Skip to main content
Log in

Temperature tunable like-electromagnetically induced transparency in metasurface with vanadium dioxide

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 24 August 2021

This article has been updated

Abstract

In this paper, a dual-layer metasurface structure of two horizontal and vertical strips, orthogonal of diagonal cut wires, is investigated by the finite integration time domain. A like-electromagnetically induced transparency (EIT) effect is found with dual-band and large angle. Moreover, the dark mode on low frequencies can be converted to bright mode on high frequency band. To verify the conclusion, the theory of two oscillator model is compared with coupled mode theory method. The results show that the asymmetry of the main structure in the x- and y-axes makes it easier to achieve the polarization insensitive like-EIT effect. In addition, by changing the incident angle, the like-EIT effect always exists until the angle of the incidental electromagnetic wave is 80°. These results have many potential applications for filtering, large-angle switching and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. W.-x Huang, X.-g Yin, C.-p Huang, Q.-j Wang, T.-f Miao, Y.-y Zhu, Optical switching of a metamaterial by temperature controlling. Appl. Phys. Lett. 96, 261908 (2010)

    Article  ADS  Google Scholar 

  2. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, Y.-L. Liu, Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett. 97, 021111 (2010)

    Article  ADS  Google Scholar 

  3. G.B. Liu, T. Huang, H.F. Zhang, L. Zeng, A dual-band and wideband omnidirectional circularly polarized antenna based on VO2. Int. J. RF Microw. Comput. Aided Eng. 29, e21676 (2019)

    Article  Google Scholar 

  4. Q. Chu, Z. Song, Q.H. Liu, Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces. Appl. Phys. Express 11, 082203 (2018)

    Article  ADS  Google Scholar 

  5. C. McGahan, K. Appavoo, R.F. Haglund, E.P. Shapera, Switchable plasmon-induced transparency in gold nanoarrays on vanadium dioxide film. J. Vacuum Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenomena 31, 06FE01 (2013)

    Google Scholar 

  6. C. McGahan, K. Appavoo, E. Shapera, R. Haglund: active modulation of plamon-induced transparency in gold: VO2 hybrid nanostructures. Bull. Am. Phys. Soc. 58, (2013)

  7. F.Y. Meng, F. Zhang, K. Zhang, Q. Wu, J.Y. Kim, J.J. Choi, B. Lee, J.C. Lee, Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency. IEEE Trans. Magn. 47, 3347–3350 (2011)

    Article  ADS  Google Scholar 

  8. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S.A. Maier, Z. Tian, A.K. Azad, H.T. Chen, A.J. Taylor, J. Han, W. Zhang, Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 3, 1151 (2012)

    Article  ADS  Google Scholar 

  9. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, N.A. Mortensen, Electromagnetically induced transparency in metamaterials at near-infrared frequency. Opt. Express 18, 17187–17192 (2010)

    Article  ADS  Google Scholar 

  10. X. Zhang, Y. Fan, L. Qi, H. Li, Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies. Opt. Mater. Express 6, 2448 (2016)

    Article  ADS  Google Scholar 

  11. H. Xia, S.J. Sharpe, A.J. Merriam, S.E. Harris, Electromagnetically induced transparency in atoms with hyperfine structure. Phys. Rev. A 56, R3362–R3365 (1997)

    Article  ADS  Google Scholar 

  12. Z. Wang, B. Yu, Optical bistability via dual electromagnetically induced transparency in a coupled quantum-well nanostructure. J. Appl. Phys. 113, 113101 (2013)

    Article  ADS  Google Scholar 

  13. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490 (2001)

    Article  ADS  Google Scholar 

  14. L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, M. Wang, Optical-magnetism-induced transparency in a metamaterial. Phys. Rev. B 87, 125136 (2013)

    Article  ADS  Google Scholar 

  15. J.P. Marangos, Electromagnetically induced transparency. J. Mod. Opt. 45, 471–503 (1998)

    Article  ADS  Google Scholar 

  16. R. Ortuño, M. Cortijo, A. Martínez, Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators. J. Opt. 19, 025003 (2017)

