Skip to main content
Log in

Using graphene oxide to improve the mechanical and electrical properties of fiber-reinforced high-volume sugarcane bagasse ash cement mortar

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The application of graphene oxide in construction materials has gained a significant amount of interest. Although most of the researches mainly concentrate on early hydration and the mechanical and fracture properties of cement paste, the study of graphene oxide on ultrasonic pulse velocity and electrical properties of high-volume, fiber-reinforced sugarcane bagasse ash mortars (HVSCBAM) shows limited knowledge. The combined effect of graphene and polyvinyl alcohol may explain some key issues such as high cost and the dispersion of graphene oxide in the cement matrix. In this present research, a set of experiments was conducted for analyzing the implementation of graphene oxide on electrical properties, water absorption, ultrasonic pulse velocity analysis, and compressive strength of fiber-reinforced HVSCBAM, with a sugarcane bagasse ash/binder rate established at 50% by mass. Four weight ratios of graphene oxide/binder, i.e., 0%, 0.5%, 1.0%, and 1.5%, were used, and the PVA fiber volume dosages of 0%, 0.2%, 0.5%, and 1.0% were mixed with sand and binder in a mortar mixer as well. In relation to 0.2–1.0 vol% PVA fiber-reinforced HVSCBAM short of graphene oxide, it has been seen that an increase of 0.5 wt% graphene oxide could enhance the compressive strength by 13–48% further while an increasing amount of 1.5 wt% graphene oxide could improve compressive strength even by 36–53%. The graphene oxide/PVA-altered cement content takes up to 47.7% higher electrical resistivity, 70.2% lower water absorption, and 24.3% higher ultrasonic pulse velocity as compared to control mortar. The microstructure characteristics indicate that the graphene oxide has simplified the interface between the fiber and the matrix significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.L. Gambhir, Concrete Technology (McGraw Hill Publishing, New Delhi, 1986).

    Google Scholar 

  2. P. Jagadesha, A. Ramachandra Murthy, R. Murugesan, Constr. Build. Mater. 262, 120846 (2020)

    Article  Google Scholar 

  3. K. Ganesan, K. Rajagopal, K. Thangavel, Cem. Concr. Compos. 29(6), 515 (2007)

    Article  Google Scholar 

  4. G.C. Cordeiro, R.D. Toledo Filho, L.M. Tavares, E.M.R. Fairbairn, Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars, Cem. Concr. Compos. 30(5), 410 (2008)

