Skip to main content
Log in

Comparison of variance-reduction techniques for gamma dose rate determination

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Three-dimensional computer simulation and virtual reality technology enable the visualization of dose encountered by workers during dismantling operations by using simplified real-time dose computation tools. Such tools generally use a macroscopic approach for gamma dose rate calculation, namely the point kernel integration method with build-up factors. This simplified physical model enhances calculation performance but presents also some restrictions. In contrast, stochastic Monte Carlo methods enable a precise estimation of gamma dose rate, but computing time is prohibitive for real-time dose applications. To speed up the simulation, Monte Carlo codes can be used in combination with variance-reduction techniques, which have to be used very cautiously to stay within their limits of validity. This paper presents a comparison between two variance-reduction techniques implemented in the Monte Carlo code TRIPOLI-4\(\circledR \), the exponential transform and the adaptive multilevel splitting, testing their efficiency in dismantling-like configurations.Both methods behave better in deep penetration problems but require a good amount of user experience in the creation of the importance map. This study shows the need to develop a new type of algorithm capable to tackle configurations where the lack of collisions can limit the efficiency of the current VRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Vermeersch, C.V. Bosstraeten, in Proceeding of the International Conference on Topical Issues in Nuclear Radiation and Radioactive Waste Safety (Austria, Vienna, 1998), p. 6

  2. Microshield Team, MicroShield Version 6 Users Manual (Grove Engineering, Rockville, 2003)

    Google Scholar 

  3. Canberra Industries, in MERCURAD Dose Rate Calculation Software, Users Manual (DEX-DT-61316, 2003)

  4. C.J. Werner, J.S. Bull, et al., MCNP Version 6.2 Release Notes (p. LA-UR–18-20808, 1419730, 2018)

  5. S. Agostinelli, J. Allison et al., Nuclear instruments and methods in physics research section A: accelerators. Spectrom., Detect. Associ. Equip. 506, 250 (2003)

    Article  Google Scholar 

  6. J. Leppnen, M. Pusa et al., Ann. Nucl. Energy 82, 142 (2015)

    Article  Google Scholar 

  7. E. Brun, F. Damian et al., Ann. Nucl. Energy 82, 151 (2015)

    Article  Google Scholar 

  8. D. Bednàr, M. Listjak et al., Ann. Nucl. Energy 134, 67 (2019)

    Article  Google Scholar 

  9. S. He, Q. Zang et al., Radiat. Prot. Dosim. 174, 207–217 (2016)

    Google Scholar 

  10. T. Visonneau, L. Pangault et al., EPJ Web Conf. 153, 06028 (2017)

    Article  Google Scholar 

  11. C. Suteau, M. Chiron, Radiat. Prot. Dosim. 116, 489 (2005)

    Article  Google Scholar 

  12. T. Visonneau, L. Pangault-Granier et al., in 13th International Conference on Radiation Shielding (ICRS-13) and 19th Topical Meeting of the Radiation Protection and Shielding Division (RPSD-2016) (France, Paris, 2016)

  13. I. Szoke, M.N. Louka et al., J. Radiol. Prot. 34, 389 (2014)

    Article  Google Scholar 

  14. K. Jeong, B. Choi et al., Ann. Nucl. Energy 73, 441 (2014)

    Article  Google Scholar 

  15. T.M. Caracena, J.G.M. Gonalves et al., IEEE Trans. Nucl. Sci. 60, 3862 (2013)

    Article  ADS  Google Scholar 

  16. M. Longeot, B. Dupont et al., Prog. Nucl. Sci. Technol. 4, 557 (2014)

    Article  Google Scholar 

  17. S. Chucas, I. Curl, J. Nucl. Sci. Technol. 37, 515 (2000)

    Article  Google Scholar 

  18. H. Louvin, E. Dumonteil et al., EPJ Nucl. Sci. Technol. 3, 29 (2017)

    Article  Google Scholar 

  19. I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods (CRC-Press, Boca Raton, 1991)

    Google Scholar 

  20. G. Gualdrini, P. Ferrari, Radiat. Prot. Dosim. 146, 425 (2011)

    Article  Google Scholar 

  21. Y.-K. Lee, EPJ Web Conf. 153, 02011 (2017)

    Article  Google Scholar 

  22. J.P. Both, J.C. Nimal et al., Prog. Nucl. Energy 24, 273 (1990)

    Article  Google Scholar 

  23. K.M. Case, F. De Hoffman, G. Placzek, in Introduction to the Theory of Neutron Diffusion, Volume I (Los Alamos Scientific Laboratory, Los Alamos, Nouveau-Mexique, tats-Unis, 1953)

  24. S. Bourganel, O. Petit, C.M. Diop, Nucl. Technol. 184, 29 (2013)

    Article  Google Scholar 

  25. M. Nowak, D. Mancusi et al., Nucl. Sci. Eng. 193, 966 (2019)

    Article  Google Scholar 

  26. M. Lei, Y. Peneliau et al., IEEE Trans. Plasma Sci. 46, 1180 (2018)

    Article  ADS  Google Scholar 

  27. N. Odano, T. Miura et al., in Proceedings of the 8th International Conference on Radiation Shielding (Arlington, Texas, 1994), p. 13011308

  28. Y. Sakamoto, S. Tanaka, in QAD-CGGP2 and G33-GP2: Revised Versions of QAD-CGGP and G33-GP (Japan Atomic Energy Research Inst., 1990)

  29. E. Goldberg, D.J. Groves et al., Experiments to Test Validity of SORS-G Monte Carlo Code (Lawrence Livermore National Laboratory, Livermore, 1969)

    Google Scholar 

  30. E. Goldberg, D.J. Groves, et al., in Experiments to Test Validity of SORS-G Monte Carlo Code: I. Au-198 and Cs-137 (Lawrence Livermore National Laboratory, Livermore, CA, 1967)

  31. D.J. Whalen, D.E. Hollowell, et al., in MCNP: Photon Benchmark Problems (Los Alamos National Lab., 1991)

  32. V. Valtavirta, R. Tuominen, in Validation and Verification of the Photon Transport Capabilities in Serpent 2.1.17 (VTT Technical Research Centre of Finland, Espoo, Finland, 2017)

Download references

Acknowledgements

The authors warmly thank Yannick Pénéliau, François-Xavier Hugot, Odile Petit, Fausto Malvagi, Cheikh Diop and Jean Michel Létang for their help and their constructive discussions about VR methodologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy Le Loirec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guadagni, E., Le Loirec, C. & Mancusi, D. Comparison of variance-reduction techniques for gamma dose rate determination. Eur. Phys. J. Plus 136, 232 (2021). https://doi.org/10.1140/epjp/s13360-021-01196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01196-3

Navigation