Skip to main content
Log in

Homotopy perturbation method for modeling electrostatic structures in collisional plasmas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, the extended Poincaré–Lighthill–Kuo (PLK) technique is devoted to reduce the fluid govern equations of complex plasma species to two coupled evolution equations (including the damping Korteweg–de Vries (dKdV) equation and damping modified Korteweg–de Vries (dmKdV) equation) for studying the dissipative soliton collisions in a collisional complex unmagnetized plasma. To find the phase shifts of both the dKdV and dmKdV solitons after collisions, the solutions of the evolution equations must be determined precisely. For this purpose, the homotopy perturbation method is introduced to find high-accuracy approximate numerical solutions to both the dKdV and dmKdV equations after few iterations (approximations). Moreover, and for the first time, we will find some approximate analytic solutions for the evolution equations in order to investigate the characteristics of the dissipative solitons after collisions. Furthermore, the comparison between the approximate numerical and analytical dissipative solutions of both the dKdV and dmKdV equations will be checked. Thereafter, a set of analytical expressions for the phase shifts of the normal and dissipative soliton collisions will be estimated. The effects of plasma configurational parameters on the phase shifts of colliding solitons will be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Winter, Phys. Plasmas 7, 3862 (2000)

    Article  ADS  Google Scholar 

  2. S.I. Krasheninnikov, Y. Tomita, R.D. Smirnov, R.K. Janev, Phys. Plasmas 11, 3141 (2004)

    Article  ADS  Google Scholar 

  3. U. de Angelis, Phys. Plasmas 13, 012514 (2006)

    Article  ADS  Google Scholar 

  4. D.A. Mendis, Plasma Sources Sci. Technol. 11, A219 (2002)

    Article  ADS  Google Scholar 

  5. W.D. Jones, A. Lee, S.M. Gleman, H.J. Douce, Phys. Rev. Lett. 35, 1349 (1975)

    Article  ADS  Google Scholar 

  6. G.E. Cliolek, T.C. Mouschovias, Astrophys. J. 418, 774 (1993)

    Article  ADS  Google Scholar 

  7. M. Emamuddin, S. Yasmin, M. Asaduzzaman, A.A. Mamun, Phys. Plasmas 20, 083708 (2013)

    Article  ADS  Google Scholar 

  8. A. Barkan, R.L. Merlino, N. D’Angelo, Phys. Plasmas 2, 3563 (1995)

    Article  ADS  Google Scholar 

  9. R.L. Merlino, A. Barkan, C. Thompson, N. D’Angelo, Phys. Plasmas 5, 1607 (1998)

    Article  ADS  Google Scholar 

  10. N.N. Rao, P.K. Shukla, M.Y. Yu, Planet. Space Sci. 38, 543 (1990)

    Article  ADS  Google Scholar 

  11. P.O. Dovner, A.I. Eriksson, R. Bostrom, B. Holback, Geophys. Res. Lett. 21, 1827 (1994)

    Article  ADS  Google Scholar 

  12. R. Bostrom, IEEE Trans. Plasma Sci. 20, 756 (1992)

    Article  ADS  Google Scholar 

  13. A.A. Mamun, R.A. Cairns, P.K. Shukla, Phys. Plasmas 3, 2610 (1996)

    Article  ADS  Google Scholar 

  14. M. Emamuddin, A.A. Mamun, Phys. Plasmas 24, 052119 (2017)

    Article  ADS  Google Scholar 

  15. F. Verheest, S.R. Pillay, Nonlinear Processes Geophys. 15, 551 (2008)

    Article  ADS  Google Scholar 

  16. Y. Ghai, N.S. Saini, B. Eliasson, Phys. Plasmas 25, 013704 (2018)

    Article  ADS  Google Scholar 

  17. A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory Higher Education. (Springer, Berlin, 2009).

    Book  MATH  Google Scholar 

  18. E.F. Hefter, Solitons in nuclear physics—a review, in Condensed Matter Theories. ed. by J.S. Arponen, R.F. Bishop, M. Manninen (Springer, Boston, 1988)

    Google Scholar 

  19. A.M. Wazwaz, Commun. Nonlinear Sci. Numer. Simul. 15, 1466 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. A.M. Wazwaz, Appl. Math. Comput. 52, 74 (2016)

    Google Scholar 

  21. C.M. Khalique, J. Appl. Math. 2013, 1 (2013)

    Article  Google Scholar 

  22. V.E. Zakharov, E.A. Kuznetsov, On three-dimensional solitons. Sov. Phys. 39, 285 (1974)

    ADS  Google Scholar 

  23. A.M. Wazwaz, Commun. Nonlinear Sci. Numer. Simul. 13, 1039 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Parveen, S. Mahmood, A. Qamar, M. Adnan, Phys. Plasmas 26, 072117 (2019)

