζ
− iζ ∗ ∂

∂ζ ∗ ≡ # (140)

[
X̃ R
t , X̃

R
x

]
= −mω2 X̃ R

p ;
[
X̃ R
t , X̃

R
p

]
= 1

m
X̃ R
x ;

[
X̃ R
t , X̃

R
p

]
= − 1

h̄
# (141)

Quantization Form:  = pdx − ( p2

2m + 1
2mω

2x2)dt + dζ
iζ

Characteristic Module: C = 〈X̃ L 〉
Polarization (complex): P = 〈X̃ L

t , X̃
L
x ± imω X̃ L

p 〉
There is no first-order real polarization!

123



  304 Page 38 of 85 Eur. Phys. J. Plus         (2021) 136:304 

Fock variables: a ≡
√

mω
2h̄ x + i√

2mh̄ω
p ; a∗ ≡

√
mω
2h̄ x − i√

2mh̄ω
p

Group law, vector fields, characteristic module, polarization:

t ′′ = t ′ + t

a′′ = a′e−iωt + a

a′′∗ = a′∗eiωt + a∗

ζ ′′ = ζ ′ζe
i
2 (ia

′a∗e−iωt−ia∗a′eiωt ) (142)

X̃ L
t = ∂

∂t − iωa ∂
∂a + iωa∗ ∂

∂a∗ X̃ R
t = ∂

∂t
X̃ L
a = ∂

∂a − i
2a

∗# X̃ R
a = e−iωt

(
∂
∂a + i

2a
∗#

)

X̃ L
a∗ = ∂

∂a∗ + i
2a# X̃ R

a∗ = eiωt
(
∂
∂a∗ − i

2a#
) (143)

C = 〈X̃ L
t 〉 ; P = 〈X̃ L

t , X̃
L
a 〉 or P∗ = 〈X̃ L

t , X̃
L
a∗ 〉 (144)

Polarization Equations: � = �(ζ, t, a, a∗)

(U (1)− function) #.� = i� ⇒ � = ζ�(t, a, a∗)
X̃ L
a .� = 0 ⇒ � = ζe− aa+

2 φ(t, a)

X̃ L
t .� = 0 → ∂φ

∂t + iωa ∗ ∂φ
∂a∗ = 0 ⇒ � = ζe− aa∗

2

√
ω

2π �
∞
n=0cn

(a∗e−iωt )n√
πn! ≡ ζ�n

(145)

Operators: Ê = i h̄ X̃ R
t , â = X̃ R

a∗ , â† = X̃ R
a

â�n = √
n�n−1

â†�n = √
n + 1�n+1

Ê�n = nh̄ω�n

〈� ′|�〉 =
∫

d(Rea∗)d(Ima)e−aa∗
φ′φ (146)

Configuration space: Higher-order Polarization

PHO = 〈X̃ L
p , X̃ L

t − i h̄

2m
X̃ L
x X̃

L
x 〉 (147)

#.� = i� → � = ζ�(t, x, p)
X̃ L

p� = 0 → � = ζe−i ih̄
px
2 φ(t, x)

(X̃ L
t − i h̄

2m X̃ L
x X̃

L
x )� = 0 → i h̄ ∂φ

∂t = − h̄
2m

∂2φ

∂x2 + 1
2mω

2x2φ

⇒ (148)

φ(t, x) = �∞
n=0cnφn(t, x) =

√
ω

2π

(
mω

h̄π

)1/4

�∞
n=0

cn

2n/2
√
n!e

−mω
2h̄ x2

e−inωt Hn

(√
mω

h̄
x

)

(149)

where Hn are the Hermite polynomials.

6.2.2 Relativistic harmonic oscillator (1+1 dimension)

What is a relativistic harmonic oscillator? A dynamical system characterized by a symmetry
that contract to that of the non-relativistic harmonic oscillator in the non-relativistic limit and
that contract to the symmetry of the free relativistic particle in the limit of zero frequency
[37]. Here is the proposed Lie algebra:
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[
Ê, K̂

]
= −i h̄m P̂ c2 → ∞ N-R oscillator

[
Ê, P̂

]
= imh̄ω2 K̂ ω2 → 0 Free Relativistic particle

[
K̂ , P̂

]
= i h̄( 1

mc2 Ê + 1̂) c2 → ∞ , ω2 → 0 N-R Free particle

(150)

Group law: (by exponentiating the Lie algebra)

sinωt ′′ = ω

α′′

(
α

mc2α′ p
′x ′sinωt ′sinωt + αP ′

0

mωcα′ cosωt ′sinωt

+ ω

mc3α′ xx
′P ′

0sinωt ′ + α′α
ω

cosωtsinωt ′ + p′x
mc2α′ cosωt ′

)

x ′′ = p′α
mω

sinωt + αx ′cosωt + x P ′
0

mc

p′′ = ωxp

c2α

(
p′

m
sinωt + ωx ′cosωt

)
+ P0

cα

(
p′

m
cosωt − ωx ′sinωt

)
+ pP ′

0

mc

ζ ′′ = ζ ′ζe
i
h̄ (δ

′′−δ′−δ) (151)

where

P0 ≡ √
mc2 − p2 + m2ω2x2 δ ≡ function generating the

α ≡
√

1 + ω2x2

c2 coboundary such that
c2→∞−→

δ ≡ −mc2t − f cocycle

f ≡ − 2mc2

ω
Tg−1

[
mc2

ωpx (α − 1)( P0
mc − α)

]

Left generators:

X̃ L
t = P0

mcα2
∂
∂t + p

m
∂
∂x − mω2x ∂

∂p

[
X̃ L
t , X̃

L
x

]
= mω2 X̃ L

p

X̃ L
x = P0

mc
p
m
∂
∂x + p

mc2α2
p
m
∂
∂t − pmc

P0+mc
1
h̄#

[
X̃ L
t , X̃

L
p

]
= − 1

m X̃ L
x

X̃ L
p = P0

mc
∂
∂p+ mcx

P0+mc
1
h̄#

[
X̃ L
x , X̃

L
p

]
= − 1

mc2 X̃
L
t + 1

h̄#

(152)

Configuration space: Higher-order Polarization

PHO = 〈X̃ L
p , X̃ LHO

t ≡
(
X̃ L
t

)2 − c2
(
X̃ L
x

)2 + 2imc2

h̄
X̃ L
t + imc2ω

h̄
#〉 (153)

#.� = i� ⇒ � = ζ�(t, x, p)
X̃ L

p .� = 0 ⇒ � = ζe i
h̄ f φ(t, x)

X̃ LHO
t .� = 0 ⇒ 1

α2
∂2φ

∂t2
− 2imc2

h̄α2
∂φ
∂t − 2ω2x ∂φ

∂x − c2α2 ∂2φ

∂x2 − m2c4

h̄α2 φ + mc2ω
h̄ φ = 0 .

(154)

Restoring the rest energy, that is, X̃ R
t → X̃ R

t −mc2

h̄ # , φ → ϕ,

the equation X̃ LHO
t .� = 0 becomes

Ĉϕ ≡ − c2

ω2 �ϕ = N (N − 1)ϕ (Casimir operator) , (155)
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where N ≡ mc2

h̄ω and � ≡ 1
c2α2

∂2

∂t2
− 2ω2x

c2
∂
∂x − α2 ∂2

∂x2 � is the D’Alembert operator in anti-
de Sitter space-time. The evolution equation is solved by power series expansion:

ϕn ≡ e−ibnωtα−cn H N
n ⇒ bn = cn

cn = c0 + 1
2 +

√
1+4N (N−1)

2 ≡ c0 + 1
2 + N̄ ,

(156)

where HN
n is a polynomial in the variable ξ ≡

√
mω
h̄ x satisfying

(
1 + ξ2

N

)
d2

dξ2 H
N
n − 2

N
(N̄ + n − 1

2
)ξ

d

dξ
HN
n + n

N
(2N̄ + n)HN

n = 0 ⇒ (157)

HN
n (ξ) = �[n/2]

s=0 aNn,n−2s(2ξ)
n−2s ; aNn,n−2s = − (s + 1)(N̄ + s + 1)

N (n − 2s)(n − 2s − 1)
aNn,n−2(s+1) ⇒

(158)

aNn,n−2s = (−1)s
Nsn!N̄ !(2N̄ + n)!

(2N )ns!(N̄ + s)!(2N̄ )!(n − 2s)! , s = 0, ..., [n
2
] . (159)

The polynomials HN
n are the Relativistic Hermite Polynomials!!

The energy operator provides the value EN
n = ( 1

2 + N̄ + n)h̄ω.

For N ≡ mc2

h̄ω → ∞, HN
n → Hn (Hermite Polynomials). The value N = 1

2 corresponds
to the extreme relativistic regime.

6.2.3 Particle moving on SU (2): PNLσM

The standard classical approach to a particle moving on a Riemann manifold with metric
gi j (x) is established by the Lagrangian (see [38,39] and references therein):

L = 1

2
mgi j (x)ẋ

i ẋ j = 1

2
me(a)i e(b)j kab , (160)

where e(a)i are the vierbeins defining the metric

gi j = e(a)i e(b)j kab
gi j = ei(a)e

j
(b)k

ab

e(a)i e j(b) = kab ≡ δab .
Here, SU (2) is parameterized by ε ∈ R3 / |ε| = 2sinϕ2

e(i)j (ε) ≡ θ(i)j (ε) =
⎛

⎝

√

1 − ε 2

4
δij + εiε j

4
√

1 − ε 2

4

+ 1

2
ηi. jkε

k

⎞

⎠ . (161)

The form θ(i) = θ(i)j dε j ≡ θ R(i) is the right-invariant canonical 1-form (we could have used
the left forms since L is chiral.

The inverse “vierbeins” are the right-invariant vector fields

X R
(i) =

⎛

⎝

√

1 − ε 2

4
δ
j
i + 1

2
η
j
.ikε

k

⎞

⎠ ∂

∂ε j
| X j

(i)
∂

∂ε j
= e j(i)

∂

∂ε j
. (162)
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The momentum, Hamiltonian and Poincaré–Cartan form are

pi = ∂L
∂ε̇i

= mgi j ε̇ j = mθ(k)i θ
(s)
j ε̇

j kks = mθ(k)i θ skks ≡ mθ(k)i θk θ s ≡ θ(s)j ε̇ j
H = ∂L

∂ε̇i
ε̇i − L = 1

2mgi j ε̇i ε̇ j = 1
2m gi j pi p j = 1

2mθ
iθi θk ≡ θ sksk

(163)

 PC = ∂L
∂ε̇i
(dεi − ε̇idt)− Ldt = pidε

i − Hdt = mθiθ
(i) − 1

2
mθiθ

idt (164)

and the solutions to the equations of motion (ω ≡
√

2
m H = √

θ iθi ):

εi (t) = εicosωt + ε̇i sinωt
ω

Hamilton–Jacobi
ε̇i (t) = ε̇icosωt − ωεi sinωt transformation ,

(165)

where εi ≡ εi (0), ε̇i ≡ ε̇i (0) are constants of motion parameterizing the Solution Manifold.
Note that θ i ≡ ϑ i is also constant of motion.

The symplectic form on the SM turns out to be

" = d� = mdϑi ∧ ϑ(i) + m

2
ηi. jkϑiϑ

( j) ∧ ϑ(k) . (166)

In local (Darboux) coordinates, we have

� = πi dεi , " = dπi ∧ dεi ; πi ≡ mνi = mϑ(k)i ϑk . (167)

Note that the Hamiltonian, in coordinates (εi , ϑ j )will be free from normal-order ambiguities
as regards quantization.

The basic symmetries are the Hamiltonian vector fields associated with εi , ϑ j and ρ ≡√
1 − ε 2

4 when lifted back to the Evolution Manifold by means of the inverse of the H–J
transformation.

They lead to the Poisson algebra (beyond Heisenberg–Weyl):
{
εi , ε j

} = 0
{
εi , ρ

} = 0
{
εi , ϑ j

} = 1
2η

i
. jkε

k + ρδij {ϑi , ρ} = 1
4ki jε

j

{
ϑi , ϑ j

} = mηk.i jϑk .

(168)

Remark: The (Hamiltonian) function ϑi generate (Killing) symmetries of the Lagrangian,
whereas εk only of the Poincaré–Cartan form, that is, εk generate pure contact symmetries.
Group Approach to Quantization now proceeds by exponentiating the Poisson algebra above
arriving at the SU (2)-sigma group centrally extended by U (1):

ε ′′ = ρε ′ + ρ′ε + 1
2ε ′ ∧ ε ρ′ ≡ ρ(ε ′)

ν′′ = ν′ + XLSU (2)
(ε ′)ν + 1

2ε ′z ν ≡ π
m ⇒

z′′ = z′ + ρ′z − 1
2ε ′ · ν

ζ ′′ = ζ ′ζe−i mh̄ (2(ρ
′−1)z−ε ′·ν) ζ ∈ U (1)

(169)

 ≡ θ L(ζ ) = −mεi dν
i − 2m(ρ − 1)dz + dζ

iζ
. (170)

The characteristic subalgebra and polarization are:

G = 〈XL
(z)〉 , P = 〈XL

(ν), X
L
(z)〉. (171)
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On the Quantum Solution Manifold, G̃/G , the quantization form is

 = −εidπi + dζ

iζ
(or πidε

i + dζ

iζ
up to a total differential) . (172)

Wave functions:

�(ζ, ε, ν, z) = ζe−im(ε·ν+2(ρ−1)z)φ(ε) (173)

Operators:

ε̂iφ(ε) = εiφ(ε)

ν̂ jφ(ε) = − i
m

SU (2)

X Rk
( j)

∂φ(ε)

∂εk

ρ̂φ(ε) = (ρ − 1)φ(ε) (to be redefined to remove the 1)

(174)

Hamiltonian:

Ĥφ(ε) = 1

2
mδi j ν̂i ν̂ jφ(ε) = − 1

2m
�L−Bφ(ε) = Eφ(ε) (175)

Integration measure:

dμ = θ L(ε1) ∧ θ L(ε2) ∧ θ L(ε3) = 1

ρ
dε1 ∧ dε2 ∧ dε3 (176)

6.2.4 The Klein–Gordon field

Typical infinite-dimensional systems in Physics appear as mappings from a space-time man-
ifold M into a non-(necessarily)Abelian group target G [36]:

φ : x ∈ M �→ φ(x) ∈ G .

If g is an element in Diff(M) the following semi-direct group law holds:

g′′ = g′◦g ◦ group law in Diff(M)
φ′′(x) = φ′(g(x))∗φ(x) ∗ group law in G .

Here M is the Minkowski space-time (x0 ≡ ct, x), and Diff(M) is restricted to the Poincaré
subgroup or just Translations parameterized by (a0 ≡ cb, a). G is simply the complex (or
real) vector space parameterized by φ.

A natural parameterization of the Klein–Gordon group is associated with a factorization
of M as � × R (Cauchy surface times Time): we have parameters 〈b, a;ϕ(x), ϕ̇(x)〉 (the
Lorentz subgroup of the Poincaré group can be easily added).

It should be stressed that the action of a on ϕ(x) just consists in moving the argument by a:
ϕ(x) �→ ϕ(x − a), whereas the action of b requires the knowledge of the equation of motion
(although not necessarily their actual solutions).

