Skip to main content
Log in

Assessment of nanostructure, optical, dielectric and modulus response by Bi substitution in La1−xBixNi0.5Ti0.5O3 (x = 0.0–0.2) system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Perovskite-type oxides La1-xBixNi0.5Ti0.5O3 (x = 0.0, 0.2) were prepared by the sol–gel method employing the citric acid route and sintered at 820° C. The structural behavior analyzed by X-ray diffraction proved that all the samples have the same crystallographic structure (space group Pnma). The volume of the elemental lattice decreases with the rate of Bismuth substitution. Transmission electron microscopy (TEM) verified the nanosized grains. The FTIR spectra confirmed the formation of the orthorhombic perovskite structure. UV–Visible spectroscopy and photoluminescence were also applied to study the samples. The parameters of real and imaginary part of dielectric function (ε′ and ε″) and dielectric loss tangent (tg(δ)) show a strong frequency dependence. Those dependences explain a dispersive behavior at low frequencies and are outlined on the basis of the Maxwell–Wagner model and Koop theory. The compounds have very high dielectric constant values (ε′ ≈ 103) that are useful in electronic devices. Electric modulus formalism was employed to investigate the relaxation dynamics of charge carriers. Moreover, a non-Debye type of relaxation was verified in our samples. The activation energy is specified from the analysis of the imaginary part of the electric modulus.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. Z. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye, Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J. Alloy Compds. 583, 21 (2014). https://doi.org/10.1016/j.jallcom.2013.08.129

    Article  Google Scholar 

  2. O. Polat, M. Caglar, F.M. Coskun, M. Coskun, Y. Caglar, A. Turut, An experimental investigation: the impact of cobalt doping on optical properties of YbFeO3-δ thin film. Mater. Res. Bull. 119, 110567 (2019). https://doi.org/10.1016/j.materresbull.2019.110567

    Article  Google Scholar 

  3. M. Coskun, O. Polat, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, Synthesis, characterization and wide range frequency and temperature dependent electrical modulus study of LaCrO3 and cobalt (Co) doped LaCrO3 perovskite compounds. Mater. Sci. Eng. B 248, 114410 (2019). https://doi.org/10.1016/j.mseb.2019.114410

    Article  Google Scholar 

  4. I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, A.M. Rappe, Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509 (2013). https://doi.org/10.1038/nature12622

    Article  ADS  Google Scholar 

  5. M.D. Peel, S.E. Ashbrook, P. Lightfoot, Unusual phase behavior in the piezoelectric perovskite system, LixNa1–xNbO3. Inorg. Chem. 52, 8872 (2013). https://doi.org/10.1021/ic401061t

    Article  Google Scholar 

  6. V. Bedekar, O.D. Jayakumar, J. Manjanna, A.K. Tyagi, Synthesis and magnetic studies of nano-crystalline GdFeO3. Mater. Lett. 62, 3793 (2008). https://doi.org/10.1016/j.matlet.2008.04.053

    Article  Google Scholar 

  7. G.B. Li, S.X. Liu, F.H. Liao, S.J. Tian, X.P. Jing, J.H. Lin, Y. Uesu, K. Kohn, K. Saitoh, M. Terauchi, N. Di, Z.H. Cheng, The structural and electric properties of the perovskite system BaTiO3–Ba(Fe1/2Ta1/2)O3. J. Solid State Chem. 177, 1695–1703 (2004). https://doi.org/10.1016/j.jssc.2003.12.025

    Article  ADS  Google Scholar 

  8. C. Tofan, D. Klvana, J. Kirchnerova, Decomposition of nitric oxide over perovskite oxide catalysts: effect of CO2, H2O and CH4. Appl. Catal. B 36, 311 (2002). https://doi.org/10.1016/S0926-3373(01)00312-5

    Article  Google Scholar 

  9. K. Kuroda, I. Hashimoto, K. Adachi, J. Akikusa, Y. Tamou, M. Komada, T. Ishihara, Y. Tskita, Characterization of solid oxide fuel cell using doped lanthanum gallate. Solid State Ion. 132, 199 (2000). https://doi.org/10.1016/S0167-2738(00)00659-7

