Skip to main content
Log in

Nano-pumping of fullerene and water molecules via a carbon nanotube in vacuum and aqueous environments

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Nano-pumping of molecules via a carbon nanotube (CNT) can be achieved by mechanical actuation and wave propagation through the tube wall which is generated by two oscillating tips. By using non-equilibrium molecular dynamics (NEMD) simulations, we investigate the effects of tip frequency and amplitude in the pumping of a C20 molecule through (13, 0) CNT in the vacuum environment. The pumping action (C20 ejection) does not succeed in all tip frequencies and amplitudes, and there are optimum points in which successful pumping takes place. In one of these successful pumping conditions (specific tip frequency and amplitude), we have performed NEMD simulations of water and fullerene pumping in an aqueous environment and found that mechanical wave propagation is much weaker in such an environment and the pumping of C20 molecule does not succeed. Our simulations show that mechanical wave velocity along CNT can reach as a high as 5000 m/s. And during the pumping process, the C20 molecule accelerates due to transferring kinetic energy and the velocity remains constant since no external force is applied on C20 molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Qian, G.J. Wagner, W.K. Liu, M.F. Yu, R.S. Ruoff, Mechanics of carbon nanotubes. Appl. Mech. Rev. 55, 495 (2002)

    Article  ADS  Google Scholar 

  2. H. Qiu, R. Shen, W. Guo, Vibrating carbon nanotubes as water pumps. Nano Res. 4, 284 (2011)

    Article  Google Scholar 

  3. J.A. Thomas, A.J.H. McGaughey, Reassessing fast water transport through carbon nanotubes. Nano Lett. 8, 2788 (2008)

    Article  ADS  Google Scholar 

  4. J. Tao, X. Song, T. Zhao, H. Liu, Confinement effect on water transport in CNT membranes. Chem. Eng. Sci. 192, 1252 (2018)

    Article  Google Scholar 

  5. K. R. Kunduru, M. Nazarkovsky, S. Farah, R. P. Pawar, A. Basu, A. J. Domb, Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment. Water Purification: 33–74 (2017).

  6. M.F. Hossain, Water, Sustainable Design and Build (Elsevier, New York, 2019), pp. 301–418

    Book  Google Scholar 

  7. A.M. Kheirabadi, A. Moosavi, A.M. Akbarzadeh, Nanofluidic transport inside carbon nanotubes. J. Phys. D Appl. Phys. 47, 065304 (2014)

    Article  ADS  Google Scholar 

  8. J.A. Thomas, A.J.H. McGaughey, Density, distribution, and orientation of water molecules inside and outside carbon nanotubes. J. Chem. Phys. 128, 084715 (2008)

    Article  ADS  Google Scholar 

  9. M. Chen, J. Zang, D. Xiao, C. Zhang, F. Liu, Nanopumping molecules via a carbon nanotube. Nano Res. 2, 938 (2009)

    Article  Google Scholar 

  10. R. Rajegowda, S.P. Sathian, Analyzing thermophoretic transport of water for designing nanoscale-pumps. Phys. Chem. Chem. Phys. 20, 30321 (2018)

    Article  Google Scholar 

  11. V. Vijayaraghavan, C.H. Wong, Torsional characteristics of single walled carbon nanotube with water interactions by using molecular dynamics simulation. Nano-Micro Lett. 6, 268 (2014)

    Article  Google Scholar 

  12. Z. Insepov, R.J. Miller, Activation of nanoflows for fuel cells. J. Nanotechnol. Eng. Med. 3, 025201 (2012)

    Article  Google Scholar 

  13. B.H. Chen, C. Kung, I. Chu, Mechanisms of hydrogen transport in flexible-wall narrow carbon nanotubes. J. Nanomater. 7, 1 (2015)

    Google Scholar 

  14. P. Král, D. Tománek, Laser-driven atomic pump. Phys. Rev. Lett. 82, 5373 (1999)

    Article  ADS  Google Scholar 

  15. H.J. Hwang, K.R. Byun, J.W. Kang, Carbon nanotubes as nanopipette: modelling and simulations. Physica E 23, 208 (2004)