    Article  ADS  Google Scholar 

  25. J.-K. Xue, Europhys. Lett. 68, 645 (2004)

    Article  ADS  Google Scholar 

  26. M.S. Alam, M.R. Talukder, Plasma Res. Express 2, 015014 (2020)

    Article  ADS  Google Scholar 

  27. J.-N. Han, L. He, N.-X. Yang, Z.-H. Han, X.-X. Wang, Phys. Lett. A 375, 3794 (2011)

    Article  ADS  Google Scholar 

  28. F. Verheest, M.A. Hellberg, W.A. Hereman, Phys. Plasmas 19, 092302 (2012)

    Article  ADS  Google Scholar 

  29. M. Akbari-Moghanjoughi, Phys. Plasmas 17, 072101 (2010)

    Article  ADS  Google Scholar 

  30. C.S. Gardner, J.M. Greener, M.D. Kruskal, R.M. Miura, Phys. Rev. Lett. 19, 1095 (1967)

    Article  ADS  Google Scholar 

  31. H. Demiray, Appl. Math. Lett. 18, 941 (2005)

    Article  MathSciNet  Google Scholar 

  32. U.N. Ghosh, P. Chatterjee, R. Roychoudhury, Phys. Plasmas 19, 012113 (2012)

    Article  ADS  Google Scholar 

  33. P. Harvey, C. Durniak, D. Samsonov, G. Morfill, Phys. Rev. E 81, 057401 (2010)

    Article  ADS  Google Scholar 

  34. S.K. Sharma, A. Boruah, H. Bailung, Phys. Rev. E 89, 013110 (2014)

    Article  ADS  Google Scholar 

  35. J.-K. Xue, Phys. Rev. E 69, 016403 (2004)

    Article  ADS  Google Scholar 

  36. P. Eslami, M. Mottaghizadeh, H.R. Pakzad, Phys. Scr. 84, 015504 (2011)

    Article  ADS  Google Scholar 

  37. F. Verheest, M.A. Hellberg, W.A. Hereman, Phys. Rev. E 86, 036402 (2012)

    Article  ADS  Google Scholar 

  38. R.A. Cairns, A.A. Mamun, R. Bingham, R. Boström, R.O. Dendy, C.M.C. Nairns, P.K. Shukla, Geophys. Res. Lett. 22, 2709 (1995)

    Article  ADS  Google Scholar 

  39. S.A. El-Tantawy, W.M. Moslem, Phys. Plasmas 21, 052112 (2014)

    Article  ADS  Google Scholar 

  40. M.K. Ghorui, U.K. Samanta, P. Chatterjee, Astrophys. Space Sci. 345, 273 (2013)

    Article  ADS  Google Scholar 

  41. S. Sultana, Phys. Lett. A 382, 1368 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  42. H. Demiray, J. Comput. Appl. Math. 206, 826 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  43. M. Horanyi, T.W. Hartquist, O. Havnes, D.A. Mendis, G.E. Morfil, Rev. Geophys 42, RG4002 (2004). https://doi.org/10.1029/2004RG000151

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-056-363-1441). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. El-Tantawy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-056-363-1441).

Appendix: The values of \(X_{j}\), \(Y_{j}\), and \(Z_{j}\) of the system (7)

Appendix: The values of \(X_{j}\), \(Y_{j}\), and \(Z_{j}\) of the system (7)

$$\begin{aligned} \left( \begin{array}{c} X_{j} \end{array} \right)&=\left( \begin{array}{c} 0,-{\widehat{x}}u^{(1)}n^{(1)}\text {,}-\widehat{{\dot{T}}}n^{(1)}-\widehat{x}\left( u^{(2)}n^{(1)}+u^{(1)}n^{(2)}\right) -{\widetilde{x}}u^{(1)},\\ -\widehat{{\dot{T}}}n^{(2)}-{\widehat{x}}\left( u^{(1)}n^{(3)}+u^{(2)} n^{(2)}+u^{(3)}n^{(1)}\right) -{\widetilde{x}}\left( u^{(2)}+u^{(1)} n^{(1)}\right) \end{array} \right) ,\\ \left( \begin{array} [c]{c} Y_{j} \end{array} \right)&=\left( \begin{array} [c]{c} 0,-u^{(1)}{\widehat{x}}u^{(1)}\text {,}-\widehat{{\dot{T}}}u^{(1)}-\widehat{x}u^{(2)}u^{(1)}-{\widetilde{x}}\phi ^{(1)}+\nu u^{(1)},\\ -\widehat{{\dot{T}}}u^{(2)}-{\widehat{x}}u^{(3)}u^{(1)}-u^{(2)}{\widehat{x}} u^{(2)}-u^{(1)}{\widetilde{x}}u^{(1)}-{\widetilde{x}}\phi ^{(2)}+\nu u^{(2)} \end{array} \right) ,\\ \left( \begin{array} [c]{c} Z_{j} \end{array} \right)&=\left( \begin{array} [c]{c} 0,\gamma _{2}\phi ^{(1)2}\text {,}2\gamma _{2}\phi ^{(2)}\phi ^{(1)}+\gamma _{3} \phi ^{(1)3}-{\widehat{x}}^{2}\phi ^{(1)},\\ \gamma _{2}\left( \phi ^{(2)2}+2\phi ^{(1)}\phi ^{(3)}\right) +3\gamma _{3} \phi ^{(1)2}\phi ^{(2)}+\gamma _{4}\phi ^{(1)4}-{\widehat{x}}^{2}\phi ^{(2)} \end{array} \right) ,\text { } \end{aligned}$$

where

$$\begin{aligned} \gamma _{1}&=\mu _{e}\left( 1-\beta \right) +\mu _{i}\sigma ,\\ \gamma _{2}&=\frac{1}{2}\left( \mu _{e}-\mu _{i}\sigma ^{2}\right) ,\\ \gamma _{3}&=\frac{1}{6}\left[ \mu _{e}\left( 1+3\beta \right) +\mu _{i}\sigma ^{3}\right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashkari, B.S., El-Tantawy, S.A. Homotopy perturbation method for modeling electrostatic structures in collisional plasmas. Eur. Phys. J. Plus 136, 121 (2021). https://doi.org/10.1140/epjp/s13360-021-01120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01120-9

Navigation