    Article  ADS  Google Scholar 

  17. L. Wang, W. Li, X. Jiang, Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide. Opt. Lett. 40, 2325 (2015)

    Article  ADS  Google Scholar 

  18. X.-T. Yao, Q. Lin, X. Zhai, Y. Su, M.-Z. Liang, M.-Z. Liang, L.-L. Wang, Phase-coupled plasmon-induced transparency in integrated metal–dielectric–graphene–dielectric waveguide. Appl. Phys. Express 10, 102001 (2017)

    Article  ADS  Google Scholar 

  19. C.L.G. Alzar, M.A.G. Martinez, P. Nussenzveig, Classical analog of electromagnetically induced transparency. Am. J. Phys. 70, 37–41 (2002)

    Article  ADS  Google Scholar 

  20. X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, J. Jiang, Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications. Opt. Commun. 410, 206–210 (2018)

    Article  ADS  Google Scholar 

  21. C. Liu, P. Liu, L. Bian, Q. Zhou, G. Li, H. Liu, Dynamically tunable electromagnetically induced transparency analogy in terahertz metamaterial. Opt. Commun. 410, 17–24 (2018)

    Article  ADS  Google Scholar 

  22. X. Zhou, T. Zhang, X. Yin, L. Chen, X. Li, Dynamically tunable electromagnetically induced transparency in graphene-based coupled micro-ring resonators. IEEE Photon. J. 9, 1–9 (2017)

    Google Scholar 

  23. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008)

    Article  ADS  Google Scholar 

  24. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, C. Xu, Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon 126, 271–278 (2018)

    Article  Google Scholar 

  25. Y. Xu, X. Wang, X. Chen, L. Zhang, Structure-based tunable metamaterials for electromagnetically induced transparency windows in low terahertz frequency. J. Appl. Phys. 127, 034501 (2020)

    Article  ADS  Google Scholar 

  26. Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, H. Li, An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Sci. Rep. 7, 40441 (2017)

    Article  ADS  Google Scholar 

  27. X. He, Y. Huang, X. Yang, L. Zhu, F. Wu, J. Jiang, Tunable electromagnetically induced transparency based on terahertz graphene metamaterial. RSC Adv. 7, 40321–40326 (2017)

    Article  ADS  Google Scholar 

  28. Y. Zhao, Q. Huang, H. Cai, X. Lin, Y. Lu, A broadband and switchable VO2-based perfect absorber at the THz frequency. Opt. Commun. 426, 443–449 (2018)

    Article  ADS  Google Scholar 

  29. P. Tassin, T. Koschny, C.M. Soukoulis, Effective material parameter retrieval for thin sheets: theory and application to graphene, thin silver films, and single-layer metamaterials. Phys. B Condens. Matter 407, 4062–4065 (2012)

    Article  ADS  Google Scholar 

  30. Q. Fan-Yi Meng, D. Erni, K. Wu, J.-C. Lee, polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor. IEEE Trans. Microw. Theory Techn. 60, 3013–3022 (2012)

    Article  ADS  Google Scholar 

  31. H.M. Li, S.B. Liu, S.Y. Wang, S.Y. Liu, Y. Hu, H.B. Li, Tailoring electromagnetically induced transparency with different coupling mechanisms. Sci. Rep. 6, 21457 (2016)

    Article  ADS  Google Scholar 

  32. A. Akhavan, H. Ghafoorifard, S. Abdolhosseini, H. Habibiyan, Plasmon-induced transparency based on a triangle cavity coupled with an ellipse-ring resonator. Appl. Opt. 56, 9556–9563 (2017)

    Article  ADS  Google Scholar 

  33. S. Fan, Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl. Phys. Lett. 80, 908–910 (2002)

    Article  ADS  Google Scholar 

  34. H. Xu, H. Li, B. Li, Z. He, Z. Chen, M. Zheng, Influential and theoretical analysis of nano-defect in the stub resonator. Sci. Rep. 6, 30877 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Major Science and Technology Projects in Anhui Province (18030901006), Anhui Natural Science Foundation (1908085MF178). Anhui Excellent Young Talents Support Program Project (gxyqZD2019069).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Wei Huang.

Additional information

Renxia Ning and Zhiqiang Xiao are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, R., Xiao, Z., Chen, Z. et al. Temperature tunable like-electromagnetically induced transparency in metasurface with vanadium dioxide. Eur. Phys. J. Plus 136, 751 (2021). https://doi.org/10.1140/epjp/s13360-021-01164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01164-x

Navigation