For K–G fields, φ(x) satisfies
··
φ (x) = (∇ 2 − m2)φ(x) | ϕ(x) ∼ φ(0, x)

Therefore, we write for ϕ′(b(x)):

ϕ′(b(x)) ≡ ebc∂0ϕ′(x) = cos[bc
√
m2 − ∇ 2]ϕ′(x)+ sin[bc√m2 − ∇ 2]√

m2 − ∇ 2] ϕ̇′(x) (177)
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so that, the Complete Group Law becomes:

b′′ = b′ + b a′′
μ = a′

μ +�′ν
μaν if the Lorentz subgroup

a ′′ = a ′ + a �′′ = �′λ were included

ϕ′′(x) = ϕ(x)+ cos[bc√m2 − ∇ 2]ea·∇ϕ′(x)+ sin[bc√m2−∇ 2]√
m2−∇ 2 ea·∇ϕ̇′(x) Central

ϕ̇′′(x) = ϕ̇(x)+ cos[bc√m2 − ∇ 2]ea·∇ϕ̇(x)
−√

m2 − ∇ 2sin[bc√m2 − ∇ 2]ea·∇ϕ′(x) extension

ζ ′′ = ζ ′ζexp
(
i
2

∫
�

d3x
[
ϕ̇(cos[bc√m2 − ∇ 2]ea·∇ϕ′ + sin[bc√m2−∇ 2]√

m2−∇ 2 ea·∇ϕ̇′) − by U (1)

ϕ(cos[bc√m2 − ∇ 2]ea·∇ϕ̇′ − √
m2 − ∇ 2sin[bc√m2 − ∇ 2]ea·∇ϕ′)

])

(178)

Notice that we can read from the group law the expression of the evolved fields
φ(x0, x), φ̇(x0, x) in terms of the initial conditions ϕ(x), ϕ̇(x):

φ(x0, x) = cos[x0
√
m2 − ∇ 2]ϕ(x)+ sin[x0

√
m2 − ∇ 2]√

m2 − ∇ 2
ϕ̇(x)

φ̇(x0, x) = cos[x0
√
m2 − ∇ 2]ϕ̇(x)−

√
m2 − ∇ 2sin[x0

√
m2 − ∇ 2]ϕ(x) . (179)

Left-invariant algebra:

X̃ L
b = ∂

∂b + ∫
�

d3x ϕ̇(x) δ
δϕ(x) − ∫

�
d3x(m2 − ∇ 2)ϕ(x) δ

δϕ̇(x)
X̃ L

a = ∂
∂a + ∫

�
d3x∇ϕ(x) δ

δϕ(x) + ∫
�

d3x∇ϕ̇(x) δ
δϕ̇(x)

X̃ L
ϕ(x) = δ

δϕ(x) − 1
2 ϕ̇(x)#

X̃ L
ϕ̇(x) = δ

δϕ̇(x) + 1
2ϕ(x)#

X̃ L
ζ = Re(iζ ∂

∂ζ
) ≡ #

(180)

Quantization form:

 = 1

2

∫

�

d3x (ϕ̇(x)δϕ(x)− ϕ(x)δϕ̇(x))

−1

2

∫

�

d3x
(
ϕ̇2(x)+ ∇ϕ(x) · ∇ϕ(x)+ m2ϕ2(x)

)
db

−1

2

∫

�

d3x (ϕ̇(x)∇ϕ(x)− ϕ(x)∇ϕ̇(x)) · da + dζ

iζ
. (181)

Commutators:
[
X̃ L
b , X̃

L
ϕ(x)

]
= (m2 − ∇ 2)X̃ L

ϕ̇(x)
[
X̃ L
b , X̃

L
ϕ̇(x)

]
= X̃ L

ϕ(x)
[
X̃ L

a , X̃
L
ϕ(x)

]
= −∇ X̃ L

ϕ(x)
[
X̃ L

a , X̃
L
ϕ̇(x)

]
= −∇ X̃ L

ϕ̇(x)
[
X̃ L
ϕ(x), X̃

L
ϕ̇(x)

]
= −δ(x − x ′)# . (182)

The Characteristic subalgebra is G = 〈X̃ L
b , X̃

L
a 〉, so that

 /G = 1

2

∫

�

d3x(ϕ̇0(x)δϕ0(x)− ϕ0(x)δϕ̇0(x))+ dζ0
iζ0

, (183)
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where the subscript 0 refers to the initial value in the integration of (generalized) equations
of motion corresponding to G .

Covariant Formulation. The construction above can be repeated in a form more convenient
for the interaction. Now the fields will be defined on the entire Minkowski space-time but
supposed to be solutions of the equations of motion

a′′
μ = a′

μ +�′ν
μaν

�′′ = �′�
φ′′(x) = φ′(�x + a)+ φ(x)
φ′′
μ(x) = φ′

μ(�x + a)+ φμ(x)
ζ ′′ = ζ ′ζexp

i

2

∫

�

dσμ
{
φ′
μ(�x + a)φ(x)− φμ(x)φ′(�x + a)

}

= ζ ′ζexp
i

2

∫

�

dσμx

∫

�

dσνy [−φ′
μ(�x + a)∂ yν �(x − y)φ(y)

+φ′(�x + a)∂ yμ�(x − y)∂νφ(y)]
= ζ ′ζexp

−i

2

1

V 2

∫

M
d4y

∫

M
d4z[φ′(�y + a)∂μy �(y − z)φμ(z)

−φ(y)∂μy �(y − z)φ′
μ(�z + a)] , (184)

where the invariant function Pauli–Jordan �(x) verifies

��+ m2� = 0
�|� = 0 �(0, x) = 0
∂μ�|� = −δ3

� ∂0�(x)x0=0 = −δ3(x)
�(x − y) = −�(y − x)

(185)

i�(x − y) =
∫

d4k

(2π)3
δ(k2 − m2)ε(k0)e−ik·(x−y) =

∫
d3k

(2π)32ω(k)
{e−ik·(x−y) − eik·(x−y)} ,

(186)

where ε(k0) is the sign function, ω(k) ≡ |k| and V is the (infinite) volume of “time.”
Left-generators: (formally distinguishing between ∂μφ and φμ)

X̃ L
aμ = ∂

∂aμ
+
∫

M
d4x

(
∂μφ

δ

δφμ
+ ∂μφν δ

δφν

)

X̃ L
φ(x) = δ

δφ(x)
− 1

2

∫

M
d4z∂μz �(x − z)φμ(z)#

X̃ L
φμ(x) = δ

δφμ(x)
+ 1

2

∫

M
d4zφμ(z)∂

μ
z �(x − z)# , (187)

where we have disregarded the infinite volume V .
Commutators:

[
X̃ L
aμ, X̃

L
φ(x)

]
= −∂μ δ

δφ(x)
− 1

2

∫

M
d4z∂ν�(x − z)∂μφν(z)# = −∂μ X̃ L

φ(x)

[
X̃ L
aμ, X̃

L
φν(x)

]
= −∂μ δ

δφν(x)
+ 1

2

∫

M
d4z∂ν�(x − z)∂μφ(z)# = −∂μ X̃ L

φν(x)

[
X̃ L
φ(x), X̃

L
φμ(y)

]
= −1

2

∫

M
d4uδ(u − x)∂μu �(y − u)#
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+1

2

∫

M
d4z∂νz�(x − z)δμν δ(z − y)#

= ∂μy �(x − y)# (equal-time commutators) . (188)

Textually,
[
X̃ L
φ(x), X̃

L
φ(y)

]
= 0, unless we interpret that φμ = ∂μφ (something that happens

along the physical trajectories) and in this case we would have the arbitrary-time commutator:

[
X̃ L
φ(x), X̃

L
φ(y)

]
=

[
δ

δφ(x)
− 1

2m2

∫

M
d4z∂μz �(x − z)∂μφ(z)#,

δ

δφ(y)

− 1

2m2

∫

M
d4u∂νz �(y − u)∂νφ(z)#

]

= − 1

2m2

∫

M
d4u∂νu�(y − u)∂νδ(u − x)+ 1

2m2

∫

M
d4z∂μz �(x − z)∂μδ(z − y)

= 1

am2 ��(y − x)− 1

2m2 ��(x − y) = − 1

2m2 m
2�(y − x)+ 1

2m2�(x − y)

= �(x − y) (189)

where we have “redefined” the fields so as to make explicit the mass m2.
This computation renders clear the necessity that�(x−y) satisfies the equation of motion.

6.2.5 The Dirac field

(just sketched, � of the Lorentz subgroup discarded)

a′′ = a′ + a

ψ ′′(x) = ψ(x)+ ψ ′(x + a)

ψ̄ ′′(x) = ψ̄(x)+ ψ̄ ′(x + a)

ψ ′′
μ(x) = ψμ(x)+ ψ ′

μ(x + a)

ψ̄ ′′
μ(x) = ψ̄μ(x)+ ψ̄ ′

μ(x + a)

ζ ′′ = ζ ′ζexp
−1

2

∫

M
d4y

∫

M
d4z

{
ψ̄ ′(y + a)[iγ μ∂ zμ + m]�(y − z)ψ(z)

− ψ̄(y)[iγ μ∂ zμ + m]�(y − z)ψ ′(z + a)
}
. (190)

It is customary to use the invariant function S(x) ≡ (iγ μ∂μ + m)�(x), which satisfies the
Dirac equation:

(i/∂ − m)(i/∂ + m)� = (� + m2)� = 0 . (191)

Remark: If we consider ψ and ψ̄ as Fermionic variables, then the relative sign in the cocycle
would be +

Left-generators:

X̃ L
ψ(x) = δ

δψ(x)
− 1

2

∫

M
d4zψ̄(z)[iγ σ ∂xσ + m]�(z − x)#

X̃ L
ψ̄(x)

= δ

δψ̄(x)
+ 1

2

∫

M
d4z[iγ ν∂xν + m]�(x − z)ψ(z)#

X̃ L
aμ = ∂

∂aμ
+
∫

M
d4x

(
∂μψ(x)

δ

δψ(x)
+ ∂μψ̄(x) δ

δψ̄(x)

)
# (192)
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Right ones:

X̃ R
ψ(x) = δ

δψ(x − a)
+ 1

2

∫

M
d4yψ̄(y)[i/∂ x + m]�(y − x + a)#

X̃ R
ψ̄(x)

= δ

δψ̄(x − a)
− 1

2

∫

M
d4z[i/∂ x + m]�(x − z − a)ψ(z)#

X̃ R
aμ = ∂

∂aμ
(193)

Arbitrary-time commutators:

[
X̃ R
aμ, X̃ R

ψ(x)

]
= ∂

∂aμ

∫

M
d4yδ(y + a − x)

δ

δψ(y)

− 1

2

∫

M
d4yψ̄(y)[i/∂ x + m]∂xμ�(y − x + a)# = −∂μ X̃ R

ψ(x)

[
X̃ R
aμ, X̃ R

ψ̄(x)

]
= ... = −∂μ X̃ R

ψ̄(x)
[
X̃ R
ψ(x), X̃ R

ψ̄(y)

]
= ... = (i/∂ x + m)�(x − y)# ≡ S(x − y)#. (194)

7 Gauge theory of internal symmetries

Internal symmetries refer to transformations moving only the internal (fiber) components of
a matter field [1,28,41,42]. In our language, they are generated by vector fields of the form:

X(a) = Xα(a)
∂

∂ϕα
= Xα(a)βϕ

β ∂

∂ϕα
. (195)

Here, {ϕα} are the coordinates of the fiber of E
π→ M on the space-time M , usually the

Minkowski space with coordinates {xμ}, μ = 0, 1, 2, 3. The generators above are supposed
to close a (finite-dimensional) algebra:

[X(a), X(b)] = Cc
abX(c) , (196)

to be referred to as the rigid or global symmetry algebra.
The Minimal Interaction Principle establishes that a matter Lagrangian Lmatt invariant

under a rigid group G can be converted into a new one, L̂matt , invariant under the corre-
sponding local (usually called gauge) group G(M), that is, a group generated by F(M)⊗ G,
F(M) being the algebra of functions on M , G the Lie algebra of G. The Lie algebra of G(M)
satisfies:

[ f (a)X(a), g(b)X(b)] = f (a)g(b)[X(a), X(b)] = f (a)g(b)Cc
abX(c) (197)

where the actual generators of G(M) are locally written as

f (a)X(a), f (a) : M → R .

Note that the ordinary Lie bracket really realizes (197) since X(a) = Xα(a)
∂
∂ϕα

, with Xμ(a) = 0,

for any internal symmetry. Otherwise, the components Xμ(a)
∂
∂xμ would have derivated the

function g(b)(x), giving rise to additional terms in (*) (see later on the space-time gauge
symmetries).

123



Eur. Phys. J. Plus         (2021) 136:304 Page 47 of 85   304 

The essential consequence of the dependence on xμ of the local group parameters lies on
the different realization of the jet extension of f (a)X(a), which now differs from f (a) X̄(a):

f (a)X(a) �= f (a) X̄(a). In fact, computing f (a)X(a) according to the standard formulas we get:

f (a)X(a) = f (a)Xα(a)βϕ
β ∂

∂ϕα
+ ( f (a)Xα(a)βϕβμ + Xα(a)βϕ

β ∂ f
(a)

∂xμ
)
∂

∂ϕαμ
, (198)

so that X̄(a)Lmatt = 0 does not imply f (a)(x)X(a)Lmatt = 0. The extra term

Xα(a)βϕ
β ∂ f (a)

∂xμ
∂
∂ϕαμ

must be canceled out somehow.

We must introduce extra compensating fields A(a)μ , the gauge vector bosons, transforming
under G(M) as:

δA(a)μ ≡ X
A(a)μ

= f (b)Ca
bc A

(c)
μ − ∂ f (a)

∂xμ
. (199)

This way, the complete generators of G(M), acting on ϕα and A(a)μ , are:

f (a)X(a) = f (a)X(a) + X
A(a)μ

∂

∂A(a)μ
. (200)

The transformation properties of A(a)μ do correspond to those of a derivation law on the
sections of E associated with a connection 1-form on the original principal bundle P . The
corresponding Christoffel symbols are

�αμβ ≡ A(a)μ (X(a))
α
β . (201)

However, connections are not the only way of realizing the vector potentials A(a)μ . We shall
construct such fields from the group G(M) itself a bit later!!.
Utiyama’s Theorem

We establish this theorem in two parts, the first of which refers to the matter field
Lagrangian, L̂matt , whereas the second tell us about the Lagrangian, L0, governing the (free)
gauge fields themselves.
Utiyama’s Theorem I: The new Lagrangian L̂matt describing the dynamics of the matter
fields along with their interaction with the vector potentials A(a)μ ,

L̂matt (ϕ
α, ϕβμ, A

(a)
ν ) ≡ Lmatt (ϕ

α, ϕβμ + A(a)μ Xα(a)βϕ
β) (202)

is invariant under the local group G(M), that is,

f (a)(x)X(a)L̂matt (ϕ
α, ϕβμ, A

(a)
ν ) = 0 . (203)

Proof Consider the following change of variables χ :

φα = ϕα ϕα = φα
φβμ = ϕβμ + A(a)μ Xβ(a)αϕ

α ⇔ ϕβμ = φβμ − B(a)μ Xβ(a)αφ
α

B(a)ν = A(a)ν A(a)ν = B(a)ν (204)
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and the Jacobian:

∂

∂ϕα
= ∂

∂φα
+ B(a)μ Xβ(a)α

∂

∂φ
β
μ

∂

∂ϕαμ
= ∂

∂φαμ

∂

∂A(a)μ
= ∂

∂B(a)μ
+ Xα(a)βφ

β ∂

∂φαμ
. (205)

After this change of variables,

L̂matt (ϕ
α, ϕβμ, A

(a)
ν ) ≡ Lmatt (ϕ

α, ϕβμ + A(a)μ Xβ(a)γ ϕ
γ ) = Lmatt (φ

α, φβμ)

= Lmatt ◦ χ(ϕα, ϕβμ, A(a)ν ) . (206)

We must now compute f (a)X(a)L̂matt :

f (a)X(a)L̂matt =
(

f (a)Xα(a)βϕ
β ∂

∂ϕα
+ ( f (a)Xα(a)βϕβμ

∂ f (a)

∂xμ
)
∂

∂ϕαμ

+ ( f (b)Ca
bc A

(c)
μ − ∂ f (a)

∂xμ
)
∂

∂A(a)μ

)

L̂matt (ϕ
γ , ϕδ, A(d)σ )

=
(
f (a)Xα(a)βφ

β(
∂

∂φα
+ B(b)μ Xγ(b)α

∂

∂φ
γ
μ

)+ ( f (a)Xα(a)β (φβμ − B(b)μ Xβ(b)γ φ
γ )

+ ∂ f (a)

∂xμ
Xα(a)βφ

β)
∂

∂φαμ
( f (b)Ca

bc B
(c)
μ − ∂ f (a)

∂xμ
)(

∂

∂B(a)μ
+ Xα(a)βφ

β ∂

φαμ
)

)

Lmatt (φ
α, φβμ)

=
(

f (a)Xα(a)βφ
β ∂

∂φα
+ f (a)Xα(a)βφ

β
μ

∂

∂φαμ
+ ( f (b)Ca

bc B
(c)
μ − ∂ f (a)

∂xμ
)
∂

∂B(a)μ

+ ( f (a)B(b)μ (X(b)X(a))
γ
βφ
β − f (a)B(b)μ (X(a)X(b))

γ
βφ
β)
∂

∂φ
γ
μ

+ f (b)Ca
bc B

(c)
μ Xα(a)βφ

β ∂

∂φαμ
+ ∂ f (a)

∂xμ
Xα(a)βφ

β ∂

∂φαμ
− ∂ f (a)

∂xμ
Xα(a)βφ

β ∂

∂φαμ

)

Lmatt (φ
α, φβμ)

=
(

f (a)Xα(a)βφ
β ∂

∂φα
+ f (a)Xα(a)βφ

β
μ

∂

∂φαμ
+ ( f (b)Ca

bc B
(c)
μ − ∂ f (a)

∂xμ
)
∂

∂B(a)μ

)

Lmatt (φ
α, φβμ)

=
(

f (a)Xα(a)βφ
β ∂

∂φα
+ f (a)Xα(a)βφ

β
μ

∂

∂φαμ

)

Lmatt (φ
α, φβμ)

= f (a) X̄(a)Lmatt (φ
α, φβμ) = 0 . (207)

Thinking of A(a)μ as connections, we may say that under the Minimal Coupling, the covari-
ant “derivative” of ϕα substitutes the ordinary one in Lmatt :

ϕαμ �→ ϕαμ + �αμβϕβ = ϕαμ + A(a)μ Xα(a)βϕ
β ≡ ϕα

μ̂
(or ϕα;μ) . (208)

On jet extensions,

∂μϕ
α �→ Dμϕ

α = ∂μϕα + �αμβϕβ . (209)

Notice that under G(M), ϕα
μ̂

transforms as a tensor:

δϕα
μ̂

= f (a)Xα(a)βϕ
β

μ̂
. (210)

123



Eur. Phys. J. Plus         (2021) 136:304 Page 49 of 85   304 

We have introduced new fields A(a)μ which must be controlled by a given Lagrangian

L0(A
(a)
μ , A

(b)
ν,σ ) so that the total Lagrangian will be L̂matt + L0

Stot =
∫

d4x(L0 + L̂matt ) . (211)

L0 should be constrained by the condition of being invariant under G(M) (note that L̂matt is
already invariant). Thus, the second part of the theorem says: ��
Utiyama’s Theorem II: The necessary condition for L0 to be invariant under G(M) is that
it depends on A(a)μ and A(a)ν,σ only through the specific combination

F (a)μ,ν ≡ A(a)μ,ν − A(a)ν,μ + 1

2
Ca
bc(A

(b)
μ A(c)ν − A(b)ν A(c)μ ) , (212)

named curvature tensor or intensity tensor.