    Article  Google Scholar 

  10. L. Malavasi, C. Tealdi, G. Flor, G. Chiodelli, V. Cervetto, A. Montenero, M. Borella, NdCoO3 perovskite as possible candidate for CO-sensors: thin films synthesis and sensing properties. Sens. Actuators B 105, 407 (2005). https://doi.org/10.1016/j.snb.2004.06.029

    Article  Google Scholar 

  11. C. Batiot-Dupeyrat, G. Vanderrama, A. Meneses, F. Martinez, J. Barrault, J.M. Tatibouet, Pulse study of CO2 reforming of methane over LaNiO3. J. Mater. Appl. Catal. A 248, 143–151 (2003). https://doi.org/10.1016/S0926-860X(03)00155-8

    Article  Google Scholar 

  12. A.P.E. York, T. Xiao, M.L.H. Green, Brief overview of the partial oxidation of methane to synthesis gas. Top. Catal. 22, 345–358 (2003). https://doi.org/10.1023/A:1023552709642

    Article  Google Scholar 

  13. A.A. Yaremchenko, V.V. Kharton, A.P. Viskup, E.N. Naumovich, N.M. Lapchuk, V.N. Tikhonovich, Oxygen ionic and electronic transport in LaGa1−xNixO3−δ Perovskites. J. Solid State Chem. 142, 325 (1999). https://doi.org/10.1006/jssc.1998.8041

    Article  ADS  Google Scholar 

  14. R. Mahesh, K.R. Kannen, C.N.R. Rao, Electrochemical synthesis of ferromagnetic LaMnO3 and metallic NdNiO3. J. Solid State Chem. 114, 294 (1995). https://doi.org/10.1006/jssc.1995.1044

    Article  ADS  Google Scholar 

  15. E. Rodriguez, I. Alvarez, M.L. Lopez, M.L. Veiga, C. Pico, Structural, electronic, and magnetic characterization of the Perovskite LaNi1-xTixO3(0≤x≤12). J. Solid State Chem. 148, 479–486 (1999). https://doi.org/10.1006/jssc.1999.8483

    Article  ADS  Google Scholar 

  16. A.K. Raychaudhuri, Low-temperature electrical conductivity of Ta-compensated sodium bronze near the metal-insulator transition. Phys. Rev. B 44, 8572 (1991). https://doi.org/10.1103/PhysRevB.44.8572

    Article  ADS  Google Scholar 

  17. M. Imada, Two types of Mott transitions. J. Phys. Soc. Jpn. 62, 1105 (1993). https://doi.org/10.1143/JPSJ.62.1105

    Article  ADS  Google Scholar 

  18. K.P. Rajeev, G.V. Shivashankar, A.K. Raychaudhuri, Low-temperature electronic properties of a normal conducting perovskite oxide (LaNiO3). Solid State Commun. 79, 591 (1991). https://doi.org/10.1016/0038-1098(91)90915-I

    Article  ADS  Google Scholar 

  19. K.P. Rajeev, A.K. Raychaudhuri, Quantum corrections to the conductivity in a perovskite temperature oxide: a low- study of LaNi1−xCoxO3 (0≤x≤0.75). Phys. Rev. B 46, 1309 (1992). https://doi.org/10.1103/PhysRevB.46.1309

    Article  ADS  Google Scholar 

  20. I. Alvarez, M.L. Veiga, C. Pico, Synthesis and structural characterization of a new perovskite series derived from LaNiO3: La5Ni4MO15 (M [double bond, length as m-dash] Mo, Te, W). J. Mater. Chem. 5, 1049 (1995). https://doi.org/10.1039/JM9950501049

    Article  Google Scholar 

  21. Z. Zhang, M. Greenblatt, J.B. Goodenough, Synthesis, structure, and properties of the layered perovskite La3Ni2O7-δ. J. Solid. State Chem. 108, 402 (1994). https://doi.org/10.1006/jssc.1994.1059

    Article  ADS  Google Scholar 

  22. I. Alvarez, J.L. Martinez, M.L. Veiga, C. Pico, Synthesis, structural characterization, and electronic properties of the LaNi1− xWxO3 (O≤ x≤ 0.25) Perovskite-like system. J. Solid State Chem. 125, 47 (1996). https://doi.org/10.1006/jssc.1996.0263

    Article  ADS  Google Scholar 

  23. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  24. T. Roisnel and J. Rodriguez-Carvajal, Computer Program FULLPROF, LLB-LCSIM, May, (2003).