    Article  ADS  Google Scholar 

  16. D. Schebarchov, S.C. Hendy, Capillary absorption of metal nanodroplets by single-wall carbon nanotubes. Nano Lett. 8, 2253 (2008)

    Article  ADS  Google Scholar 

  17. P. Sahu, A.S. Deb, S.K. Ali, K.T. Shenoy, S. Mohan, Tailoring of carbon nanotubes for the adsorption of heavy metal ions: molecular dynamics and experimental investigations. Mol. Syst. Des. Eng. 3, 917 (2018)

    Article  Google Scholar 

  18. J.K. Holt, Fast mass transport through Sub-2-nanometer carbon nanotubes. Science 312, 1034 (2006)

    Article  ADS  Google Scholar 

  19. L. Zhang, B. Zhao, C. Jiang, J. Yang, G. Zheng, Preparation and transport performances of high-density, aligned carbon nanotube membranes. Nanoscale Res. Lett. 10, 266 (2015)

    Article  ADS  Google Scholar 

  20. B. Lee, Y. Baek, M. Lee, D.H. Jeong, H.H. Lee, J. Yoon, Y.H. Kim, A carbon nanotube wall membrane for water treatment. Nat. Commun. 14, 7109 (2015)

    Article  ADS  Google Scholar 

  21. T. Altalhi, M. Ginic-Markovic, N. Han, S. Clarke, D. Losic, Synthesis of carbon nanotube (CNT) composite membranes. Membranes 1, 37 (2010)

    Article  Google Scholar 

  22. S.K. Kushwaha, S. Ghoshal, A.K. Rai, S. Singh, Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. Braz. J. Pharm. Sci. 49, 629 (2013)

    Article  Google Scholar 

  23. P.M. Costa, M. Bourgognon, J.T. Wang, K.T. Al-Jamal, Functionalized carbon nanotubes: from intracellular uptake and cell-related toxicity to systemic brain delivery. J. Control. Release 241, 200 (2016)

    Article  Google Scholar 

  24. V. Rastogi, P. Yadav, S.S. Bhattacharya, A.K. Mishra, N. Verma, A. Verma, J.K. Pandit, Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J. Drug Deliv. 2014, 1 (2014)

    Article  Google Scholar 

  25. W. Zhang, Z. Zhang, Y. Zhang, The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res. Lett. 6, 555 (2011)

    Article  ADS  Google Scholar 

  26. A.C. Tripathi, S.A. Saraf, S.K. Saraf, Carbon nanotropes: a contemporary paradigm in drug delivery. Materials 8, 3068 (2015)

    Article  ADS  Google Scholar 

  27. S. Senapati, A.K. Mahanta, S. Kumar, P. Maiti, Controlled drug delivery vehicles for cancer treatment and their performance. Signal Trans. Targeted Ther. 3, 7 (2018)

    Article  Google Scholar 

  28. Z. Khatti, S.M. Hashemianzadeh, S.A. Shafiei, A Molecular Study On Drug Delivery System Based On Carbon Nanotube Compared To Silicon Carbide Nanotube For Encapsulation Of Platinum-Based Anticancer Drug. Adv. Pharm. Bull. 8, 163 (2018)

    Article  Google Scholar 

  29. J. Chen, D. Mao, X. Wang, G. Zhou, S. Zeng, L. Chen, C. Dai, S. Feng, Encapsulation and release of drug molecule pregabalin based on ultrashort single-walled carbon nanotubes. J. Phys. Chem. C 123, 9567 (2019)

    Article  Google Scholar 

  30. Y.J. Dappe, Encapsulation of organic molecules in carbon nanotubes: role of the van der Waals interactions. J. Phys. D Appl. Phys. 47, 083001 (2014)

    Article  ADS  Google Scholar 

  31. B. Corry, Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy Environ. Sci. 4, 751 (2011)

    Article  Google Scholar 

  32. A. Mejri, D. Vardanega, B. Tangour, T. Gharbi, F. Picaud, Encapsulation into carbon nanotubes and release of anticancer cisplatin drug molecule. J. Phys. Chem. B 119, 604 (2015)

    Article  Google Scholar 

  33. Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, 124301 (2005)

    Article  ADS  Google Scholar 

  34. J.A. Elliott, J.K. Sandler, A.H. Windle, R.J. Young, M.S. Shaffer, Collapse of single-wall carbon nanotubes is diameter dependent. Phys. Rev. Lett. 92, 095501 (2004)

    Article  ADS  Google Scholar 

  35. S. K. Deb Nath, S. G. Kim, Study of the Nanomechanics of CNTs under Tension by Molecular Dynamics Simulation Using Different Potentials. ISRN Condensed Matter Physics 2014, 1 (2014).