Proof We have to solve the equation

f (a)(x)X(a)L̂0 = X
A(a)μ

∂L0

∂A(a)μ
+ X̄

A(a)μ,ν

∂L0

∂A(a)μ,ν
= ( f (b)Ca

bc A
(c)
μ − ∂ f (a)

∂xμ
)

+( f (b)Ca
bc A

(c)
μ,ν + Ca

bc A
(c)
μ

∂ f (b)

∂xν
− ∂2 f (a)

∂xν∂xμ
)
∂L0

∂A(a)μ,ν
= 0 (213)

for arbitrary f (a), which implies that

a) ∀ f (b): Ca
bc A

(c)
μ

∂L0

∂A(a)μ
+ Ca

bc A
(c)
μ,ν

∂L0

∂A(a)μ,ν
= 0

b) ∀∂ f
(b)

∂xμ
: ∂L0

∂A(b)μ
− Ca

bc A
(c) ∂L0

∂A(a)ν,μ
= 0

c) ∀ ∂
2 f (b)

∂xν∂xμ
: ∂L0

∂A(a)μ,ν
+ ∂L0

∂A(a)ν,μ
= 0 . (214)

(a) in turns implies that L0 is invariant under the rigid group G.
(c) implies that L0 depends on A(b) only through the difference A(b)μ,ν − A(b)ν,μ.
(b) then implies the equation

∂L0

∂A(b)μ
= −Ca

bc A
(c)
ν

∂L0

∂(A(a)μ,ν − A(a)ν,μ)
, (215)

which is of the form ∂ f
∂x = kx ∂ f

∂y , with general solution f = f (y + 1
2kx

2). Therefore,

L0 = L0(F
(a)
μν ) . (216)

The additional condition for L0 of being invariant under the rigid Poincaré group (or any
other kinematical space-time rigid symmetry) means a further restriction: L0 must be a scalar.
For internal symmetries the Yang–Mills Lagrangian

LY−M
0 = −1

4
F (a)μν F

(b)μνkab , (217)

where kab is the Killing metric, is usually adopted. ��
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The Euler–Lagrange equations of the total Lagrangian Ltot = Lmatt (ϕ
α, ϕ

β
μ +

A(a)μ Xβ(a)γ ϕ
γ )+ L0(F

(b)
μν ) corresponding to the independent variables ϕα and A(a)μ are:

δϕ : ∂Lmatt

∂ϕα
+ A(a)μ Xβ(a)α

Lmatt

∂ϕ
β
μ

− d

dxμ

(
∂Lmatt

∂ϕαμ

)

= 0 (218)

δA : −A(d)ν Cb
da
∂L0

∂F (b)μν
− d

dxν

(
∂L0

∂F (a)μν

)

= Xα(a)βϕ
β ∂Lmatt

∂ϕαμ
. (219)

In particular, for the Yang–Mills Lagrangian L0 we have:

Fμν(a),ν + A(d)ν Cb
dcF

μν

(b) = −Xα(a)βϕ
β ∂Lmatt

∂ϕαμ
,

or, using the covariant derivative notation, Dμ,

∂Lmatt

∂ϕα
− Dμ

(
∂Lmatt

∂Dμϕα

)
= 0 ; DμF

μν

(a) = Ĵμ(a) (220)

where the current Ĵ is defined as

Ĵμ(a) ≡ −∂Lmatt

∂A(a)μ
= −Xα(a)βϕ

β ∂Lmatt

∂Dμϕα
= −Xα(a)βϕ

β ∂Lmatt

∂ϕαμ
. (221)

It is worth noticing that the Euler–Lagrange equations of the Lagrangian Ltot , after the
change of variables used for proving Utiyama’s theorem, would be those of the free fields
φ and B. In fact, Ltot = Lmatt (φ, φμ) + L0(B, F), without interacting term!!. However,
this is a consequence of the fact that the mentioned change of variables does not preserve
the structure 1-forms of the jet-bundle; variational calculus is not invariant under an arbitrary
change of variables.

Some remarks on Local vs Gauge symmetries. Let us test explicitly the Gauge symmetry
of Ltot under the group G(M) and compute the corresponding Noether invariants, as an
exercise.
Generator of G(M) (no sum on (a)): Y = f (a)Xα(a)βϕ

β ∂
∂ϕα

+ ( f (b)Ca
bc A

(c)
ν − ∂ f (a)

∂xν )
∂

∂A(a)ν

Noether Current: Jμ = Y α ∂L]tot
∂ϕαμ

+ Y A(a)ν ∂Ltot

∂A(a)ν,μ

= f (a)Xα(a)βϕ
β ∂Lmatt

∂ϕαμ
+
(

f (b)Ca
bc A

(c)
ν − ∂ f (a)

∂xν

)
∂L0

∂A(a)ν,μ

= f (a) jμ(a)matt + ( f (b)Ca
bc A

(c)
ν − ∂ f (a)

∂xν
)Fμν(a) =

(
if L0 = −1

4
F (b)μν F

μν

(b)

)

= f (a) jμ rigid
(a)tot − ∂ν f (a)Fμν(a)

Conservation: ∂μ Jμ|sol.
= ∂μ f (a) jμ rigid

(a)tot + f (a)∂μ j
μ rigid
(a)tot − ∂μν f (a)Fμν(a) − ∂ν f (a)∂μFμν(a)

= ∂μ f (a) jμ rigid
(a)tot + 0 − 0 − ∂ν f (a) jν rigid(a)tot = 0
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Noether Charge: Q(a)

=
∫

�

dσμ( f (a) jμ rigid
(a)tot − ∂ν f (a)Fμν(a) ) =

∫

R3
d3x( f (a) j0 rigid

(a)tot − ∂i f (a)F0i
(a))

=
∫

R3
d3x( f (a) j0 rigid

(a)tot + f (a)∂i F
0i
(a)) =

∫

R3
d3x( f (a) j0 rigid

(a)tot − f (a)∂i F
i0
(a)) = 0 ,

confirming that the symmetry above is gauge indeed.

However, let us also demonstrate that there are local symmetries which are not gauge,
that is, their associated Noether charges are non-trivial. To this end, consider the massless
Klein–Gordon field:

L = 1

2
φμφ

μ ⇒ �φ = 0 .

The generator X ≡ ∂
∂φ

is a symmetry. In fact, X̄ = ∂
∂φ

, so that X̄L = 0. But is the local

generator X f = f (x) ∂
∂φ

a symmetry? We compute the corresponding jet extension and the
Lie derivative of the Lagrangian:

X f L =
(
f
∂

∂φ
+ fμ

∂

∂φμ

)
L = fμφ

μ ?= ∂μhμ (222)

and we realize that only if f is a solution of the equations of motion, fμφμ is a gradient,
that is, hμ = f μφ. But in this case, the Noether charge is a non-trivial quantity (see the
symmetries parameterizing the solution manifold of the Klein–Gordon field).

7.1 Example of the Dirac field

Free Dirac field LD ≡ Lmatt = iψ̄γ μψμ − mψ̄ψ
The Euler–Lagrange equations of motion become:

∂L
∂ψμ

= iψ̄γ μ ≡ πμ ; ∂L
∂ψ

= −mψ̄ ⇒ i∂μψ̄γ
μ + mψ̄ = 0 (223)

∂L
∂ψ̄μ

= 0 ; ∂L
∂ψ̄

= iγ μψμ − mψ ⇒ iγ μψμ − mψ = 0 . (224)

It is assumed (as corresponding to the Ordinary Hamilton Principle) that ψμ = ∂μψ but
not derived from the equations of motion.

The Poincaré–Cartan form is derived in the standard manner:

 PC = ∂L
∂ψμ

(dψ − ψνdxν) ∧ θμ + ∂L
∂ψ̄μ

(dψ̄ − ψ̄νdxν) ∧ θμ + Lω

= iψ̄γ μ(dψ − ψνdxν) ∧ θμ + (iψ̄γ μψμ − mψ̄ψω

= iψ̄γ μdψ ∧ θμ − iψ̄γ μψμω + iψ̄γ μψμω − mψ̄ψω

= iψ̄γ μdψ ∧ θμ − mψ̄ψω ≡ iψ̄γ μdψ ∧ θμ − Hω . (225)

Remark H is not the ordinary Hamiltonian driving the time evolution. Evolution is driven
by the Noether invariant associated with the invariance under time translation P(0) ≡ j0

(0) =
iψ̄γ · ∇ψ + mψ̄ψ . Even more, if we rewrite the Poincaré–Cartan form in the way

 PC ≡ T μPC ∧ θμ =
{
∂L
∂ψμ

(dψ − ψνdxν)+ ∂L
∂ψ̄μ

(dψ̄ − ψ̄νdxν)+ Ldxμ
}

∧ θμ , (226)
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as if T μPC where a “conserved current,” the “conserved charge,”
∫
�

dσμT μPC plays the role of
a Quantum-Mechanics Poincaré–Cartan form:

 PC = pdq − Hdt
∫

�

dσμT μPC =
∫

�

d3x

[
∂L
∂ψ0

(dψ − ψ0dx0)− Ldx0
]

=
∫

�

d3x[iψ̄γ 0dψ − iψ̄γ 0ψ0dx0 + (iψ̄γ μψμ − mψ̄ψ)dx0]

=
∫

�

d3x[iψ̄γ 0dψ − (iψ̄γ · ∇ψ + mψ̄ψ)dx0] , (227)

with H = iψ†α · ∇ψ + mψ†βψ .

Coupled Dirac field: L̂D ≡ L̂matt = iψ̄γ μ(ψμ−i Aμψ)−mψ̄ψ ≡ iψ̄γ μψμDμψ−mψ̄ψ

∂L̂
∂ψ̄

= iγ μDμψ − mψ ⇒ iγ μ∂μψ − mψ = −γ μψ Aμ (228)

∂L̂
∂ψ

= ψ̄γ μAμ − mψ̄ ; ∂L̂
∂ψμ

= iψ̄γ μ ⇒ i∂μψ̄γ
μ + mψ̄ = ψ̄γ μAμ. (229)

The Poincaré–Cartan form associated with the coupled Lagrangian becomes:

 ̂PC = ∂L̂
∂ψ̄μ

(dψ̄ − ψ̄νdxν) ∧ θμ + ∂L̂
∂ψμ

(dψ − ψνdxν) ∧ θμ + L̂ω = iψ̄γ μ(dψ − ψνdxν) ∧ θμ
+(iψ̄γ μ(ψμ − i Aμψ)− mψ̄ψ)ω = iψ̄γ μdψ ∧ θμ − iψ̄γ μψμω + iψ̄γ μψμω + iψ̄γ μAμψω

−mψ̄ψω = iψ̄γ μdψ ∧ θμ − ψ̄(m − γ μAμ)ψω ≡ iψ̄γ μdψ ∧ θμ − ĤDω

≡  PC + jμD Aμω (230)

with Ĥd = mψ̄ψ − jμD Aμ, jμD ≡ ψ̄γ μψ .
Integrating again  ̂PC over the Cauchy surface, we have:

∫

�

dσμT̂ μPC =
∫

�

d3x[ ∂L
∂ψ0

(dψ − ψ0dx0)+ L̂dx0]

=
∫

�

d3x[iψ̄γ 0dψ − iψ̄γ 0ψ0dx0 + {iψ̄γ μ(ψμ − i Aμψ)− mψ̄ψ}dx0]

=
∫

�

d3x[iψ̄γ 0dψ − (iψ̄γ · ∇ψ + mψ̄ψ− jμD Aμ)dx
0] (231)

with ĤD = iψ̄γ · ∇ψ + mψ̄ψ− jμD Aμ.

7.2 Brief report on the Group Quantization of Electrodynamics

One way of proceeding in facing the quantization of a system whose full symmetry (to be
precise, the basic symmetry evolved in time) is unknown consists in quantizing the basic sym-
metry that characterizes the Solution Manifold and then realizes the right-enveloping algebra,
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which preserves the representation space (Hilbert space) of the basic algebra of quantum oper-
ators. In other words, the exponential of the complete Hamiltonian will act perturbatively
on the wave functions defined on the Solution Manifold (The complete Hamiltonian is a
constant of motion in any isolated system and, thus, it is well defined on the SM).

This procedure, proposed here, is related to the approach followed in “Landau’s series”
text books when dealing with formal perturbation theory in that which concerns with exact
propagators and exact vertices in the Heisenberg picture (see [44]).

Another way would be that of closing perturbatively the classical Poisson algebra, expo-
nentiating the approximate algebra at each order and applying GAQ at the corresponding
order. This more precise method will not be considered here.

Quantum Basic Symmetry: General case (Space-time symmetry excluded; internal indices
of the matter fields are not explicit)

Since we aim at representing just the basic symmetry on SM and then realize the quantum
evolution perturbatively, we ignore the semi-direct action of the Poincaré group and think of
the arguments of the fields, x, on the Cauchy surface, only as (infinitely many) indices. In the
same way, spatial derivatives do act as infinitesimal translations on those indices, whereas
time derivative of the fields correspond to different field coordinates with initial values on
SM. Roughly spiking, ∂iφ is not independent of φ, although ∂0φ indeed is. Nevertheless, we
intend to take the Lorentz covariance as far as possible in the proposed group law:

U ′′ = U ′U U = e−iϕaT(a) ; Aμ ≡ T(a)A
(a)
μ

A′′
μ = U ′AμU ′−1 + A′

μ A(a)μ
U ′→ A′(a)

μ = A(a)μ + Ca
bc A

(b)
μ ϕ

′c + 1
g ∂μϕ

′b + ...
F ′′
μν = U ′FμνU ′−1 + F ′

μν Dμφ = ∂μφ + igA(a)μ T(a)φ

φ′′ = U ′φ + φ′ φ
U ′→ φ′ = eiϕ

′aT(a)φ
φ′′∗ = U ′−1φ∗ + φ′∗ Aμ = iUμU−1 ≡ AR

μ

φ′′
μ = φ′

μ +U ′φμ − gAμφ′ Uμ = i AμU ; U−1
μ = −iU−1Aμ

φ
′′∗
μ = φ ′∗

μ +U ′−1φ∗
μ − gAμφ

′∗ φ−1
μ = −U−1(φμ − gAμTφ)

ζ ′′ = ζ ′ζeiξ0(g′,g)ei ξ̂matt (g′,g) ξ0 = 1
4

∫
�

dσν(A′
μF

[μν] − F ′[μν]Aμ)

(232)

ξ̂matt ≡ 1

2

∫

�

dσμ{φ′(U ′−1φ∗
μ + gAμφ

∗)− φU ′φ′∗
μ + φ′∗(U ′φμ + gAμφ)− φ∗U ′−1φ′

μ} .
(233)

It must be stressed that the co-cycle ξ̂matt can be written as if it where the sum of the co-cycle
for the free matter ξmatt plus an interaction term proportional to the coupling constant, that
is:

ξ̂matt = ξmatt + 1

2
gAμ(φ

∗φ′ + φ′∗φ) , (234)

but the “interaction” term, itself, is not a co-cycle. The reason for this fact is that the unex-
tended group, for which ξ̂matt is a co-cycle, is a deformation of the direct product of the
unextended groups corresponding to the free matter and free gauge fields. We leave as an
exercise the verification of the co-cycle condition (55) for ξ̂matt and ξ0, that is,

ξ(g′, g)+ ξ(g′ ∗ g, g′′)− ξ(g′, g ∗ g′′)− ξ(g, g′′) = 0.
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7.2.1 Scalar Electrodynamics

For Scalar Electrodynamics, we have:

ϕ′′ = ϕ′ + ϕ
A′′
μ = A′μ+ Aμ

F ′′
μν = F ′

μν + Fμν ξ0 = 1
4

∫
�

dσν(A′
μF

′[μν] − F ′[μν]Aμ)
φ′′ = e−iϕ′

φ + φ ξ̂matt = 1
2

∫
�

dσμ{φ′(eiϕ′
φ∗
μ + eAμφ∗)− φe−iϕ′

φ′∗
μ

φ′′∗ = eiϕ
′
φ∗ + φ′∗ +φ′∗(e−iϕ′

φμ + eAμφ)− φ∗eiϕ′
φ′
μ}

φ′′∗
μ = φ′∗

μ + eiϕ
′
φ∗
μ − eAμφ′∗

ζ ′′ = ζ ′ζeiξ0(g′,g)ei ξ̂matt (g′,g)

(235)

Left generators and  form:

X̃ L
ϕ = ∂

∂ϕ

X̃ L
Aμ

= ∂
∂Aμ

− e
(
φ ∂
∂φμ

+ φ∗ ∂
∂φ∗
μ

)
− 1

4 n̂σ F
[σμ]# [X̃ L

Aμ
, X̃φ] = eδμν X̃ L

φν
, [X̃ L

Aμ
, X̃ L

φ∗ ] = eδμν X̃ L
φ∗
ν

X̃ L
Fμν

= ∂
∂Fμν

+ 1
4 (n̂

μAν − n̂ν Aμ)#

X̃φ = e−iϕ ∂
∂φ

− 1
2 e

−iϕφ∗
μn̂
μ#  = 1

2

∫
�

dσμ{(φ∗
μ + eAμφ∗)δφ

X̃φ∗ = eiϕ ∂
φ∗ − 1

2 e
iϕφμn̂μ# +(φμ + eAμφ)δφ∗

X̃φμ = e−iϕ ∂
∂φμ

+ 1
2 e

−iϕφ∗n̂μ# −φ∗δ(φμ + eAμφ)− φδ(φ∗
μ + eAμφ∗)}

X̃φ∗
μ

= eiϕ ∂
∂φ∗
μ

+ 1
2 e

iϕφn̂μ# − 1
4

∫
�

dσρ{AμδF [ρν] − F [ρμ]δAμ} + dζ
iζ

(236)

Right generators:

X̃ R
ϕ = ∂

∂ϕ
− iφ

∂

∂φ
+ iφ∗ ∂

∂φ∗ − iφμ
∂

∂φμ
+ iφ∗

μ

∂

∂φ∗
μ

X̃ R
Aμ = ∂

∂Aμ
+ 1

4
n̂νF

[νμ]#

X̃ R
Fμν = ∂

∂Fμν
− 1

4
(n̂μAν − n̂ν Aμ)#

X̃ R
φ = ∂

∂φ
− eAμ

∂

∂φμ
+ 1

2
(φ∗
μ + eAμφ

∗)n̂μ#

X̃ R
φ∗ = ∂

∂φ∗ − eAμ
∂

∂φ∗
μ

+ 1

2
(φμ + eAμφ)n̂

μ#

X̃φμ = ∂

∂φμ
− 1

2
φ∗n̂μ#

X̃φ∗
μ

= ∂

∂φ∗
μ

− 1

2
φn̂μ# (237)

with structure constants which are the opposite to the left ones.
Noether invariants:

i X̃ R
ϕ
 = 1

2

(−iφ(φ∗
μ + eAμφ

∗)+ iφ∗(φμ + eAμφ)

+ iφ∗φμ − iφ∗μφ + ieφ∗φAμ − ieφ∗φAμ
)
n̂μ
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= i

2
(φ∗φμ − φ∗

μφ)n̂
μ

i X̃ R
Aμ
 = 1

4
F [νμ]n̂ν + 1

4
F [νμ]n̂ν − eφ∗φn̂μ = 1

2
F [νμ]n̂ν − eφ∗φn̂μ

i X̃ R
Fμν
 = −1

2
(Aμn̂ν − Aν n̂μ)− 1

2
(Aμn̂ν − Aν n̂μ) = Aν n̂μ − Aμn̂ν

i X̃ R
φ
 =

(
1

2
(φ∗
μ + eAμφ

∗)+ e

2
Aμφ

∗
)
n̂μ + 1

2
(φ∗
μ + eAμφ

∗)n̂μ − 1

2
eφ∗Aμn̂μ

= (φ∗
μ + eAμφ

∗)n̂μ

i X̃ R
φ∗ = ... = (φμ + eAμφ)n̂

μ

i X̃ R
φμ

 = (−1

2
φ∗ − 1

2
φ∗)n̂μ = −φ∗n̂μ

i X̃ R
φ∗
μ

 = −φn̂μ . (238)

Note that the commutators [X̃ R
Aμ
, X̃ R

φ ] = −eX̃ R
φμ

will only imply the quantum commutators:

[ Â0,
ˆ̇φ] = −eφ̂ , [ Â0,

ˆ̇φ∗] = −eφ̂∗ , (239)

where the association of right generators with quantum operators is:

Â0 ∼ X̃ R
A0
, Âi ∼ X̃ R

F0i
, F̂0i ∼ X̃ R

Ai
, φ̂ ∼ X̃ R

φ̇∗ ,

φ̂∗ ∼ X̃ R
φ̇
, ˆ̇φ ∼ X̃ R

φ∗ , ˆ̇φ∗ ∼ X̃ R
φ , ϕ̂ ∼ X̃ R

ϕ . (240)

7.2.2 Time Evolution from the Solution Manifold

The methodology to be here sketched is quite general and can be applied to any physical
system whose basic operators do not close algebra in “finite” dimension with the Hamiltonian.

In that which follows we shall consider the time evolution of either a classical function
f (q, p) on the classical Solution Manifold or a function f (q̂, p̂) of quantum operators
q̂, p̂ represented on (polarized) wave functions � of classical variables (q or p, or some
combination). In the same way, a bracket [ , ] will mean Poisson bracket as regarding
classical evolution, or quantum commutators in the case of the quantum evolution.
Schematically: (Time evolution by Magnus Series [45])
With a given function on the solution manifold we associate the following “evolutive” version:

f (q, p) on SM
evolutive version−→ F(t, x, p) = U (t)F0 ≡ e"(t)F0 (241)

where

F0 ≡ F(0, q, p) ≡ f (q, p)

"(t) = limn→∞"[n](t)

"[n](t) = �∞
k=0

Bk

k!
∫ t

0
dt1adk

"[n−1](t1)(−H(t1)) (242)

where Bk are Bernoulli numbers and the “powers” of ad f means

ad0
f (g) ≡ g, ad1

f (g) ≡ [ f, g], adkf (g) ≡ [adk−1
f (g), g] . (243)
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Magnus series (versus Dyson-like series) offers “unitarity” even at finite orders (at the
classical level we would say “symplecticity”).

For t-independent Hamiltonians, as corresponds to objects on SM, we arrive at a rather
simpler formula:

F(t) = �∞
k=0

1

k! (−t)kadkH (F0) , (244)

which constitutes the Inverse Hamilton–Jacobi transformation by H.

In particular, we can compute the “arbitrary-time” commutator of two (field) operators

[ Â(a)μ (x, t), Â(b)ν (x
′, t ′)] = [U (t) Â(a)μ (x)U †(t), U (t ′) Â(b)ν (x′)U †(t ′)] , (245)

or the exact propagator of the field Â as

D(x, x ′) = 〈0|T Â(x) Â(x ′)|0〉, (246)

where T stands for “time-order” in the traditional way, to be further developed in terms of
the free propagator D(x, x ′).

8 Massive Gauge Theory

Weak Interactions were originally described by a “current-current” term in the Lagrangian to
account for the property of being very local. To turn them into a gauge theory would require
a very massive intermediate particle, a fact which makes quite difficult the corresponding
renormalizability beyond the Abelian case [46]. To avoid this difficulty, a mechanism [47,48],
imported from solid-state physics, was introduced in Particle theory [49]. For a review, we
recommend Ref. [50].

8.1 Giving dynamical content to the gauge parameters: Massive Gauge Theory and the
Generalized Non-Abelian Stueckelberg formalism

The group G1(M) of the 1-jets of G(M): We start from the local or gauge group G(M) as
the group of mappings from the space-time M to the rigid symmetry of a supposed matter
Lagrangian Lmatt .

As in the case of the formulation of the variational calculus, where we construct the bundle
of 1-jets of the sections of E , �(E), we proceed in much the same way with G(M). We think
of G(M) as if it was a space of (some sort of matter) scalar fields on M , though valued on a
non-flat internal space. Then, we construct

J 1(G(M)) ≡ G(M)× M
1∼

,

where
1∼ is the equivalence relation (quite analogous to (89))

(g,m)
1∼ (g′,m′) ⇐⇒

m = m′
g(m) = g′(m)

∂μg(m) = ∂μg′(m) .
(247)

J 1(G(M)) has dimension dim M+dimG+dim M×dimG and can be locally parameterized
by {xμ, ga, gbν }.
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We now consider the group of sections of the bundle J 1(G(M))→ M , G1(M), parame-
terized by {ga(x), gbμ(x)}.
Group Law:

g′′(x) = g′(x)g(x)
g′′
μ(x) = g′

μ(x)g(x)+ g′(x)gμ(x) , (248)

where gμ(x) above is not, necessarily, ∂μg(x).
Equivalently, we may define new coordinates:

g �→ g , gμ �→ g−1gμ ≡ Aμ . (249)

Notice that, now, Aμ is not, necessarily, g−1∂μg ≡ θ Lμ (θ L(x) = θ Lμ (x)dx
μ). Explicitly,

the left-invariant canonical 1-form on the group G1(M) is written as

θ L(a)(x) = θ L(a)b (x)dgb(x) = θ L(a)b (x)∂μg
b(x)dxμ ≡ θ L(a)μ (x)dxμ , (250)

with θ L(a)μ = θ L(a)b ∂μgb . In terms of the coordinates {ga, A(a)μ (x)}, the group law reads:

g′′(x) = g′(x)g(x)
A′′
μ(x) = g′(x)Aμ(x)g′−1(x)+ A′

μ(x) . (251)

Note also that the group G(M) is naturally contained in G1(M) by means of the jet extension:
j1(G(M)) ∈ G1(M). In fact, if the element A′

μ(x) in the group law corresponds to a jet
extension

A′′
μ(x) = g′(x)Aμ(x)g′−1(x)+ g′−1(x)∂μg

′(x) . (252)

Then, if we think of Aμ in the group law as an ordinary Yang–Mills physical field, of g′ as
an ordinary gauge transformation, to be call g, and of A′′

μ as the transformed of Aμ, A′
μ, we

can read:

A′
μ(x) = g(x)Aμ(x)g

−1(x)+ g−1(x)∂μg(x) , (253)

just as corresponds to the transformation law of a physical Yang–Mills field.
Ordinary connections can be derived from G1(M) by simply taking the quotient by G(M)

(that is to say, by j1(G(M)) ∈ G1(M)).
However, we should not take the mentioned quotient but, rather, Aμ and θμ will live

together and they will combine in the proper way in due time.

Massive Gauge Theory
We may repeat Utiyama’s theory on the grounds of some exotic matter ga(x). The action

of G on the scalar fields ga(x) proceeds as the own right action with generators XL
(b). This

way, the generators of G(M) on (ga, A(b)μ ) take the expression

f (a)X(a) = f (a)XL
(a) + ( f (b)Ca

bc A
(c)
μ − ∂ f (a)

∂xμ
)
∂

∂A(a)μ
, (254)

and the minimal coupling is realized as

gaμ �→ gaμ + A(b)μ XLa
(b) , (255)

to be compared with the standard expression for ordinary fields

ϕαμ �→ ϕαμ + A(b)μ Xα(b) (= ϕαμ + A(b)μ Xα(b)βϕ
β) . (256)
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It should also be compared the expressions of the group generators acting on g and ϕ:

XL
(a) = XLb

(a)(g)
∂

∂gb
vs X(a) = Xα(a)(ϕ)

∂

∂ϕα

linearity= Xα(a)βϕ
β ∂

∂ϕα
,

the main difference being that now XLb
(a)(g) is an invertible function (though nonlinear, in

general) of g. In fact, the inverse matrix is [XLb
(a)]−1 = θ L(a)b !!. This means that the minimal

coupling stated in terms of θ L(a)μ , instead of gaμ, becomes:

θ L(a)μ �→ θ L(a)μ + A(a)μ , (257)

which is an affine coupling (it is not linear in g as ϕμ + Aμϕ was in ϕ).
So then, giving dynamics to the “exotic matter” ga through a kinetic term in the

Lagrangian, L“matt”, of the form

L“matt” = 1

2
μ2θ L(a)μ θ L(b)ν ημνkab ≡ 1

2
μ2θ L(a)μ θ

Lμ
(a) ≡ 1

2
μ2T G

race[θ Lμθ Lμ ] , (258)

the Minimal Coupling Principle provides mass to the fields Aμ without damaging gauge
invariance !!. (In the expression above, ημν stand for the metric in the space-time manifold
M and kab for the Killing metric in G).

In fact, L“matt” becomes L̂“matt”:

L̂“matt” = 1

2
μ2(θ L(a)μ − A(a)μ )(θ

Lμ
(a) − Aμ(a)) , (259)

which contains the mass term 1
2μ

2A(a)μ Aμ(a). It is a Minimal coupling with affine character.
This Lagrangian L“matt” addresses part of the Non-Abelian Stueckelberg Lagrangian in

massive gauge theory:

LMYM = L̂“matt” + LYM = 1

2
μ2(θ(a)μ − A(a)μ )(θ

μ

(a) − Aμ(a))−
1

4
F (a)μν F

μν

(a) . (260)

After the change of variables Ãμ = U †(Aμ − θμ)U , that is, the “unitary gauge”, this
Lagrangian is written

LMYM = −1

4
F (a)μν ( Ã)F

μν

(a) ( Ã)+
1

2
μ2 Ã(a)μ Ãμ(a), (261)

as corresponding to a Non-Abelian Proca Field.

8.1.1 Standard attempt to the quantization of massive gauge theory: Nonlinear Sigma
Model (N-LSM)

The Lagrangian Lσ = 1
2θ

L(a)
μ θ

Lμ
(a) (= 1

2θ
R(a)
μ θ

Rμ
(a) , then chiral) is usually referred to as

σ−Lagrangian, the origin of the name being traced back to the low-energy models for strong
interactions, where a set of field (σ,π), SU (2)-valued obeyed a Lagrangian of this kind.

The Euler–Lagrange equations for Lσ = 1
2 gabη

μν∂μϕ
a∂νϕ

b, where gab ≡ θ
(c)
a θ

(d)
b kcd ,

kab ≡ Killing metric in G, become

�ϕa = Lσ ϕa or ∂μθ(a)μ = 0 . (262)

A similar scheme, but with external scalar fields φa behaving as our ga , had been consid-
ered in the Literature in an attempt to make the massive gauge theory renormalizable. This
scheme is called non-Abelian Stueckelberg formalism as it generalizes the Abelian case,
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Fig. 10 Feynman diagrams involving longitudinal components of massive vector potentials

Fig. 11 The case of the Standard Model

Fig. 12 The role of the Higgs field

the Massive Electrodynamics, introduced by this physicist. The main difference is that the
Abelian case is renormalizable under Canonical Quantization whereas the non-Abelian one
is not [51,52].

Canonical Quantization renders divergent the amplitude for processes of the form (L
stands for the longitudinal components of Aμ)
where (A+

μ, A
−
μ, A

0
μ) are the gauge fields associated with a “root” of the semi-simple group

G (Fig. 10).
In the specific case of the Standard Model, it would read:

and the infinite contribution has to be substracted by means of processes involving the Higgs
field (Figs. 11, 12):

8.1.2 Brief note on the Higgs–Kibble Mechanism

A conventional field has a self-interacting potential V (φ) = m2|φ|2 (like the spring potential
V (x) = kx2) (Fig. 13):
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Fig. 13 Standard self-interacting potential

Fig. 14 Potential with degenerated vacuum

but that of the Higgs field is a bit different, VH (φ) = μ2|φ|2 + λ|φ|4, corresponding to
an imaginary mass (Fig. 14). The minimum of the potential is degenerated, at a distance

v2 ≡ −μ2

λ
of the origin, which implies that we have to decide which one should be the best

!!.

“We break down” the symmetry by moving the origin to one of the local minima:

φ ≡ v + η (v constant) → VH (φ) = −2μ2η2 + ... ⇒ m2
η = −2μ2> 0 .

When φ couples to a field Wμ according to the Minimal Interaction Principle, the inter-
action term |φ|2 turns to v2W 2 + ... giving mass to Wμ.

In the same way, coupling φ to a fermionψ à la Yukawa, that is, κφψ̄ψ , the displacement
ofφ leads to the mass term κvψ̄ψ , where κ is a constant, providing the mass κv to the fermion.

General case: G semi-simple group of dimension r

H ∈ G of dimension s, preserving the vacuum

φ representing G in dimension n
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η (Higgses) n − (r − s) massive real fields

ξ (Goldstone bosons) r − s massless real fields, which will be gauged away

Aμ (massless vector bosons s

Ãμ (massive vector bosons) r − s

When n = r we shall have as many η’s as Aμ’s (n-(n-s) = s), provided that n ≥ r , of course.

8.2 Group Quantization of Non-Abelian Stueckelberg Field Model for Massive Gauge
Theory: Thinking of SU (2)

The original non-Abelian Stueckelberg model was addressed by the Lagrangian given above
(260)

LMYM = L̂“matt” + LYM = 1

2
μ2(θ(a)μ − A(a)μ )(θ

μ

(a) − Aμ(a))−
1

4
F (a)μν F

μν

(a)

but θ(a)μ were made of external scalar fields φ(a)(x) behaving under the group G just like the
own group parameters ϕa(x) do.
Here we just turn φa into group parameters ϕa ≡ ga and find the complete group law bearing
the corresponding Solution Manifold as a co-adjoint orbit. Then, we apply GAQ instead of
CQ [53].

Inspired on the symmetry of the particle S3-sigma model we directly guess the proper
symmetry for the Massive Yang–Mills field theory associated with SU (2) gauge group
(generalizations for other semi-simple groups are also possible).