  25. Y. Marouani, S. Gharbi, F. Issaoui, E. Dhahri, B.F.O. Costa, M.A. Valente, M. Jemmali, Magneto-transport properties of the Ag doping Sr site in La0.57Nd0.1Sr0.33−xAgxMnO3 (0.00 and 0.15) manganites. J. Low Temp. Phys. 200, 131–141 (2020). https://doi.org/10.1007/s10909-020-02481-8

    Article  ADS  Google Scholar 

  26. L.J. Xie, J.F. Ma, Z.Q. Zhao, H. Tian, J. Zhou, Y.G. Wang, J.T. Tao, X.Y. Zhu, A novel method for the preparation of Bi4Ti3O12 nanoparticles in w/o microemulsion. Colloid Surf. A 280, 232–236 (2006). https://doi.org/10.1016/j.colsurfa.2006.02.015

    Article  Google Scholar 

  27. P. Chen, X. Xu, C. Koenigsmann, A.C. Santulli, S.S. Wong, J.L. Musfeldt, Size-dependentinfrared phonon modes and ferroelectric phase transition in BiFeO3 nanoparticles. Nano Lett. 10, 4526–4532 (2010). https://doi.org/10.1021/nl102470f

    Article  ADS  Google Scholar 

  28. M. Yang, L. Huo, H. Zhao, S. Gaoa, Z. Rong, Electrical properties and acetone-sensing characteristics of LaNi1−xTixO3 perovskite system prepared by amorphous citrate decomposition. Sens. Actuators B 143, 111–118 (2009). https://doi.org/10.1016/j.snb.2009.09.003

    Article  Google Scholar 

  29. R. Selvarajana, S. Vadivelb, M. Arivanandhana, R. Jayavela, Facile synthesis of pervoskite type BiYO3 embedded reduced graphene oxide (RGO) composite for supercapacitor applications. Ceram. Int. 46, 3471–3478 (2020). https://doi.org/10.1016/j.ceramint.2019.10.060

    Article  Google Scholar 

  30. M. Shivaram, H. Nagabhushana, S.C. Sharma, S.C. Prashantha, B. Daruka Prasad, N. Dhananjaya, R. HariKrishna, B.M. Nagabhushana, C. Shivakumara, R.P.S. Chakradhar, Synthesis and luminescence properties of Sm3+ doped CaTiO3 nanophosphor for application. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 891–901 (2014). https://doi.org/10.1016/j.saa.2014.02.117

    Article  ADS  Google Scholar 

  31. O. Polat, Z. Durmus, F.M. Coskun, M. Coskun, A. Turut, Engineering the band gap of LaCrO3 doping with transition metals (Co, Pd, and Ir). J. Mater. Sci. 53, 3544–3556 (2018). https://doi.org/10.1007/s10853-017-1773-3

    Article  ADS  Google Scholar 

  32. X. Li, Y. Hou, Q. Zhao, L. Wang, A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructureswith enhanced photocatalytic activity for dye degradation. J. Colloid Interface Sci. 358, 102–108 (2011). https://doi.org/10.1016/j.jcis.2011.02.052

    Article  ADS  Google Scholar 

  33. S. Gharbi, Y. Marouani, F. Issaoui, E. Dhahri, E.K. Hlil, R. Barille, B.F.O. Costa, Assessment of structural, optical, magnetic, magnetocaloric properties and critical phenomena of La0.57Nd0.1Sr0.18Ag0.15MnO3 system at room temperature. J. MSE 31, 11983–11996 (2020). https://doi.org/10.1007/s10854-020-03780-2

    Article  Google Scholar 

  34. I.-D. Kim, A. Rothschild, H.L. Tuller, Advances and new directions in gas-sensing devices. Acta Mater 61, 974–1000 (2013). https://doi.org/10.1016/j.actamat.2012.10.041

    Article  ADS  Google Scholar 

  35. O. Polat, M. Caglar, F.M. Coskun, D. Sobola, M. Konecnýa, M. Coskun, Y. Caglar, A. Turut, Examination of optical properties of YbFeO3 films via doping transition element osmium. Opt. Mater. 105, 109911 (2020). https://doi.org/10.1016/j.optmat.2020.109911