  36. J.V. Beckers, C.P. Lowe, S.W. De Leeuw, An iterative PPPM method for simulating coulombic systems on distributed memory parallel computers. Mol. Simul. 20, 369 (1998)

    Article  MATH  Google Scholar 

  37. S.M. Rassoulinejad-Mousavi, Y. Zhang, Interatomic potentials transferability for molecular simulations: a comparative study for platinum, gold and silver. Sci. Rep. 8, 2424 (2018)

    Article  ADS  Google Scholar 

  38. K. Okhotnikov, B. Stevensson, M. Edén, New interatomic potential parameters for molecular dynamics simulations of rare-earth (RE = La, Y, Lu, Sc) aluminosilicate glass structures: exploration of RE3+ field-strength effects. Phys. Chem. Chem. Phys. 15, 15041 (2013)

    Article  Google Scholar 

  39. M. Warrier, P. Pahari, S. Chaturvedi, Interatomic potential parameters for molecular dynamics simulations of RDX using a reactive force field: A validation study. J. Phys Conf. Ser. 377, 012100 (2012)

    Article  Google Scholar 

  40. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)

    Article  ADS  MATH  Google Scholar 

  41. P. Liu, J.-H. He, Geometric potential: an explanation of nanofiber’s wettability. Therm. Sci. 22, 33–38 (2018)

    Article  Google Scholar 

  42. D. Tian, X.-X. Li, J.-H. He, Geometrical potential and nanofiber membrane’s highly selective adsorption property. Adsorpt. Sci. Technol. 37(5–6), 367–388 (2018)

    Google Scholar 

  43. X. Jin, M. Liu, F. Pan, Y. Li, J. Fan, Low frequency of a deforming capillary vibration, part 1: mathematical model. J. Low Frequency Noise Vib. Active Control 38(3–4), 1676–1680 (2019)

    Article  Google Scholar 

  44. J. Fan, Y. Zhang, Y. Liu, Y. Wang, F. Cao, Q. Yang, F. Tian, Explanation of the cell orientation in a nanofiber membrane by the geometric potential theory. Res. Phys. 15, 102537 (2019)

    Google Scholar 

  45. X.-X. Li, J.-H. He, Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: the formation mechanism of nanofiber membrane in the electrospinning. Res. Phys. 12, 1405–1410 (2019)

    Google Scholar 

  46. V.A. Vujičić, J.-H. He, On two fundamental statements of mechanics. Int. J. Nonlinear Sci. Numer. Simul. 5(3), 283–287 (2004)

    Article  Google Scholar 

  47. J.-H. He, Inverse problems of Newton’s laws. Int. J. Nonlinear Sci. Numer. Simul. 10(9), 1087–1091 (2009)

    Article  Google Scholar 

  48. J.-H. He, Frontier of modern textile engineering and short remarks on some topics in physics. Int. J. Nonlinear Sci. Numer. Simul. 11(7), 555–563 (2010)

    Article  Google Scholar 

  49. Z. Yang, F. Dou, T. Yu, M. Song, H. Shi, X. Yao, L.-Y. Xu, J.-H. He, J. Cao, L. Zhang, On the cross-section of shaped fibers in the dry spinning process: Physical explanation by the geometric potential theory. Res. Phys. 14, 102347 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Nazari-Golshan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahryari, M., Nazari-Golshan, A. & Nourazar, S.S. Nano-pumping of fullerene and water molecules via a carbon nanotube in vacuum and aqueous environments. Eur. Phys. J. Plus 136, 163 (2021). https://doi.org/10.1140/epjp/s13360-021-01137-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01137-0

Navigation