The σ -sector is the more relevant one. The �̃SU (2)local group law (a central exten-
sion by U (1) of a group �SU (2)local ) for elements of the form Ǔ ≡ (U, UμU−1, zν) ∼
(ϕa, θ

(b)
μ , zν), U ∈ SU (2)local can be written in the form:

ϕ′′a(x) = ρ(x)ϕ′a(x)+ ρ′(x)ϕa(x)+ 1

2
ηa.bcϕ

′b(x)ϕc(x)

θ ′′(b)
μ (x) = θ ′(b)

μ (x)+ ρ′(x)θ(b)μ (x)+
1

2
ηb.caϕ

′c(x)θ(a)μ (x)+
1

4
zμ(x)ϕ′b(x)

z′′μ(x) = z′μ(x)+
√

1 − ϕ ′2(x)
4

zμ(x)− ϕ′a(x)θ(b)μ (x)δab ρ(x) ≡
√

1 − ϕ ′2(x)
4

ζ ′′ = ζ ′ζeiμ
∫
� dσμ[(ρ′(x)−1)zμ(x)−ϕ′a(x)θ(b)μ (x)δab] x ∈ � ≡ Cauchy Surface .

(263)

Note that (ϕ, θ, z) is a non-central extension of (ϕ, θ) by z.
*** Remark: The unextended local group �SU (2)local can be formally rewritten as:

ϕ′′a = ρϕ′a + ρ′ϕa + 1

2
ηa.bcϕ

′bϕc

θ ′′(a)
μ = θ ′(a)

μ + {(1 − λ)R(ϕ)ab + λXL(ϕ′)ab} + λ

4
ϕ′azμ

z′′μ = z′μ + (1 + λ(ρ′ − 1))zμ − λϕ′aθ(b)μ δab , (264)

where R(ϕ) is the adjoint rotation in SU (2). For λ = 1, we obtain the (generalized) gauge
symmetry of Massive Yang–Mills fields, whereas for λ = 0 we recover the ordinary gauge
symmetry of the Massless ones.***
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Complete Group Law: (Including the Yang–Mills fields)
By Ǔ , we shall understand Ǔ ≡ (U, UμU−1, zν) ≡ (ϕa, θ(b)μ , zν)
Ǔ ′′(x) = Ǔ ′(x) ∗ Ǔ (x) (⇒ θ ′′

μ = U ′θμU ′† + θ ′
μ + 0(λ); z′′μ = z′μ + zμ + 0(λ))

A′′
μ(x) = U ′(x)Aμ(x)U ′†(x)+ A′

μ(x)

F ′′
μν(x) = U ′(x)Fμν(x)U ′†(x)+ F ′

μν(x)

ζ ′′ = ζ ′ζei
∫
� dσμ Jμ(Ũ ′,A′,F ′;Ũ ,A,F)

Jμ = JYM
μ + Jσμ = 1

2
[(A′ν − θ ′ν)U ′FμνU ′† − F ′

μνU
′(Aν − θν)U ′†]

+U ′(Aμ − θμ)U ′† − (ρ′ − 1)zμ (265)

Lie algebra commutators: Sigma Sector
[
Xϕa(x), Xϕb(y)

] = ηc.abXϕc(x)δ(x − y)
[
Xϕa(x), Xθ(b)μ (y)

]
= 1

2
ηc.abXθ(c)μ (x)

δ(x − y)+ δabXzμ(x)δ(x − y)+ δabδμ0Xζ δ(x − y)
[
X
θ
(a)
0 (x), Xθ(b)0 (y)

]
= 0

[
Xϕa(x), Xzμ(y)

] = 1

4
X
θ
(a)
μ (x)δ(x − y)

[
X
θ
(a)
0 (x), Xzμ(y)

]
= 0 . (266)

It should be remarked that X
θ
(a)
1,2,3

are non-basic generators; they are derived, as operators,

from Xϕa . Note also that the parameters zμ(x) do not contribute to the SM.
Adding Vector Bosons: (only nonzero commutators)

[
Xϕa(x), XAb

μ(y)

]
= η c

ab.XAc
μ(x)δ(x − y)

[
Xϕa(x), XEb

j (y)

]
= η c

ab.XEc
j (x)

+ δab∂x
j δ(x − y)Xζ Ea

i ≡ Fa
0i

[
XAa

j (x)
, XEb

k (y)

]
= δi jδabδ(x − y)Xζ . (267)

Massive Yang–Mills fields interacting with Fermionic Matter
As commented above, the relevant modification concerning the quantization of massive

Yang–Mills interaction lies on the vector boson sector. Let us justify this fact by looking at
the group action of this sector on the (Fermionic) matter fields.

The group law of the massive gauge symmetry must be completed with the Fermionic
sector in the way: (U acting on ψ is assumed to be the standard linear action. The arguments
of the fields are omitted whereas no confusion could arise)

ψ ′′ = U ′ψ + ψ ′

ψ ′′
μ = U ′

μψ +U ′ψμ + ψ ′
μ . (268)

Then, the full expression of the generators of the symmetry group (omitting the local indices
for the sake of simplicity) is as follows:

X(a) ≡ Xϕa = Xb
(a)

∂

∂ϕb
+ ∂Xb

(a)

∂ϕc
ϕcμ

∂

∂ϕbμ
+ Xα(a)βψ

β ∂

∂ψα
+ ∂Xα(a)β

∂ϕb
ϕbμψ

β ∂

∂ψαμ
Xα(a)βψ

β
μ

∂

∂ψαμ
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Yμ(b) ≡ X
θ
(b)
μ

= Xc
(b)X

d
(c)
∂

∂ϕdμ
| Xα(a)β = i

2
σα(a)β (Pauli matrices)

Zν ≡ Xzν = 1

4
ρϕc

∂

∂ϕcμ
| ∂Xα(a)β

∂ϕb
= 0 , (269)

reproducing the �SU (2)local Lie algebra (266). In fact:

[X(a), Yμ(b)] = Xm
(a)

∂

∂ϕm
(Xc
(b)X

d
(c))

∂

∂ϕdμ
− Xc

(b)X
d
(c)
∂

∂ϕdμ

(
∂

∂ϕm
Xn
(a)ϕ

m
ν

)
∂

∂ϕnν

−Xc
(b)X

d
(c)
∂

∂ϕdμ

(
∂

∂ϕm
Xα(a)βϕ

m
ν )ψ

β ∂

∂ψαν
= Xm

(a)
∂

∂ϕm
(Xc
(b)X

d
(c)

)
∂

∂ϕdμ

−Xc
(b)X

d
(c)
∂

∂ϕd

∂

∂ϕd
Xn
(a)

∂

∂ϕnμ
− Xc

(b)X
d
(c)

∂Xα(a)β
∂ϕd

ψβ
∂

∂ψαμ

= −δab
(

1

4
ρϕc

∂

ϕcμ

)

− 1

2
η c
ab.Y

μ

(c) − Xc
(b)X

d
(c)

∂Xα(a)β
∂ϕd

ψβ
∂

∂ψαμ

= −δab Zμ − 1

2
η c
ab.Y

μ

(c) (270)

as expected!!
Then, neither X

θ
(a)
μ

≡ Yμ(a), nor the extra generator Zμ, act on the matter fields; they only

affect the Goldstone sector.

8.2.1 Electroweak Interactions: Some remarkable new facts

Electroweak interactions are mediated by a vector potential Bμ, associated with the invariance

under a localU (1) group, as well as three massive Yang–Mills fields W (±)
μ , W (0)

μ , associated
with a local SU (2) group. However, the rigid symmetry is not properly the group SU (2)⊗
U (1), but a particular mixture where the U (1) subgroup of SU (2) and the external U (1)
group combine in a way intended to provide a final electromagnetic vector potential, and a
new W (0)

μ -like in the form:

Aμ ≡ sin(ϑW )W
(0)
μ + cos(ϑW )Bμ

Zμ ≡ cos(ϑW )W
(0) − sin(ϑW )Bμ

W (±) ≡ W (±) , (271)

with a certain angle ϑW named Weinberg angle.
The mass of Zμ and W (±)

μ will be provided through the generalized Stueckelberg mech-
anism associated with the new SU (2) subgroup.

Denoting the new (after the Weinberg rotation) rigid group SU (2)
∼⊗ U (1), we shall call

�SU (2)local
∼⊗ U (1)local the relevant (unextended) symmetry addressing the electroweak

interaction.

** There is, nevertheless, an obscure handling in the Standard Model in that which refers
to the Weinberg rotation, mainly if we pretend to describe the quantum theory by means of
a Group Approach: The Weinberg rotation could not be performed without the associated
proper rotation in the Lie algebra and, accordingly, in the SU (2)⊗U (1) group, thus leading

to what we have called SU (2)
∼⊗ U (1).
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Fig. 15 Quantization of the
Weinberg angle

In fact, a proper geometric analysis of the possible mixture of the involvedU (1) subgroups,
the Cartan subgroups, concludes that ϑW should be quantized with a non-trivial ground value
of 30o (Fig. 15).

Graphically, this can be easily depicted by looking at the possible closed geodesic curves
on the Cartan Torus taking into account that the “velocity” in one direction is twice than in
the other

** Another remarkable fact related to the group approach to quantization of the elec-
troweak interactions is that the mass generation in the Stueckelberg-like treatment involves
the vector potentials but not, a priori, the Fermionic matter. Then, we have to be able to
provide some group-theoretical algorithm to give mass to fermions.

In fact, as will be widely developed in the last chapter, devoted to possible generalizations
of the gauge formulation of Gravitation, we resort to another mixing of the rigid symmetry,
that time involving the Electromagnetic U (1) group and the Translation subgroup of the
Poincaré group:

T 4 ∼⊗ U (1).

This mixing leads to a momentum operator P ′
0 = P0 + κQ, combining the old energy and

electric charge, so that the new mass operator for a charged fermion ψ is:

M ′2ψ = (m2
0 + 2m0κQ + κ2Q2)ψ.

Then, for “originally” massless particles (m0 = 0) we get

M ′2ψ = κ2Q2ψ . (272)

This mass-generation mechanism might be further developed involving more “sophisticate”
mixings.

9 Gauge theory of space-time symmetries

As reports concerning a gauge approach to Gravity, more recent that the pioneer papers by
Utiyama [2] and Kibble [3], we would recommend Refs. [54–58].

9.1 Generalization of the Gauge Invariance Principle

General global symmetries are generated by vector fields of the form

X(a) = Xμ(a)(x)
∂

∂xμ
+ Xα(a)βϕ

β ∂

∂ϕβ
(linear action on the fiber) , (273)
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where Xμ(a) are function only of xμ. This fact causes essentially two new phenomena:

a) LX(a)ω = ∂μXμ(a)ω �= 0 (in general)

b) X̄(a) contains new terms in X̄α(a)μ ,

so that f X(a)(Lω) is now much more different from f X̄(a)(Lω).
The Lie algebra of the local group G(M) also departs from the tensor product F(M)⊗G.

In fact, given two generators X(a), X(b) in G, the commutator of the corresponding local
generators is:

[ f (a)X(a), g(b)X(b)] = f (a)g(b)[X(a), X(b)]+ f (a)Xμ(a)
∂g(b)

∂xμ
X(b) − g(a)Xμ(a)

∂ f (b)

∂xμ
X(b)

=
(
f (a)g(b)

(
Xν(a)

∂Xμ(b)
∂xν

− Xν(b)
∂Xμ(a)
∂xν

)
+
(
f (a)

∂g(b)

∂xν
− g(a)

∂ f (b)

∂xν

)
Xν(a)X

μ

(b)

)
∂

∂xμ

+
(
f (a)g(b)C c

a b +
(
f (a)

∂g(c)

∂xν
− g(a)

∂ f (c)

∂xν

)
Xν(a)

)
Xα(c)

∂

∂ϕα
. (274)

Note that since Xμ(a) is a function of only xμ, the action of f (a)Xμ(a) on space-time is of
the form:

f (a)(x)Xμ(a)
∂

∂xμ
≡ f μ(x)

∂

∂xμ
. (275)

This means that the space-time action corresponds to a subgroup of Diff(M). The vertical
action, however, remains as in the internal case, that is,

G(M)vertical ≈ F(M)⊗ Gvertical .

Therefore, the general local symmetry algebras are contained in diff(M) ⊗S G(M)vertical
with commutation relations (semi-direct action):

[
f μ(x)

∂

∂xμ
, gν(x)

∂

∂xν

]
=

(
f ν
∂gμ

∂xν
− gν

∂ f μ

∂xν

)
∂

∂xμ
[
f (a)(x)Xα(a)

∂

∂ϕα
, g(b)(x)Xβ(b)

∂

∂ϕβ

]
= f (a)g(b)C c

a bX
α
(a)

∂

∂ϕα

[
f μ(x)

∂

∂xμ
, f (a)(x)Xα(a)

∂

∂ϕα

]
= f μ

∂ f (a)

∂xμ
Xα(a)

∂

∂ϕα
. (276)

As a consequence of the differences above with respect to the internal case, we have to
introduce compensating fields A(a)μ with modified transformation properties, and also new
compensating fields, noted h(a)νμρ , both sets associated with each generator of the global group,
as before.

The transformation properties of {A(a)μ , h(a)νμρ } must be:

X
A(a)μ

≡ δA(a)μ = f (b)C a
b c A

(c)
μ − ∂ f (a)

∂xμ
− A(a)ν ∂μ( f

(b)Xν(b)) , (277)

X
h(a)νμρ

≡ δh(a)νμρ = ∂ f (a)

∂xμ
δνρ + h(a)σμρ ∂σ ( f

(b)Xν(b))− f (b)
∂Xσ(b)
∂xμ

h(a)νσρ . (278)

The expression for δh(a)νμρ can be taken to the form:

X
h(a)νμρ

≡ δh(a)νμρ = ∂ f (a)

∂xμ
δνρ + Mν

σ h
(a)σ
μρ − Mσ

μh
(a)ν
σρ + ∂ f (b)

∂xμ
Xσ(b)h

(a)ν
σρ ,
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where

Mν
σ ≡ ∂ f (b)

∂xσ
Xν(b) + f (b)

∂Xν(b)
∂xσ

is the expected transformation matrix for a tensorial index. This means that only the ν index
above is tensorial!!. The final expression for the local generators is:

f (a)X(a) = f (a)X(a) + X
A(a)μ

∂

∂A(a)μ
+ X

h(a)νμρ

∂

∂h(a)νμρ

= f (a)Xμ(a)
∂

∂xμ
+ f (a)Xα(a)βϕ

β ∂

∂ϕα

+
(

f (b)C a
b c A

(c)
μ − ∂ f (a)

∂xμ
− A(a)ν Xν(b)

∂ f (b)

∂xμ
− f (b)A(a)ν

∂Xν(b)
∂xμ

)
∂

∂A(a)μ

+
(
∂ f (a)

∂xμ
δνρ + ∂ f (b)

∂xσ
h(a)σμρ Xν(b) + f (b)

(∂Xν(b)
∂xσ

h(a)σμρ − ∂Xσ(b)
∂xμ

h(a)νσρ

)
)

∂

∂h(a)νμρ

.

(279)

Utiyama’s Theorem
As in the case of internal symmetries, the theorem of Utiyama will be established in two

parts, one for the matter Lagrangian, the other for the Lagrangian driving the compensating
fields.

Utiyama’s Theorem I: Given a matter Lagrangian Lmatt depending on (ϕα, ϕβμ), the new

Lagrangian L̂mat(ϕ
α, ϕαμ, A

(a)
μ , h

(a)ν
μρ ), invariant under the local algebra G(M), describing

the dynamics of the matter fields, as well as their interaction with the compensating fields
{A(a)μ , h(a)νμρ }, takes the following structure:

L̂mat(ϕ
α, ϕαμ, A

(a)
μ , h

(a)ν
μρ ) ≡ �L̂mat(ϕ

α, ϕαμ, A
(a)
ν , h

(a)ν
μρ ) , (280)

where

L̂matt(ϕ
α, ϕαμ, A

(a)
μ , h

(a)ν
μρ ) ≡ Lmatt(ϕ

α, kνμ(ϕ
α
ν + A(a)ν Xα(a)βϕ

β)),

kνμ ≡ δνμ + h(a)νμσ Xσ(a) ,

� ≡ det (qμν ) , (281)

the objects qμν being the inverse of kνμ, i.e.,

kνμq
μ
σ = δνσ ,

kνμq
σ
ν = δσμ .