    Article  Google Scholar 

  36. M. Wang, Synthesis of Pr-doped ZnO nanoparticles by sol-gel method and varistor properties study. J. Alloys Compd. 621, 220–224 (2014). https://doi.org/10.1016/j.jallcom.2014.09.208

    Article  Google Scholar 

  37. A.L. Geiler, A. Yang, X. Zuo, S.D. Yoon, Y. Chen, V.G. Harris, C. Vittoria, Atomic scale design and control of cation distribution in hexagonal ferrites. PRL 101, 067201 (2008). https://doi.org/10.1103/PhysRevLett.101.067201

    Article  ADS  Google Scholar 

  38. A. Zaafouri, M. Megdiche, M. Gargouri, Studies of electric, dielectric, and conduction mechanism by OLPT model of Li4P2O7. Ionics 21, 1867–1879 (2015). https://doi.org/10.1007/s11581-015-1365-7

    Article  Google Scholar 

  39. S.G. Kakade, Y. Ma, R.S. Devan, Y.D. Kolekar, C.V. Ramana, Dielectric, complex impedance, and electrical transport properties of erbium (Er3+) ion-substituted nanocrystalline, cobalt-rich ferrite (Co1.1Fe1.9–xErxO4). J. Phys. Chem. C 120(2016), 5682 (2016). https://doi.org/10.1021/acs.jpcc.5b11188

    Article  Google Scholar 

  40. Y. Moualhi, R. M’nassri, M.M. Nofa, H. Rahmouni, A. Selmi, M. Gassoumi, N. Chniba-Boudjada, K. Khirouni, A. Cheikrouhou, Influence of Fe doping on physical properties of charge ordered praseodymium–calcium–manganite material. Eur. Phys. J. Plus 135, 809 (2020). https://doi.org/10.1140/epjp/s13360-020-00838-2

    Article  Google Scholar 

  41. C. Murugesan, G. Chandrasekaran, Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite. RSC Adv. 5, 73714 (2015). https://doi.org/10.1063/1.4870232

    Article  ADS  Google Scholar 

  42. Y.D. Kolekar, L.J. Sanchez, C.V. Ramana, Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite. J. Appl. Phys. 115, 144106 (2014). https://doi.org/10.1062/1.4870232

    Article  ADS  Google Scholar 

  43. Md.T. Rahman, M. Vargas, C.V. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloys Compd. 617, 547–562 (2014). https://doi.org/10.1016/j.jallcom.2014.07.182

    Article  Google Scholar 

  44. G. Murugesan, R. Nithya, S. Kalainathan, S. Hussain, High temperature dielectric relaxation anomalies in Ca0.9Nd0.1Ti0.9Al0.1O3−δ single crystals. RSC Adv. 5, 78414–78421 (2015). https://doi.org/10.1039/C5RA15876A

    Article  ADS  Google Scholar 

  45. S. Sil, J. Datta, M. Das, R. Jana, S. Halder, A. Biswas, D. Sanyal, P.P. Ray, Bias dependent conduction and relaxation mechanism study of Cu5FeS4 film and its signifcance in signal transport network. J. Mater. Sci. 29, 5014–5024 (2018). https://doi.org/10.1007/s10854-017-8463-4

    Article  Google Scholar 

  46. M.U.S.T.A.F.A. Coşkun, Ö. Polat, F.M. Coşkun, Z. Durmuş, M. Çağlar, A. Türüt, Frequency and temperature dependent electrical and dielectric, properties of LaCrO3 and Ir doped LaCrO3 perovskite compounds. J. Alloys Compd. 740, 1012–1023 (2018). https://doi.org/10.1016/j.jallcom.2018.01.022

    Article  Google Scholar 

  47. K. Parida, R.N.P. Choudhary, Structural, electrical, optical and magneto-electric characteristics of chemically synthesized CaCu3Ti4O12 dielectric ceramics. Mater. Res. Express 4, 076302 (2017). https://doi.org/10.1088/2053-1591/aa76cd

    Article  ADS  Google Scholar 

  48. W. Wan, J. Luo, C.-E. Huang, J. Yang, Y. Feng, W.-X. Yuan, Y. Ouyang, D. Chen, T. Qiu, Calcium copper titanate/polyurethane composite films with high dielectric constant, low dielectric loss and super fexibility. Ceram. Int. 44, 5086–5092 (2018). https://doi.org/10.1016/j.ceramint.2017.12.108

