Skip to main content
Log in

First principle study of structural, electronic, optical and mechanical properties of cubic fluoro-perovskites: (CdXF3, X = Y, Bi)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The full-potential linearized augmented plane wave (FP-LAPW) process is applied for the investigation of structural, mechanical, electronic and including optical properties of cubic perovskites CdXF3 (X = Y, Bi). For the consideration of the exchange–correlation potential, the generalized gradient approximation and the modified Becke–Johnson are implemented. The structural properties, comprising equilibrium lattice constant, the bulk modulus and its pressure derivative are calculated and found that both the compounds are structurally stable in its cubic crystal. Elastic properties including anisotropy factor, elastic constants, Poisson's ratio, shear modulus and Young's modulus are calculated. In elastic properties the higher bulk modulus and B/G ratio yields that these compounds are very hard and ductile in nature. Furthermore, these materials show resistance to plastic deformation ascribed to high value of shear modulus “G.” Calculations of electronic band structure, density of states and electronic charge density indicate that CdYF3 compound has an indirect energy band gap of 2.056 eV from (M-X) while CdBiF3 represents a direct band gap of about 1.027 eV from (M-M). The mixture of ionic and covalent bonding character is found in both CdXF3 (X = Y, Bi) compounds. To investigate and evaluate the contribution of states to the various bands, the full and partial density of states are exploited. Calculations of the optical spectrum like real ε1(ω) and imaginary ε2(ω) components of dielectric function, optical reflectivity [R(ω)], absorption coefficient [I(ω)], optical conductivity [σ(ω)], refractive index [n(ω)], extinction coefficient and electron energy loss are carried out for the energy range of 0–40 eV. Various transitions between bands were calculated from the imaginary part of the dielectric function. From above examinations, it is deemed that these mixes may include thorough understanding in structuring the prime electronic gadgets. All of the properties are reported for the first time for CdXF3 (X =  Y, Bi).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Hayatullah, S. Naeem, G. Murtaza, R. KhenataandM, N. Khalid, Phys. B Condens. Matter 414, 91–96 (2013). https://doi.org/10.1016/j.physb.2013.01.009

    Article  ADS  Google Scholar 

  2. A.A. Mubarak, Comput. Mater. Sci. 81, 478–482 (2014)

    Article  Google Scholar 

  3. A.A. Mubarak, Int. J. Mod. Phys. B 28, 1450192 (2014). https://doi.org/10.1142/S0217979214501926

    Article  ADS  Google Scholar 

  4. A.A. Mubarak, S. Al-Omari, J. Magn. Magn. Mater. 382, 211–218 (2015). https://doi.org/10.1016/j.jmmm.2015.01.073

    Article  ADS  Google Scholar 

  5. N.-G. Park, J. Phys. Chem. Lett. 4, 2423–2429 (2013). https://doi.org/10.1021/jz400892a

    Article  Google Scholar 

  6. N. Takeshi, T. Noriaki, M. Hiroshi, K. Yoshiyuki, A.P. Dorota, S. Kiyoshi, F. Tsuguo, Jpn. J. Appl. Phys. 41, L365 (2002)

    Article  Google Scholar 

  7. N. Dimov, A. Nishimura, K. Chihara, A. Kitajou, I.D. Gocheva, S. Okada, Electrochim. Acta 110, 214–220 (2013)

    Article  Google Scholar 

  8. A.V. Roekeghem, J. Carrete, C. Oses, S. Curtarolo, N. Mingo, Phys. Rev. X 6(4), 041061 (2016). https://doi.org/10.1103/PhysRevX.6.041061

    Article  Google Scholar 

  9. C. Abderrahmane, L. Brahim, H. Mohamed, Z. Mourad, C. Abdelhakim, L. Hamza, Solid State Phenom. 297, 173–186 (2019). https://doi.org/10.4028/www.scientific.net/SSP.297.173

    Article  Google Scholar 

  10. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  Google Scholar 

  11. W. Kohn, L.J. Sham, Phys. Rev. 140(4A), A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  Google Scholar 

  12. D.J. Singh, N. Lars, Plane Waves, Pseudopotentials and LAPW Method (Springer, New York, 2006).

    Google Scholar 

  13. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka et al. An augmented plane wave plus local orbitals program for calculating crystal properties: Wien2k user's guide. (Techn. Universitat, Wien, 2008)

  14. F.D. Murnaghan, The compressibility of media under extreme pressure. Proc. Natl. Acad. Sci. USA 30, 244–247 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  15. http://aflowlib.org/. Accessed 1 June 2010

  16. A.H. Reshak, M. Jamal, J. Alloys Comp. 543, 147 (2012). https://doi.org/10.1016/j.jallcom.2012.07.107

    Article  Google Scholar 

  17. G. Grimvall, Thermophysical Properties of Materials, Enlarged and Revised edn (Elsevier, Amsterdam, 1999).

    Google Scholar 

  18. A. Meziani, H. Belkhir, Comput. Mater. Sci. 61, 67 (2012). https://doi.org/10.1016/j.commatsci.2012.03.054

    Article  Google Scholar 

  19. B. Ghbouli, M.A. Ghebouli, M. Fatmi, A. Bouhemadou, Solid State Commun. 150, 1896 (2010). https://doi.org/10.1016/j.ssc.2010.07.041

    Article  ADS  Google Scholar 

  20. B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, P.C. Schmidt, Intermetallics 11, 23 (2003). https://doi.org/10.1016/S0966-9795(02)00127-9

    Article  Google Scholar 

  21. J. Haines, J.M. Leger, G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001). https://doi.org/10.1146/annurev.matsci.31.1.1

    Article  ADS  Google Scholar 

  22. S.F. Pugh, XCII. Philos. Mag. 45, 823 (1954). https://doi.org/10.1080/14786440808520496

    Article  Google Scholar 

  23. M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2002).

    Google Scholar 

  24. D.R. Penn, Phys. Rev. 128, 2093 (1962). https://doi.org/10.1103/PhysRev.128.2093

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasir Rahman or Juan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, N., Husain, M., Yang, J. et al. First principle study of structural, electronic, optical and mechanical properties of cubic fluoro-perovskites: (CdXF3, X = Y, Bi). Eur. Phys. J. Plus 136, 347 (2021). https://doi.org/10.1140/epjp/s13360-021-01177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01177-6

Navigation