    Article  Google Scholar 

  5. A. Sales, S.A. Lima, Waste Manag. 30, 1114 (2010)

    Article  Google Scholar 

  6. V. Sata, C. Jaturapitakkul, K. Kiattikomol, Constr. Build. Mater. 21, 1589 (2007)

    Article  Google Scholar 

  7. J.F. Martinera Hernandez, B. Middeendorf, M. Gehrke, H. Budelmann, Cem. Concr. Res. 28(11), 1525 (1998)

    Article  Google Scholar 

  8. N.B. Singh, V.D. Singh, S. Rai, Cem. Concr. Res. 30(9), 1485 (2000)

    Article  Google Scholar 

  9. J. Paya, J. Monzo, M.V. Borrachero, L.M. Ordonez, J. Chem. Technol. Biotechnol. 77(3), 321 (2002)

    Article  Google Scholar 

  10. G. Chagas, C.P. Vinco Andreão, L.M. Tavares, Heliyon 5, e02566 (2019)

    Article  Google Scholar 

  11. J.S. Andrade Neto, M.S. França, N.S. Amorim, J.D. Véras Ribeiroc, Constr. Build. Mater. 266, 120959 (2021)

    Article  Google Scholar 

  12. B.B. Sabir, S. Wild, J. Bai, Cem. Concr. Res. 23(2), 441 (2001)

    Article  Google Scholar 

  13. G.C. Cordeiro, R.D. Toledo Filho, L.M. Tavares, E.M.R. Fairbairn, Cem. Concr. Compos. 30(5), 410 (2008)

    Article  Google Scholar 

  14. K.B. Ramkumar, K.P.R. Rajkumar, N. Ahmmad Shaika, M. Jegan, Constr. Build. Mater. 261, 120215 (2020)

    Article  Google Scholar 

  15. C. Shuaian, Y. Shiping, J. Lei, Constr. Build. Mater. 259, 120387 (2020)

    Article  Google Scholar 

  16. L. Zhao, X. Guo, Y. Liu, C. Ge, L. Guo, X. Shuc, J. Liubc, RSC Adv. 7, 16688 (2017)

    Article  ADS  Google Scholar 

  17. A. Bentur, S. Mindess, Fibre Reinforced Cementitious Composites, 2nd edn. (Taylor & Francis, New York, 2007).

    Google Scholar 

  18. T.P. Chang, J.Y. Shih, K. Yang, T.C. Hsiao, J. Mater. Sci. 42(17), 7478 (2007)

    Article  ADS  Google Scholar 

  19. H. Madani, A. Bagheri, T. Parhizkar, Cem. Concr. Res. 42(12), 1563 (2012)

    Article  Google Scholar 

  20. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  21. T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, D.L. Huber, J. Phys. Chem. C 113(46), 19812 (2009)

    Article  Google Scholar 

  22. G. Li, J. Yuan, Y. Zhang, N. Zhang, K. Liew, Compos. Part A Appl. Sci. Manuf. 114, 188 (2018)

    Article  Google Scholar 

  23. H. Du, S. Dai Pang, Constr. Build. Mater. 167, 403 (2018)

    Article  Google Scholar 

  24. Y. Pan, T. Wu, H. Bao, L. Li, Carbohydr. Polym. 83, 1908 (2011)

    Article  Google Scholar 

  25. Z. Pan, L. He, L. Qiu, A.H. Korayem, G. Li, J.W. Zhu, F. Collins, D. Li, W.H. Duan, M.C. Wang, Cem. Concr. Compos. 58, 140 (2015)

    Article  Google Scholar 

  26. D. Kang, K. SeokSeo, H. Lee, W. Chung, Constr. Build. Mater. 131, 303 (2016)

    Article  Google Scholar 

  27. M. Wang, R. Wang, H. Yao, S. Farhan, S. Zheng, C. Du, Constr. Build. Mater. 126, 730 (2016)

    Article  Google Scholar 

  28. S. Sharma, N.C. Kothiyal, RSC Adv. 5, 52642 (2015)

    Article  ADS  Google Scholar 

  29. H. Panjiar, R.P. Gakkhar, B.S.S. Daniel, Powder Technol. 275, 25 (2015)

    Article  Google Scholar 

  30. S. Lv, Y. Ma, C. Qiu, T. Sun, J. Liu, Q. Zhou, Constr. Build. Mater. 49, 121 (2013)

    Article  Google Scholar 

  31. B. Han, X. Guan, J. Ou, Sens. Actuators A 135, 360 (2006)

    Article  Google Scholar 

  32. Z. Lu, D. Hou, H. Ma, T. Fan, Z. Li, Constr. Build. Mater. 119, 107 (2016)

    Article  Google Scholar 

  33. Q. Wang, J. Wang, C.X. Lu, B.W. Liu, K. Zhang, C.Z. Li, New Carbon Mater. 30, 349 (2015)

    Article  Google Scholar 

  34. H.N. Atahan, E.Y. Tuncel, B.Y. Pekmezci, J. Mater. Civ. Eng. 25, 1438 (2013)

    Article  Google Scholar 

  35. G.Y. Li, P.M. Wang, X. Zhao, Carbon 43(6), 1239 (2005)

    Article  Google Scholar 

  36. J. George, V.A. Sajeevkumar, K.V. Ramana, S.N. Sabapathy, J. Mater. Chem. 22(42), 22433 (2012)

    Article  Google Scholar 

  37. N. Grishkewich, N. Mohammed, J. Tang, K.C. Tam, Curr. Opin. Colloid Interface 29, 32 (2017)

    Article  Google Scholar 

  38. J. George, R. Kumar, V.A. Sajeevkumar, K.V. Ramana, R. Rajamanickam, V. Abhishek, S. Nadanasabapathy, Carbohydr. Polym. 105, 285 (2014)

    Article  Google Scholar 

  39. S. Krishna Rao, P. Sravana, T. Chandrasekhara Rao, Int. J. Pavement Res. Technol. 9(4), 289 (2016)

    Article  Google Scholar 

  40. W. Li, X. Li, S.J. Chen, Y.M. Liu, W.H. Duan, S.P. Shah, Constr. Build. Mater. 136, 506 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramasamy Gopalakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalakrishnan, R., Kaveri, R. Using graphene oxide to improve the mechanical and electrical properties of fiber-reinforced high-volume sugarcane bagasse ash cement mortar. Eur. Phys. J. Plus 136, 202 (2021). https://doi.org/10.1140/epjp/s13360-021-01179-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01179-4

Navigation