Proof Since space-time transformations can modify the integration volume, the invariance
condition on the action now means:

f (a)X(a)(�L̂mat)+�L̂mat∂μ( f
(a)Xμ(a)) = 0 . (282)
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Otherwise, the proof follows the same scheme. Let us consider the change of variables χ :

�α = ϕα

�αμ = kνμ(ϕ
α
ν + A(a)ν Xα(a)βϕ

β) = (δνμ + h(b)νμσ Xσ(b))(ϕ
α
ν + A(a)ν Xα(a)βϕ

β)

B(a)μ = A(a)μ

H (a)σμν = h(a)σμν , (283)

and the corresponding change of the partial derivatives:

∂

∂ϕα
= ∂

∂�α
+ kνμB

(a)
ν Xβ(a)α

∂

∂�
β
μ

∂

∂ϕαμ
= kμν

∂

∂�αν

∂

∂A(a)μ
= ∂

∂B(a)μ
+ kμν X

α
(a)β�

β ∂

∂�αμ

∂

∂h(a)σμν

= ∂

∂H (a)σμν

+ Xν(a)q
ρ
σ�

α
ρ

∂

∂�αμ
. (284)

Using this change of variables, we can write:

L̂mat(ϕ
α, ϕαμ, A

(a)
ν , h

(a)ν
μρ ) ≡ Lmat(ϕ

α, kνμ(ϕ
α
ν + A(a)μ Xα(a)βϕ

β)) = Lmat(�
α,�αμ)

= Lmat ◦ χ(ϕα, ϕαμ, A(a)ν , h(a)νμρ ) . (285)

Let us compute f (a)X(a)L̂mat:

f (a)X(a)L̂mat =
(
f (a)Xμ(a)

∂

∂xμ
+ f (a)Xα(a)β�

β
( ∂

∂�α
+ kνμB

(b)
ν Xγ(b)α

∂

∂�
γ
μ

)

+
(
f (a)Xα(a)β (q

ν
μ�

β
ν − B(b)μ Xβ(b)γ �

γ )− f (a)
∂Xν(a)
∂xμ

(qσν �
α
σ

−B(b)ν Xα(b)γ �
γ )− ∂ f (a)

∂xμ
Xν(a)(q

σ
ν �

α
σ − B(b)ν Xα(b)γ �

γ )

+∂ f
(a)

∂xμ
Xα(a)β�

β
)
kμρ

∂

∂�αρ
+ ( f (b)C a

b cB
(c)
μ − ∂ f (a)

∂xμ
− ∂ f (b)

∂xμ
Xν(b)B

(a)
ν

− f (b)
∂Xν(b)
∂xμ

B(a)ν )
∂

∂B(a)μ
+ ( f (b)C a

b cB
(c)
μ − ∂ f (a)

∂xμ
− ∂ f (b)

∂xμ
Xν(b)B

(a)
ν

− f (b)
∂Xν(b)
∂xμ

B(a)ν )k
μ
ρ X

α
(a)β�

β ∂

∂�αρ
+ ( ∂ f

(b)

∂xμ
δνρ + ∂ f (a)

∂xσ
H (b)σμρ Xν(a)

+ f (a)
∂Xν(a)
∂xσ

H (b)σμρ − f (a)
∂Xσ(a)
∂xμ

H (b)νσρ )
∂

∂H (b)νμρ

+ ( ∂ f
(b)

∂xμ
δνρ + ∂ f (a)

∂xσ
H (b)σμρ Xν(a)

+ f (a)
∂Xν(a)
∂xσ

H (b)σμρ − f (a)
∂Xσ(a)
∂xμ

H (b)νσρ )X
ρ

(b)q
κ
ν �

α
κ

∂

∂�
γ
μ

)
Lmat(�

α,�αμ)

=
(
f (a)Xμ(a)

∂

∂xμ
+ f (a)Xα(a)β�

β ∂

∂�α
+ ( f (a)Xα(a)β�βμ

− f (a)
∂Xσ(a)
∂xμ

�ασ )
∂

∂�αμ

)
Lmat(�

α,�αμ) =X (a)Lmat(�
α,�αμ) . (286)
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Then, the invariance condition (given that for an arbitrary field Y , Y (�L̂ω) = Y (�L̂)ω +
(divY )ω�L̂)

f (a)X(a)(�L̂matt )+�L̂matt∂μ( f
(a)Xμ(a)) = 0 (287)

becomes:

� f (a)X(a)L̂matt + L̂matt f (a)X(a)� + �L̂matt X
μ

(a)∂μ f (a) +�L̂matt f
(a)∂μX

μ

(a) = 0

or

� f (a)
(
X̄(a)Lmatt + Lmatt∂μX

μ

(a)

) + L̂matt
(
f (a)X(a)�+�Xμ(a)∂μ f (a)

) = 0

where the first term is zero, due to the rigid invariance, so that

f (a)X(a)�+�∂μ f (a)Xμ(a) = 0 . (288)

For the sake of simplicity, we shall assume that� depends only on the fields h(a)νμρ but not
on their derivatives. This way, the expression (288) reduces to:

(
∂ f (a)

∂xμ
δνρ + ∂ f (b)

∂xσ
h(a)σμρ Xν(b) + f (b)

(∂Xν(b)
∂xσ

h(a)σμρ − ∂Xσ(b)
∂xμ

h(a)νσρ

)) ∂�

∂h(a)νμρ

+�∂ f
(a)

∂xμ
Xμ(a) = 0 .

Since f (a) are arbitrary, we can factorize the functions and their derivatives:

a) f (b) :
(∂Xν(b)
∂xσ

h(a)σμρ − ∂Xσ(b)
∂xμ

h(a)νσρ

) ∂�

∂h(a)νμρ

= 0 (289)

b)
∂ f (b)

∂xσ
: (δσμδabδνρ + h(a)σμρ Xν(b))

∂�

∂h(a)νμρ

+�Xσ(b) = 0 . (290)

Taking into account that ∂�

∂h(a)νμρ

= Xρ(a)
∂�
∂kνμ

, Eqs. (289) and (290) become:

a)
(
kσμ
∂Xν(b)
∂xσ

− kνσ
∂Xσ(b)
∂xμ

) ∂�
∂kνμ

= 0 (291)

b) Xν(b)k
σ
μ

∂�

∂kνμ
+�Xσ(b) = 0 , (292)

whose solution is (save for a constant):

� = det(qνμ) . (293)

��
The generalized Minimal Coupling Principle claims for the replacement of ∂μϕα with

the generalized “covariant” derivative:

Dμϕα ≡ ϕαμ + A(a)μ Xα(a)βϕ
β + h(a)νμσ Xσ(a)ϕ

α
ν + h(a)νμσ Xσ(a)A

(b)
ν Xα(b)βϕ

β

≡ ϕαμ + A(a)μ Xα(a)βϕ
β + h(a)νμσ Xσ(a)ϕ

α
ν

≡ kνμ(ϕ
α
ν + A(a)ν Xα(a)βϕ

β) ≡ kνμDνϕ
α , (294)
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where we have introduced the notation A(a)μ ≡ kνμA
(a)
ν .

Big Remark: The compensating fields h(a)νμσ are not of common usage. We have introduced
them in order to generalize more properly the theory of internal gauge symmetry: this way,
the pair (A(a)μ , h

(b)σ
νρ ) is associated with the generator X(a) of the rigid group. However, the

fields h(a)νμσ always appear in the theory in a sum over the index (a), so that the association

of the field h(a)νμσ with X(a) loses consistence. In fact, it is possible to sum up all the h(a)’s in

a simpler quantity, precisely kνμ = δνμ + h(a)νμσ Xσ(a).
The objects kνμ will recover an algebraic role as associated with the symmetry group under

a slightly different viewpoint (see below) and, for the time being, they simplify in general
the transformation properties. In fact, the variation of kνμ, δkνμ, restrict to:

Xkνμ ≡ δkνμ = Xν(a)k
σ
μ

∂ f (a)

∂xσ
+ f (a)

(
kσμ
∂Xν(a)
∂xσ

− kνσ
∂Xσ(a)
∂xμ

)

= kσμ∂σ ( f
(a)Xν(a))− kνσ f

(a)
∂Xσ(a)
∂xμ

. (295)

Let us repeat Utiyama’s Theorem I, very briefly, in terms of kνμ:

Given Lmatt (ϕ
α, ϕ

β
μ) invariant under G, the minimally coupled Lagrangian

L̂matt (ϕ
α, ϕαμ, A

(a)
μ , k

ν
μ) ≡ �Lmatt (ϕ

α, kνμ(ϕ
α
ν + A(a)ν Xα(a)βϕ

β)) ,� ≡ det(q),

leads to an invariant action Ŝmatt = ∫
ω�L̂matt .

In fact, the change of variables

�α = ϕα

�αμ = kνμ(ϕ
α
ν + A(a)ν Xα(a)βϕ

β)

B(a)μ = A(a)μ
K νμ = kνμ (296)

accomplishes the same task as before, that is,

f (a)X(a)Lmatt (ϕ, ϕν, A, k) = f (a) X̄(a)Lmatt (φ, φν) .

We must find now the structure of the Lagrangian driving the dynamics of the fields
(A(a)μ , kνμ) themselves.

Utiyama’s Theorem II: The Lagrangian L0(A
(a)
μ , A

(a)
μ,ν, kνμ, k

ν
μ,σ ) of the free compensating

fields invariant under the local group G(M) must be, except for a factor �, an arbitrary
function L0(T σμν,F

(a)
νμ ), where

T σμν ≡ T σνμ − A(a)ρ (k
ρ
μ∂νX

σ
(a) − kρν ∂μX

σ
(a))

T σνμ ≡ qσρ (k
ρ
ν,τ k

τ
μ − kρμ,τ k

τ
ν )

F (a)νμ ≡ kρν k
σ
μF

(a)
ρσ , (297)

and F is the already known object

F (a)μν ≡ A(a)μ,ν − A(a)ν,μ − 1

2
C a
b c(A

(b)
μ A(c)ν − A(b)ν A(c)μ ) .
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Proof We require that

f (a)Y(a)(�L0)+�L0∂μ( f
(a)Xμ(a)) = 0

or

� f (a)X(a)L0 +�L0 f
(a)∂μX

μ

(a) + L0 f (a)X(a)�+�L0X
μ

(a)∂μ f (a) = 0 ,

from which, the first two terms fixe L0, whereas the other two fixe�, as before. Then, let us
solve

f (a)Y(a)L0 + L0 f
(a)
∂Xμ(a)
∂xμ

= 0 .

Using the standard expressions for jet extensions:

Xkνμ,σ = ∂Xkνμ

∂xσ
+ ∂Xkνμ

∂kρξ
kρξ,σ − ∂( f (a)Xρ(a))

∂xσ
kνμ,ρ

X
A(a)μ,ν

=
∂X

A(a)μ

∂xν
+
∂X

A(a)μ

∂A(b)ρ
A(b)ρ,ν − ∂( f (b)Xρ(b))

∂xν
A(a)μ,ρ ,

we have:

X
A(a)μ

∂L0

∂A(a)μ
+ Xkνμ

∂L0

∂kνμ
+ X

A(a)μ,ν

∂L0

∂A(a)μ,ν
+ Xkνμ,σ

∂L0

∂kνμ,σ
+ L0 f

(a)
∂Xμ(a)
∂xμ

=
(
f (b)C a

b c A
(c)
μ − ∂ f (a)

∂xμ
− A(a)ν Xν(b)

∂ f (b)

∂xμ
− f (b)A(a)ν

∂Xν(b)
∂xμ

)
∂L0

∂A(a)μ

+
(
Xν(a)k

σ
μ

∂ f (a)

∂xσ
+ f (a)

(
kσμ
∂Xν(a)
∂xσ

− kνσ
∂Xσ(a)
∂xμ

))∂L0

∂kνμ

+
(
∂ f (b)

∂xν
C a
b c A

(c)
μ − ∂2 f (a)

∂xμ∂xν
− A(a)θ

∂X θ(b)
∂xν

∂ f (b)

∂xμ
− A(a)θ X θ(b)

∂2 f (b)

∂xμ∂xν

−∂ f
(b)

∂xν
A(a)θ

∂X θ(b)
∂xμ

− f (b)A(a)θ
∂2X θ(b)
∂xμ∂xν

+ f (b)
(
C a
b c A

(c)
μ,ν − ∂X θ(b)

∂xμ
A(a)θ,ν

)

−∂ f
(b)

∂xμ
X θ(b)A

(a)
θ,ν − ∂ f (b)

∂xν
Xρ(b)A

(a)
μ,ρ − f (b)

∂Xρ(b)
∂xν

A(a)μ,ρ

)
∂L0

∂A(a)μ,ν

+
(
∂Xν(a)
∂xσ

kθμ
∂ f (a)

∂xθ
+ Xν(a)k

θ
μ

∂2 f (a)

∂xθ ∂xσ
+ ∂ f (a)

∂xσ

(
kθμ
∂Xν(a)
∂xθ

− kνθ
∂X θ(a)
∂xμ

)

+ f (a)
(
kθμ
∂2Xν(a)
∂xθ ∂xσ

−kνθ
∂2X θ(a)
∂xμ∂xσ

)
+kθμ,σ X

ν
(a)
∂ f (a)

∂xθ
+ f (a)

(
kθμ,σ

∂Xν(a)
∂xθ

−kνθ,σ
∂X θ(a)
∂xμ

)

−∂ f
(a)

∂xσ
Xρ(a)k

ν
μ,ρ f

(a)
∂Xρ(a)
∂xσ

kνμ,ρ

)
∂L0

∂kνμ,σ
+ f (a)

∂Xμ(a)
∂xμ

L0 = 0 . (298)

Since the functions f (a) are arbitrary, we arrive at the following system of differential equa-
tions:

a) f (b) :
(
C a
b c A

(c)
μ − A(a)θ

∂X θ(b)
∂xμ

)
∂L0

∂A(a)μ
+
(
kθμ
∂Xν(b)
∂xθ

− kνθ
∂X θ(b)
∂xμ

)
∂L0

∂kνμ
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+
(
C a
b c A

(c)
μ,ν − A(a)θ,ν

∂X θ(b)
∂xμ

− A(a)μ,ρ
∂Xρ(b)
∂xν

− A(a)θ
∂2X θ(b)
∂xμ∂xν

)
∂L0

∂A(a)μ,ν

+
(
kθμ
∂2Xν(b)
∂xθ ∂xσ

− kνθ
∂2X θ(b)
∂xμ∂xσ

+ kθμ,σ
∂Xν(b)
∂xθ

− kνθ,σ
∂X θ(b)
∂xμ

−kνμ,ρ
∂Xρ(b)
∂xσ

)
∂L0

∂kνμ,σ
+ L0

∂Xμ(a)
∂xμ

= 0 (299)

b)
∂ f (b)

∂xθ
: (δab − A(a)ν Xν(b))

∂L0

∂A(a)θ
+ kθμX

ν
(b)
∂L0

∂kνμ

+
(
δθνC

a
b c A

(c)
μ − δθμA(a)ρ

∂Xρ(b)
∂xν

− δθν A(a)ρ
∂Xρ(b)
∂xμ

− δθμA(a)ρ,νXρ(b)

−δθν A(a)μ,ρXρ(b)
)
∂L0

∂A(a)μ,ν
+
(
kθμ
∂Xν(b)
∂xσ

+ δθσ
(
kρμ
∂Xν(b)
∂xρ

− kνρ
∂Xρ(b)
∂xμ

)

+kθμ,σ X
ν
(b) − δθσ kνμ,ρXρ(b)

)
∂L0

∂kνμ,σ
= 0 (300)

c) ∂
2 f (b)

∂xθ
∂xσ : (δab + A(a)ρ Xρ(b))

(
∂L0

∂A(a)θ,σ
+ ∂L0

∂A(a)σ,θ

)
− kθμX

ν
(b)
∂L0

∂kνμ,σ

−kσμX
ν
(b)
∂L0

∂kνμ,θ
= 0 . (301)

Equation (299) establishes the invariance of L0 under the rigid group G, and using (301) and
then (300), it is proven that L0 = L0(T σμν,F

(a)
μν ) , so that the action for the compensating

fields becomes:

S0 =
∫

L0 ω ≡
∫
�L0(T σμν,F (a)μν ) ω . (302)

Note that the tensorial objects T σμν,F
(a)
μν naturally appear in the commutator of covariant

derivatives:

[Dμ,Dν]ϕα = T σμνDσ ϕα + F (a)νμ Xα(a)βϕ
β ,

and their tensorial character is manifest when they transform under the local group:

δT σμν = f (a)(x)

(
∂Xσ(a)
∂xρ

T ρμν − ∂Xρ(a)
∂xμ

T σρν − ∂Xρ(a)
∂xν

T σμρ
)

(303)

δF (a)μν = f (b)(x)

(
C a
b cF

(c)
μν − ∂Xρ(b)

∂xμ
F (a)ρν − ∂Xρ(b)

∂xν
F (a)μρ

)
. (304)

In terms of the fields {A(a)μ , kνμ}, these objects are written in the form:

T σμν = T σνμ − A(a)μ ∂νXσ(a) + A(a)ν ∂μXσ(a)

F (a)μν = A(a)μ,σ kσν − A(a)ν,σ kσμ − 1

2
C a
b c(A

(b)
μ A(c)ν − A(b)ν A(c)μ )− A(a)σ T σμν . (305)

��
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9.1.1 Geometric interpretation

The objects qνμ and the inverse, kμσ , can be given the role of tetrads, so that we may define a
metric tensor g in the form:

gμν ≡ qσμq
ρ
ν ησρ , gμν ≡ kμσ k

ν
ρη
σρ ,

where η is the Minkowski metric tensor.
We also may define a connection � compatible with the metric as:

�σμν ≡ qρμ(A
(a)
ν ∂ρX

θ
(a)k

σ
θ − kσρ,ν) . (306)

The compatibility relies on the metricity condition gμν;σ = 0, where the covariant derivative
;μ is defined as an extension of Dμ such that

ϕρ;ν = Dνk
μ
ρ + �μσνkσρ (Dνk

μ
ρ = kμρ,ν − A(a)ν ∂ρX

λ
(a)k

μ
λ ) . (307)

This constitutes a metric-affine theory equipped with curvature and torsion:

Rρσμν ≡ �ρσμ,ν − �ρσν,μ − �ρλμ�λσν + �ρλν�λσμ (308)

θσμν ≡ �σμν − �σνμ , (309)

which can be written in terms of the arguments of L0:

Rρσμν = kρθ q
λ
σq
ω
μq
ξ
νF

(a)
ωξ ∂λX

θ
(a) (310)

θσμν = kσθ q
ρ
μq
λ
ν T θρλ . (311)

(� is not the Levi-Civita connection associated with g, nor R is its curvature)
Equations of motion of kμν and A(a)μ :

We start from the total Lagrangian Ltot = L̂matt + L0, where

L̂matt = �Lmatt(ϕ
α, kνμ(ϕ

α
ν + A(a)μ Xα(a)βϕ

β)) (312)

L0 = �L0(T σμν,F (a)μν ) (313)

� ≡ det (qνμ)
( ∂�
∂kμν

= −�qνμ
)
. (314)

The Euler–Lagrange equations of motion for k, A are:

kμν : 2�
∂L0

∂F (a)νσ
kλσ F

(a)
μλ −� ∂L0

∂T σρλ
qσμT

ν
λρ + 2�

∂L0

∂T σρν
qσθ k

λ
ρ�
θ
λμ

− d

dxσ

(

2�
∂L0

∂T λρν
qλμk

σ
ρ

)

− qνμ�L0 = −T νμ (315)

A(a)μ : 2�
∂L0

∂F (e)σρ
kμρ k

λ
σC

e
a b A

(b)
λ + 2�

∂L0

∂T θσρ
kμρ ∂σ X

θ
(a) −

d

dxν

(

2�
∂L0

∂F (a)μν

)

= Sμ(a) ,

(316)

where the matter currents are given by:

T νμ ≡ ∂ L̂matt

∂kμν
= �qσμ

(
∂L̂matt

∂Dνϕα
Dσ ϕα − δνσ L̂matt

)

(317)
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Sμ(a) ≡ −∂ L̂matt

∂A(a)μ
= −�kμσ

∂L̂matt

∂Dσ ϕα
Xα(a)βϕ

β . (318)

For the special case L0 = �L0(F (a)μν ), the equation for k soundly simplifies and generalizes
General Relativity equations for nonlinear Lagrangians:

∂L0

∂F (a)νσ
kλσ F

(a)
μλ − 1

2
qνμL0 = −1

2
T νμ . (319)

Note that for the linear case L0 = �F (μν)μν , it becomes:

F (μσ)νσ − 1

2
δμν F (ρσ)ρσ = −�−1T μσ kσν , (320)

which looks very much like Rμν − 1
2 δ
μ
ν R = Tμν !! (Tμν ≡ T μν ).