    Article  Google Scholar 

  49. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P.J. Houenou, Temperature dependence of dielectric losses in chalcogenide glasses. J. Non-Cryst. Solids 45, 57 (1981). https://doi.org/10.1016/0022-3093(81)90089-2

    Article  ADS  Google Scholar 

  50. A. Ghosh, Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. J. Phys. Rev. B 41, 1479 (1990). https://doi.org/10.1103/PhysRevB.41.1479

    Article  ADS  Google Scholar 

  51. M. Ben Gzaiel, A. Oueslati, F. Hlel, M. Gargouri, Synthesis, crystal structure, phase transition and electrical conduction mechanism of the new [(C3H7) 4N] 2MnCl4 compound. Phys. E 83, 405 (2016). https://doi.org/10.1016/j.physe.2016.03.024

    Article  Google Scholar 

  52. M.A.M. Seyam, Dielectric relaxation in polycrystalline thin films of In2Te3. Appl. Surf. Sci. 181, 128–138 (2001). https://doi.org/10.1016/S0169-4332(01)00378-6

    Article  ADS  Google Scholar 

  53. S.R. Elliott, A theory of ac conduction in chalcogenide glasses. Philos. Mag. 36, 1291 (1977). https://doi.org/10.1080/14786437708238517

    Article  ADS  Google Scholar 

  54. M. Coşkun, Ö. Polat, F.M. Coşkun, Z. Durmuş, M. Çağlar, A. Türüt, The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites. RSC Adv. 8, 4634 (2018). https://doi.org/10.1039/C7RA13261A

    Article  ADS  Google Scholar 

  55. N.H. Vasoya, P.K. Jha, K.G. Saija, S.N. Dolia, K.B. Zankat, K.B. Modi, Electric modulus, scaling and modeling of dielectric properties for Mn2+-Si4+ Co-substituted Mn-Zn ferrites. J. Electron. Mater. 45, 917 (2016). https://doi.org/10.1007/s11664-015-4224-4

    Article  ADS  Google Scholar 

  56. S. Saha, T.P. Sinha, Low-temperature scaling behavior of BaFe0.5Nb0.5O3. Phys. Rev. B 65, 1341 (2005). https://doi.org/10.1103/PhysRevB.65.134103

    Article  Google Scholar 

  57. K.P. Padmasree, D.D. Kanchan, A.R. Kulkami, Impedance and Modulus studies of the solid electrolyte system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)], where 1 ≤x/y ≤ 3. Solid State Ion. 177, 475 (2006). https://doi.org/10.1016/j.ssi.2005.12.019

    Article  Google Scholar 

  58. R. Bergman, General susceptibility functions for relaxations in disordered systems. J. Appl. Phys. 88, 1356 (2000). https://doi.org/10.1063/1.373824

    Article  ADS  Google Scholar 

  59. M. Coskun, O. Polat, D. Sobola, M. Konečný, F.M. Coskun, Z. Durmus, A. Turut, Frequency and temperature impact on the electrical properties of LaCr0.99Pd0.01O3 compound. J. Mater. Sci. Mater. Electron. 31, 15407–15421 (2020). https://doi.org/10.1007/s10854-020-04104-0

    Article  Google Scholar 

  60. M. Coskun, O. Polat, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, The influence of cobalt (Co) doping on the electrical and dielectric properties of LaCr1-xCoxO3 perovskite-oxide compounds. Mater. Sci. Semicond. Process. 109, 104923 (2020). https://doi.org/10.1016/j.mssp.2020.104923

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research within the framework of the Tunisian-French cooperation in the field of scientific research and technology (University of Sfax-University of Angers). CFisUC is supported by national funds from FCT – Fundação para a Ciência e a Tecnologia, I.P., within the project UID/04564/2020. Access to TAIL-UC facility funded under QREN-Mais Centro Project No. ICT_2009_02_012_1890 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gharbi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharbi, S., Dhahri, R., Dhahri, E. et al. Assessment of nanostructure, optical, dielectric and modulus response by Bi substitution in La1−xBixNi0.5Ti0.5O3 (x = 0.0–0.2) system. Eur. Phys. J. Plus 136, 186 (2021). https://doi.org/10.1140/epjp/s13360-021-01134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01134-3

Navigation