Conservation laws: Given the matter Lagrangian Lmatt (ϕ
α, ϕ

β
μ), invariant under the rigid

group G, we derive the general expression for conserved currents:

J μ(rigid)
(a) ≡ −∂Lmatt

∂ϕαμ
Xα(a)βϕ

β + Xν(a)ϕ
α
ν

∂Lmatt

∂ϕαμ
− Xμ(a)Lmatt . (321)

The local symmetry permits the construction of extra conservation laws for ( or identities
among) the currents above T νμ , Sμ(a):

T̃ μ
ν;μ − θμT̃ μν + θσνμT̃ μσ = F (a)νσ Sσ(a) (322)

Sμ
(a);μ − θμSμ(a) = T̃ μσ qνμ∂νX

ρ

(a)k
σ
ρ , (323)

where T̃ μν ≡ kμρ T ρν , θμ ≡ θσμσ .
9.2 Gauge Theory of Gravitation

In that which follows, we shall restrict ourselves to rigid groups G acting only on space-time
(except for some attempt to gravitational mixing, to be briefly considered later).

There are many possibilities for the kinematical group G related to possible asymptotic
symmetries of space-time: G may be Poincaré, de Sitter, Anti-de Sitter, Weyl (Poincaré +
Dilatations) or even Conformal (SO(4,2)) group, apart from any invariant subgroup of them.

Note that we shall have to address more “gravitational fields” than those strictly required,
so that many constraints among them must be handled.

9.2.1 Translations: (Teleparallelism)

We start with (and pay special attention to) the simplest case of the translation subgroup,
G = T 4, of the Poincaré group. The group index (a) now reads (μ), the unbracketed indices
μ, ν, σ, ..., representing coordinate ones.

The generators of the rigid translations have components Xν(μ) = δνμ , Xα(μ)β = 0,
corresponding to

X(μ) = ∂

∂xμ
. (324)

The local algebra then becomes (Non-Abelian):

[ f (μ)X(μ), g(ν)X(ν)] = ( f (μ)∂μg(ν) − g(μ)∂μ f (ν))X(ν) . (325)

123



  304 Page 74 of 85 Eur. Phys. J. Plus         (2021) 136:304 

We shall consider non-trivial compensating potentials A(a)μ even though the covariant
derivative of the matter fields coincides with the ordinary one, that is, Dμϕα = ϕα,μ , so that
the generalized compensating derivative just becomes

Dμϕα ≡ kνμϕ
α
,ν . (326)

Keeping A(μ)ν will prove relevant, in particular, in mixing gravity and internal interactions
(see later), although it should not represent an increased number of degrees of freedom. We
expect the need for some (natural) constraints.

According to the general scheme, L0 must be an (scalar under the rigid group) arbitrary
function of T σμν , F (σ )μν , which now acquire the expression:

T σμν = T σνμ ; F (σ )μν = kλμk
ρ
ν (A

(σ )
λ,ρ − A(σ )ρ,λ) . (327)

If we assume the constraint (compatible with the equations of motion)

A(σ )μ = δσμ + qσμ , (328)

we obtain

T σμν = F (σ )μν = T σνμ , (329)

and, therefore,

L0 = �L0(T
σ
νμ) . (330)

Resulting Geometry (Weitzenbock space-time): The connection, curvature and torsion, all
indexed by the superscript T 4, are:

�σ(T (4))μν ≡ −qρμk
σ
ρ,ν = kσρ q

ρ
μ,ν (331)

Rσ(T (4))μρν = 0 (null curvature) (332)

θσ(T (4))μν = kσρ q
λ
μq
ξ
ν T

ρ
λξ (pure torsion !!) . (333)

On the other hand, we have at our disposal the metric tensor gμν in terms of which a
Levi-Civita connection �(L−C) can be constructed, as well as the corresponding curvature
R(L−C), that is:

gμν ≡ qρμq
σ
ν ηρσ , �

σ(L−C)
μν ≡ 1

2
gσρ(gρν,μ + gρμ,ν − gμν,ρ) , (334)

which is symmetric in μ and ν and, therefore, provides null torsion, although non-trivial

curvature tensor Rσ(�
(L−C))

μρν . The relationship between �σ(T (4))μν and �σ(L−C)
μν is:

�σ(T (4))μν = �σ(L−C)
μν + Kσμν , (335)

where

Kσμν ≡ 1

2
(θσ(T (4))μν − θ σ(T (4))μ ν − θ σ(T (4))ν μ ) , (336)

with θ σ(T (4))μ ν ≡ θλ(T (4))τν gλμgτσ .

Teleparallelism: The “gauge” symmetry, through Utiyama’s Theorem, is only able to fix the
argument of L0 as the Cartan Torsion, but the actual functional expression still remains to
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be determined. Among all possible Lagrangians there is one that reproduces the Hilbert–
Einstein Lagrangian (except for a total derivative). This Lagrangian is called Teleparallelism
Lagrangian, and is given by:

L(T el)0 ≡ �L(T el)0 ≡ �Tμνσ T ρλθ
(

1

4
ηλνησθημρ + 1

2
δθμη

νλδσρ − 1δσμδ
θ
ρη
νλ

)
, (337)

where the numerical coefficients have been determined by hand in order to achieve our
purpose, that is:

L(T el)0 = √−gR(L−C) + ∂μ(2�θ μνσ ) , θ μνσ = gμνθσλσ . (338)

It must be noticed that the equations of motion of a particle, derived from the Gauge
Theory are:

duμ
dτ

= �σ(T (4))νμ uσ u
ν , (339)

and it turns out to be equivalent to those of geodesic motion in the pseudo-Riemannian
geometry addressed by �(L−C):

duμ
dτ

= �σ(L−C)
νμ uσ u

ν , (340)

although the formers do not correspond to a geodesic motion.

9.2.2 The Poincaré Group

In the case G is the Poincaré group, the index (a) splits in (μ) for the translation subgroup,
and (μν) for the Lorentz one. The generators of the rigid group are:

X(μ) = Xν(μ)
∂

∂xν
(341)

X(μν) = Xσ(μν)
∂

∂xσ
+ Xα(μν)

∂

∂ϕα
(342)

with

Xν(μ) = δνμ

Xσ(μν) = δσ(μν),ρx
ρ ≡ (δσμηνρ − δσν ημρ)xρ

Xα(μν) = Xα(μν)βϕ
β (∼ [γμ, γν]αβϕβ) . (343)

According to the general theory, L0 = L0(T σμν,F
(σ )
μν ,F (σρ)μν ). The simplest possibility

corresponds to the particular choice L0 = L0(F (σρ)μν ),

L0 = 1

2
�F (μν)μν (344)

F (σρ)λθ ≡ kμλ k
ν
θ F

(σρ)
μν

≡ kμλ k
ν
θ

(
A(σρ)μ,ν − A(σρ)ν,μ − (A(σκ)μ A(ξρ)ν − A(σκ)ν A(ξρ)μ )ηκξ

)
. (345)

The equations of motion become:

k) �(F (μσ)νσ − 1

2
δμν F (ρσ)ρσ ) = −T μσ kσν (346)
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A) �(kμθ T
θ
ρσ − kμρ T

θ
θσ + kμσ T

θ
θρ + (kμθ kνρ − kμρ k

ν
θ )A

(θ
σ )ν

−(kμσ kνθ + kμθ k
ν
σ )A

(θ
ρ)ν) = 2Sμ(σρ) , (347)

where

T μσ ≡ ∂

∂kσμ
(�Lmat(ϕ

α,Dνϕα)) (348)

Sμ(σρ) ≡ − ∂

∂A(σρ)μ

(�Lmat(ϕ
α,Dνϕα)) (349)

are the matter currents already defined.
In terms of T θσρ , the equation associated with A is written as:

�(kμθ T θσρ − kμρ T θσθ − kμσ T θθρ) = 2Sμ(σρ) , (350)

from which it follows the conservation law:

d

dxμ
(Sμ(σρ) + ∫μ(σρ)) = 0 , ∫μ(σρ) ≡ − ∂L0

∂A(σρ)μ

. (351)

This means the conservation of the total spin density, Sμ(σρ) corresponding to the matter, and

∫μ(σρ) corresponding to the gravitational fields itself.

Riemann–Cartan Geometry: We have again two geometric objects at our disposal. On the

one hand, the metric tensor gμν ≡ qρμqσν ηρσ and, on the other, the connection associated
with the Poincaré gauge group:

�σ(P)μν ≡ qρμ

(
1

2
A(λω)ν ∂ρX

θ
(λω)k

σ
θ − kσρ,ν

)
= −qρμk

σ
ρ,ν + qρμA

(θλ)
ν ηλρk

σ
θ

= �σ(T (4))μν + qρμA
(θλ)
ν ηλρk

σ
θ , (352)

and the corresponding curvature and torsion:

Rρ(P)σμν = kρθ q
λ
σq
ω
μq
ξ
ν

1

2
F (κζ )ωξ ∂λX

θ
(κζ ) = kρθ q

λ
σq
ω
μq
ξ
νF

(θζ )
ωξ ηζλ (353)

θσ(P)μν = kσθ q
ρ
μq
λ
ν T

θ(P)
ρλ

= kσθ q
ρ
μq
λ
ν (T

θ
λρ + A(θζ )κ (kκληζρ − kκρηζλ)) . (354)

Omitting the (P) superscript and using the following derived currents:

T̃μν ≡ gσμT̃
σ
ν ≡ gσμk

σ
ρ T

ρ
ν = qσμηρσT ρν (355)

S̃λμν ≡ qσμq
ρ
ν Sλ(σρ) , (356)

the equations of motion acquire the form:

�

(
Rμν − 1

2
gμνR

)
= −T̃μν , (357)

�θλμν = 2S̃λμν − δλμS̃ρρν − δλν S̃ρμρ , (358)
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from which we conclude that the source for the torsion is the spin of the matter.

Comparison with the standard theory: We shall limit ourselves to the case of absence of

matter. In the vacuum case, the equation of motion for the field A(σρ)μ , becomes:

kμθ T θσρ − kμρ T θσθ − kμσ T θθρ = 0 (359)

and can be solved explicitly in terms of the Cartan torsion T σμν :

Avacuum
(σρ)μ = 1

2
qλμ(Tσρλ + Tρλσ − Tλσρ) , (360)

with Avacuum
(σρ)μ ≡ A(λθ)vacuum

μ ηλσ ηθρ , Tσρλ ≡ Tμρλημσ , that is to say, Avacuum
(σρ)μ are the so-called

Ricci rotation coefficients in the standard theory.
Then, in the vacuum, we arrive at

Rμν − 1

2
gμνR = 0 (361)

θλμν = 0 . (362)

The second equation implies that �σμν is symmetric and, therefore, it coincides with the
Levi-Civita connection associated with gμν . Likewise, Rμν coincides with the Ricci tensor
providing the ordinary Einstein equations.
Remark on the “gauge theory” of the Lorentz group: The Lorentz group is not an invariant
subgroup of the Poincaré group and if we desire to keep the rigid invariance under the whole
Poincaré group, making local the Lorentz subgroup entails necessarily the local character of
the Translation subgroup and, then, of the total Poincaré group.

9.3 Beyond the Poincaré group as rigid symmetry

Naively, the more natural generalization of the Poincaré group as the starting rigid symme-
try is the group GL(4, R), which had been considered in Literature long ago. It leads to
Edington Geometry. The simplest and best motivated generalization is that addressed by the
Weyl group, made of Poincaré and Dilatations transformations.

Even more interesting proves to be the generalization of GR combining the Weyl group
with the mass-generating scheme, discussed above, giving dynamics to only the field asso-
ciated with the dilatation parameter [56,57]. This constitutes some sort of

“Stueckelberg” model for the Weyl group (Brief comments): We consider the Weyl group
as G and start from a very special “matter” Lagrangian constituted by the partial-trace σ -
Lagrangian associated with the dilatation subgroup of W . That is to say:

L“matt ′′ = TrW/P (θμθ
μ) ≡ θ(dil)μ θ(dil)μ . (363)

The minimal coupling principle entails the minimal substitution:

L̂“matt ′′ = (θ(dil)μ − A(dil)μ )(θ(dil)ν − A(dil)ν )ημν , (364)

where θ(dil)μ is just ∂μϕdil .
As far as the Lagrangian L0 is concerned, we resort to the simplest, yet new possibility:

L0 = L0(F (σρ)μν ,F (dil)μν )

= F (μν)μν + F (dil)μν F (dil)σρ ημσ ηνρ = kσμk
ρ
ν F

(μν) + F (dil)μν F (dil)σρ gμσ gνρ , (365)
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where F (dil)σρ = ∂ρ A(dil)σ − ∂σ A(dil)ρ .

Note that we have chosen a Lagrangian linear on F (ρσ)μν , as in standard Gravity, but quadratic

on F (dil)μν , as in Electromagnetism.
The equations of motion for k turn out to acquire the expression:

F (νσ )μσ − 1

2
δνμF

(σλ)
σλ = T (dil)νμ , (366)

where the right-hand side is the energy-momentum tensor for some sort of dark energy:

T (dil)νμ ≡ −F (dil)νσ F (dil)σμ + 1

2
δνμF

(dil)
σλ F (dil)σλ . (367)

Exercise: Is there any configuration for A(dil)μ allowing for a cosmological constant term?

9.4 Extending Diffeomorphism invariance: New approach to Teleparallelism

We shall mimic the extension of the gauge groupG(M),G1(M), which gave rise to non-trivial
symmetries, that is, symmetries with non-null Noether invariants.

Let us remember that G1(M) was constructed out of J 1(G(M)), the group of 1-jets of
the mappings ϕα : M → G, the local group.

Now, the role of the gauge group is played by T 4(M) or, roughly speaking, Diff(M).
This group is gauge, in the strict sense that the corresponding Noether invariants are trivial,
except for the subgroup of “rigid transformations,” which give rise to quantities like energy
or angular momentum.

We then define, in an analogous way to the case of jet bundle of Variational Calculus, the
1-jets of the diffeomorphisms of M , considered as mappings ξ : M → M :

J 1(Diff(M)) ≡ Diff(M)× M
1∼

, (368)

where the equivalence
1∼ is defined by (to be compared with (89)):

(ξμ, x)
1∼ (ξ ′μ, x ′)⇐⇒

⎧
⎨

⎩

x = x ′
ξμ(x) = ξ ′μ(x)

∂νξ
μ(x) = ∂νξ

′μ(x),
(369)

∀ (ξμ, x), (ξ ′μ, x ′) ∈ Diff(M)× M .
A coordinate system on J 1(Diff(M)) is (xμ, ξμ, ξμν ), where the objects ξμν parameterize

those transformations on T (M) which are non-necessarily the tangent mapping of a trans-
formation ξ on M ; that is, ξμν �= ξ

μ
,ν , except for the jet extensions of ξ , j1(ξ), for which

ξ
μ
ν = ∂νξμ.

The relevant, infinite-dimensional, symmetry group consists in the “local” J 1(Diff(M))
group:

Diff1(M) ≡ �(J 1(Diff(M))) = {M → J 1(Diff(M))} . (370)

It contains Diff(M), as jet extensions, in a natural way!!. In fact, any generator in the Lie

algebra diff(M), X f = f μ(x) ∂
∂xμ , can be canonically lifted to diff1(M):

XLift
f = f μ

∂

∂xμ
+ ∂ρ f μξρν

∂

∂ξ
μ
ν

, (371)
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in such a way that the Lie algebra commutator [X f , Xg] = ( f μ∂μgν − gμ∂μ f ν)∂ν , is
preserved, that is:

[X f , Xg]Lift = [XLift
f , X

Lift
g ] . !! (372)

9.4.1 Invariance under Diff(M): Standard Gauge Symmetry

Before going into the new, extended symmetry let us recover the standard Teleparallelism
Theory from Diff(M).

We could seek LagrangiansL0(xμ, ξν, ξσρ , ∂μξ
ν, ∂μξ

σ
ρ ), invariant under Diff(M) although

the dependence on {ξν, ∂μξν} can be dropped out for the sake of simplicity. We then look
for Lagrangians L(xμ, ξμν , ξμν,σ ) invariant under the jet extension (in the sense of variational
calculus) of the lifted XLift

f , that is

X̄Lift
f L = 0 . (373)

Explicitly,

f μ(x)
∂L
∂xμ

+ ∂ρ f μ(x)ξρν
∂L
∂ξ
μ
ν

+ (
ξρν ∂σ ∂ρ f

μ(x)+ ξρν,σ ∂ρ f μ(x)− ξμν,ρ∂σ f ρ(x)
) ∂L
∂ξ
μ
ν,σ

= 0 (374)

⇒
a) ∂ν f

μ(x) : ξνε
∂L
∂ξ
μ
ε

+ (ξνε,σ δρμ − ξρε,μδνσ )
∂L
∂ξ
ρ
ε,σ

= 0 (375)

b) ∂σ ∂ν f
μ(x) : ξνε

∂L
∂ξ
μ
ε,σ

+ ξσε
∂L
∂ξ
μ
ε,ν

= 0 . (376)

b) ⇒ the Lagrangian L0 must depend on (ξμν , ξ
μ
ν,σ ) only through the combination

τρμν ≡ ξρν,θ ξ θμ − ξρμ,θ ξ θν . (377)

Then, a) acquires the form

ξνλ ξ
ρ
θ,μ

∂L
∂τ
ρ
λθ

+ ξσθ (ξνλ,σ δρμ − ξρλ,μδνσ )
∂L
∂τ
ρ
θλ

= 0 ⇒ (378)

L0 = L0(T
σ
μν) (379)

T σμν ≡ ζ σρ τρμν = ζ σρ (ξρν,θ ξ θμ − ξρμ,θ ξ θν )
{
ζ σρ ξ

ρ
ν = δσν

ζ σρ ξ
μ
σ = δ

μ
ρ .

(380)

Using L0 ≡ �L0, � ≡ det(θσρ ), we arrive at exactly the same situation as in the gauge
theory of T 4 with the trivial identification

ξμν ≡ kμν , θ
ν
μ ≡ qνμ , (381)

allowing for the special choice for the Lagrangian, L(T el)0 .
However, the actual form of L still remains to be determined by a symmetry group.
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9.4.2 Invariance under Diff1(M): Einstein Theory in vacuum

Let us resort to the additional symmetry in the group Diff1(M)which is not the jet extension
of Diff(M). Among the possible generators of this type of symmetry we shall select the
following set:

X1
l ≡ l σν (x)ξ

μ
σ

∂

∂ξ
μ
ν

, (382)

where lσν (x) are “infinitesimal” parameters that are not the derivative of diffeomorphisms
and satisfy lμν(x) = −lνμ(x), lμν = ημσ lσν .

The imposition of invariance under Diff(M) has already been done with the result that
L0 = L0(T ), though arbitrary. Now we impose the rest of the symmetry in two steps:

1) Invariance under the rigid X1
l(global), that is, with constant l ′s

X̄1
l(global)L0 = l σν

(
ξμσ
∂L
∂ξ
μ
ν

+ ξμσ,ρ
∂L
∂ξ
μ
ν,ρ

)
= 0 (383)

The simplest solution is

LT 2

0 (T ) = AT σμνT
μν

σ + BT σμνT
νμ
σ + CT σσμT

νμ
ν

(indices move with the metric) η (384)

2) Invariance under local X1
l(x) fixes A, B,C , although we must demand only semi-invariance

(just like in the free Galilean particle):

X̄1
l (�LT 2

0 ) = �∂σ l ρν ξμρ
∂LT 2

0

∂ξ
μ
ν,σ

= divλl . (385)

Equation (385) can be explicitly solved, giving:

A = B

2
, B = −C

2
, λ

μ
l = −4C�ξμν ∂σ l

σν . (386)

By choosing C = −1, we arrive at a Lagrangian equivalent (up to a total derivative) to the
Hilbert–Einstein Lagrangian associated with the metric gμν ≡ ζ σμ ζ ρν ησρ .

As an extra bonus, the extended Diff1(M) symmetry provides infinitely many non-null
Noether invariants:

Jμ
X1
l

= �lσν (x)(ξμρ T ρ νσ − 2ξμσ T
ρ ν
ρ )− λμl . (387)

Final comments: We have got an infinite set of Noether invariants defining coordinates on
the solution manifold of Einstein equations in the vacuum. The completeness of this set is
still lacking, but it is worth noticing the similarity of the generators X1

l(x) with those used in
the Klein–Gordon field to parameterize its solution manifold.

In fact, there, the generators Xa∗(x) = eikx ∂
∂φ

, provided the Noether invariants a(k) (and

Xa(x) → a∗(k)), and they can be viewed as Xl = l(x) ∂
∂φ

, where l(x) is a solution of

the Klein–Gordon equation. Comparing with X1
l ≡ l σν (x)ξ

μ
σ

∂

∂ξ
μ
ν

, lσν are suggested to be
solutions of Einstein equations.

The question naturally arises of whether a particular solution submanifold, corresponding
to a set of particular solutions, could be parameterized by such Noether invariants. If this
really happens, we could proceed to the group quantization of this submanifold !!.
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10 The general case and unification

10.1 No-go theorems on symmetry mixing

The possibility of unifying internal gauge interactions with Gravity, as a gauge theory asso-
ciated with a space-time symmetry group, was tied to the existence of a finite-dimensional
global symmetry group containing the Poincaré group and an internal unitary (compact)
group in a non-trivial way, that is, not a tensor product. This possibility was soon discarded
by the publication of a series of papers establishing the now known as “No-Go theorems”
on symmetries (see, in particular, [59,60]). The situation is quite different in dealing directly
with infinite-dimensional groups where those theorems do not apply.

10.2 Electrogravity mixing

Thinking of Quantum Theory as a more exact theory than Classical Theory, and starting from
the rigid symmetry of “quantum matter” we arrive at a non-trivial consequence consisting in
a non-trivial mixing of space-time and internal gauge interactions. A first attempt was given
at the Quantum Mechanical level [61], and then this idea was extended to field theory in the
form of a generalized gauge theory [58].

Let us substitute the U (1)-extended Poincaré group, P̃ , by the standard Poincaré group
P . The Lie algebra of P̃ is:

[M̃μν, P̃ρ] = ηνρ P̃μ − ημρ P̃ν − (λμηνρ − λνημρ)# ≡ C σ
μν, ρ P̃σ + C �

μν, ρ# , (388)

where

C �
μν, ρ ≡ λνημρ − λμηνρ , (389)

# is the (central) generator of U (1), and λμ is a vector in the Poincaré co-algebra belonging
to a certain co-adjoint orbit.

We shall take λμ in the simplest, though non-covariant, way:

λμ = −κδ0
μ , (390)

the constant κ being the mixing parameter. Then, the new structure constants are C �
μ, σρ ≡

−κ(ηρμδ0
σ − ησμδ0

ρ), and give rise to the following curvature components:

F (λρ)μν = A(λρ)μ,ν − A(λρ)ν,μ − ηθσ (A(λθ)μ A(σρ)ν − A(λθ)ν A(σρ)μ ) , (391)

F (�)μν = A(�)μ,ν − A(�)ν,μ+κηi j (A( j)μ A(0i)ν − A( j)ν A(0i)μ ) . (392)

Note that F (�)μν involves, apart from the free term Aμ,ν − Aν,μ, the potentials A j
μ associated

with translations, which are omitted in the standard theory. Besides, the electromagnetic
strength of gravitational origin find its source in the Coriolis-like gravitational potentials;
that is to say, those of rotating massive bodies.

The geodesic motion, for instance, can be derived by considering matter Lagrangian
corresponding to a single particle: Lmatt = 1

2m pμ pνημν . We easily arrive at:

gμσ
duμ

dτ
= −uμuν�(L−C)

μν,σ − e

m
uμF (elec)μσ − κe

m
uμ(B(grav)μ,σ − B(grav)σ,μ ) , (393)

where we have separated A(�)μ into two different pieces: A(�)μ = A(elect)μ + κB(grav)μ , cor-
responding to the ordinary electromagnetic field added with the new mixing term. We refer
the reader to Ref. [58] for specific details.
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11 Appendix: Derivation of the Euler–Lagrange and Poincaré–Cartan equations

E–L equations:

L X̄ (Lω) = (L X̄L)ω + LL X̄ω =
{
Xμ

∂L
∂xμ

+ Xα
∂L
∂ψα

}
ω + X̄αν

∂L
∂ψαμ

dxν ∧ θμ
+LdXμ ∧ θμ

=
{
Xμ

∂L
∂xμ

+ Xα
∂L
∂ψα

}
ω +

{
∂Xα

∂xσ
− ψαν

∂Xν

∂xσ

}
∂L
∂ψαμ

dxσ ∧ θμ

+ ∂L
∂ψαμ

{
∂Xα

∂ψβ
− ψαν

∂Xν

∂ψβ

}
(dψβ − θβ) ∧ θμ + LdXμ ∧ θμ

=
{
Xμ

∂L
∂xμ

+ Xα
∂L
∂ψα

}
ω + ∂L

∂ψαμ
(dXα − ψαν dXν) ∧ θμ

− ∂L
∂ψαμ

{
∂Xα

∂ψβ
− ψαν

∂Xν

∂ψβ

}
θβ ∧ θμ + LdXμ ∧ θμ

∫

j1(ψ)(M)
L X̄ (Lω) =

∫

M

[{
Xμ

∂L
∂xμ

+ Xα
∂L
∂ψα

}
ω − Xαd

(
∂L
∂ψαμ

θμ

)

+ d

(
∂L
∂ψαμ

Xαθμ

)

+Xνd

(

ψαν
∂L
∂ψαμ

θμ

)

− d

(

ψαν X
ν ∂L
∂ψαμ

θμ

)

− Xμd(Lθμ)+ d(XμLθμ)
]

=
∫

M
Xμ

{
∂L
∂xμ

ω + d

(

ψαμ
∂L
∂ψαμ

θν

)

− d(Lθμ)
}

+
∫

M
Xα

{
∂L
∂ψα

ω − d

(
∂L
∂ψαμ

θμ

)}

=
∫

M

[
Xμψαμ

{
d

dxν
∂L
∂ψαν

− ∂L
ψα

}
ω + Xα

{
d

dxν
∂L
∂ψαν

− ∂L
ψα

}
ω

]
= 0

⇒ d

dxν
∂L
∂ψαν

− ∂L
ψα

= 0 .
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As can be seen, the same result is obtained varying the Lagrangian with vector fields Xα ∂
∂ψα

(with Xμ = 0), and we avoid a lot of calculations.
Cartan-like equations (Modified Hamilton Principle):

θPC = ∂L
∂ψαμ

(dψα − ψαν dxν)+ Lω = ∂L
∂ψαμ

dψα ∧ θμ + (L − ∂L
∂ψαμ

ψαμ)ω

d PC = d

(
∂L
∂ψαμ

)

∧ dψα ∧ θμ + d

(

L − ∂L
∂ψαμ

ψαμ

)

∧ ω

=
{
∂

∂xμ

(
∂L
∂ψαμ

)

dxμ + ∂

∂ψβ

(
∂L
∂ψαμ

)

dψβ

+ ∂

∂ψ
β
ν

(
∂L
∂ψαμ

)

dψβν

}

∧ dψα ∧ θμ

+
[
∂L
∂xν

dxν + ∂L
∂ψβ

dψβ + ∂L
∂ψ

β
ν

dψβν − ψαμ
{
∂

∂xν

(
∂L
∂ψαμ

)

dxν

+ ∂

∂ψβ

(
∂L∂ψαμ

)
dψβ + ∂

∂ψ
β
ν

(
∂L
∂ψαμ

)

dψβν

}

− ∂L
∂ψαμ

dψαμ

]

∧ ω

=
{

− ∂

∂xμ

(
∂L
∂ψαμ

)

+ ∂L
∂ψα

− ψβμ
∂

∂ψα

(
∂L
∂ψ

β
μ

)}

dψα ∧ ω + ∂

∂ψβ

(
∂L
∂ψαμ

)

dψβ ∧ dψα ∧ θμ

+ ∂

∂ψ
β
ν

(
∂L
∂ψαμ

)

dψβν ∧ dψα ∧ θμ − ψαμ
∂

∂ψ
β
ν

(
∂L
∂ψαμ

)

dψβν ∧ ω

iX1 dθPC =
{
∂L
∂ψα

− ∂

∂xμ

(
∂L
∂ψαμ

)

− ψβμ
∂

∂ψα

(
∂L
∂ψ

β
μ

)}

Xαω

−
{
∂L
∂ψα

− ∂

∂xμ

(
∂L
∂ψαμ

)

− ψβμ
∂

∂ψα

(
∂L
∂ψ

β
μ

)}

Xνdψα ∧ θν + ∂

∂ψβ

(
∂L
∂ψαμ

)

Xβdψα ∧ θμ

− ∂

∂ψβ

(
∂L
∂ψαμ

)

Xαdψβ ∧ θμ + ∂

∂ψβ

(
∂L
∂ψαμ

)

dψβ ∧ dψα ∧ iX1θμ + ∂

∂ψ
β
ν

(
∂L
∂ψαμ

)

Xβν dψα ∧ θμ

− ∂

∂ψ
β
ν

(
∂L
∂ψαμ

)

Xαdψβν ∧ θμ + ∂

∂ψ
β
ν

(
∂L
∂ψαμ

)

dψβν ∧ dψα ∧ iX1θμ − ψαμ
∂

∂ψ
β
ν

(
∂L
∂ψαμ

)

Xβν ω

+ψαμ
∂

∂ψ
β
ν

(
∂L
∂ψαμ

)

Xσ dψβν ∧ θσ

(dxν ∧ iX1θμ = Xνθμ − δνμXσ θσ )

iX1 d PC |ψ1(M) =
[
∂L
∂ψα

− ∂

∂xμ

(
∂L
∂ψαμ

)

− ψβμ
∂

∂ψα

(
∂L
∂ψ

β
μ

)

+ ∂

∂ψα

(
∂L
∂ψ

β
μ

)
∂ψβ

∂xμ

− ∂

∂ψβ

(
∂L
∂ψαμ

)
∂ψβ

∂xμ
− ∂

∂ψ
β
ν

(
∂L
∂ψαμ

)
∂ψ

β
ν

∂xμ

]

Xαω

[

− ∂ψ
α

∂xν

{
∂L
∂ψα

− ∂

∂xμ

(
∂L
∂ψαμ

)

− ψβμ
∂

∂ψα

(
∂L
∂ψ

β
μ

)}

+ ∂ψα

∂xν
∂ψβ

∂xμ
∂

∂ψβ

(
∂L
∂ψαμ

)

− ∂

∂ψβ

(
∂L
∂ψαμ

)
∂ψα

∂xμ
∂ψβ

∂xν
+ ψαμ

∂

∂ψ
β
σ

(
∂L
∂ψαμ

)
∂ψ

β
σ

∂xν
+ ∂

∂ψ
β
σ

(
∂L
∂ψαμ

)
∂ψα

∂xν
∂ψ

β
σ

∂xμ

− ∂

∂ψ
β
σ

(
∂L
∂ψαμ

)
∂ψα

∂xμ
∂ψ

β
σ

∂xν

]

Xνω
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+
[
∂

∂ψ
β
ν

(
∂L
∂ψαμ

)
∂ψα

∂xμ
− ∂

∂ψ
β
ν

(
∂L
∂ψαμ

)

ψαμ

]

Xβν ω ⇒

Xβν : ∂2L
∂ψ

β
ν ∂ψαμ

[
∂ψα

∂xμ
− ψαμ

]
= 0

Xα :
{
∂L
∂φα

− d

dxμ

(
∂L
∂ψαμ

)}

+ ∂

∂ψα

(
∂L
∂ψ

β
μ

)[
∂ψβ

∂xμ
− ψβμ

]
= 0

Xν : ∂ψ
α

∂xν

{
d

dxμ

(
∂L
∂ψ

β
μ

)

− ∂L
∂ψα

}

= 0 .

Obviously, for regular Lagrangians, that is, those satisfying

∣
∣
∣
∣
∂2L

∂ψ
β
ν ∂ψ

α
μ

∣
∣
∣
∣ �= 0, we arrive at the

solutions of the Ordinary Hamilton Principle.
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