Skip to main content
Log in

Hidden dynamical behaviors, sliding mode control and circuit implementation of fractional-order memristive Hindmarsh−Rose neuron model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In order to describe the complex dynamical behaviors of neurons with electromagnetic effect, this paper presents a fractional-order memristive (FOM) Hindmarsh–Rose (HR) neuron model by introducing a magnetic flux-controlled memristor to the three-dimensional HR neuron model. The proposed FOM HR neuron model without equilibrium point shows complex hidden dynamical behaviors, such as periodic orbits, chaotic behaviors, period-doubling bifurcations, and coexisting asymmetric phenomena, which are revealed by numerical simulations of local attraction basins, Lyapunov exponents, bifurcation diagrams, phase portraits, and so on. Furthermore, since most biomedical diseases are caused by abnormal discharge of neurons, a sliding mode control strategy is applied to suppress the chaotic behaviors of the FOM HR neuron model, which is helpful to prevent and treat diseases. Finally, we introduce the circuit designs of the FOM HR neuron model in detail, and the simulation results captured by oscilloscope in circuit implementation match well with the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig.16
Fig.17

Similar content being viewed by others

References

  1. K. Gopalsamy, I. Leung, Physica D 89, 3–4 (1996)

    Article  Google Scholar 

  2. C.J. Chen, H. Bao, M. Chen et al., AEU – Int. J. Electron. Commun. 111, 152894 (2019)

    Google Scholar 

  3. L.F. Cheng, H.J. Cao, Int. J. Bifurcation Chaos 27, 2 (2017)

    Google Scholar 

  4. Z.T. Njitacke, J. Kengne, J. Circuits Syst. Comput. 28, 7 (2019)

    Article  Google Scholar 

  5. C.G. Ma, J. Mou, F.F. Yang et al., Eur. Phys. J. Plus 135, 1 (2020)

    Article  Google Scholar 

  6. H.G. Gu, PLoS ONE 8, 12 (2013)

    Google Scholar 

  7. G. Zhang, C.N. Wang, F. Alzahrani et al. Chaos Solitons Fractals 108, 15–24 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. X.L. Ye, X.Y. Wang, J. Mou et al., Eur. Phys. J. Plus 133, 12 (2018)

    Article  ADS  Google Scholar 

  9. F.R. Tahir, S. Jafari, V.-T. Pham et al., Int. J. Bifurcation Chaos 25, 4 (2015)

    Article  Google Scholar 

  10. N.N. Yang, C. Xu, C.J. Wu et al., Complexity 9467435 (2018)

  11. J.J. Li, S.B. Liu, W.M. Liu, Nonlinear Dyn. 83, 1–2 (2016)

    Article  Google Scholar 

  12. G.D. Ren, Y. Xu, C.N. Wang, Nonlinear Dyn. 88, 2 (2017)

    Article  Google Scholar 

  13. H.R. Lin, C.H. Wang, Y.C. Sun, et al., Nonlinear Dyn. 100, 4 (2020)

    Google Scholar 

  14. K. Usha, P.A. Subha, Chin. Phys. B 28, 2 (2019)

    Article  Google Scholar 

  15. Y.J. Liu, F. Nazarimehr, A.J.M. Khalaf et al., Eur. Phys. J.-Spec. Top. 228, 10 (2019)

    Google Scholar 

  16. Z.L. Wang, X.R. Shi, Cogn. Neurodynamics 14, 1 (2020)

    Article  Google Scholar 

  17. G.A. Leonov, N.V. Kuznetsov, M.A. Kiseleva et al., Nonlinear Dyn. 77, 1–2 (2014)

    Article  Google Scholar 

  18. S.Y. Fang, Z.J. Li, X. Zhang et al., Braz. J. Phys. 49, 6 (2019)

    Article  Google Scholar 

  19. S. Zhang, Y.C. Zeng, Z.J. Li et al., Chaos 28, 1 (2018)

    Google Scholar 

  20. B.C. Bao, A.H. Hu, H. Bao et al., Complexity 2018 (2018)

  21. H. Bao, A.H. Hu, W.B. Liu et al., IEEE Trans. Neural Netw. Learn. Syst. 31, 2 (2019)

    Google Scholar 

  22. Y. Wang, Eur. Phys. J. Plus 133, 11 (2018)

    Article  Google Scholar 

  23. H. Jahanshahi, A. Yousefpour, J.M. Munoz-Pacheco, Appl. Math. Comput. 383, 125310 (2020)

    MathSciNet  Google Scholar 

  24. J. Dong, G.J. Zhang, Y. Xie et al., Cogn. Neurodynamics 8, 2 (2014)

    Google Scholar 

  25. Y. Xie, Y.M. Kang, Y. Liu, Sci. China-Technol. Sci. 57, 5 (2014)

    Google Scholar 

  26. Y.J. Yu, M. Shi, H.Y. Kang et al., Nonlinear Dyn. 100, 1 (2020)

    Article  Google Scholar 

  27. G.C. Wu, M.K. Luo, L.L. Huang et al., Nonlinear Dyn. 100, 4 (2020)

    Google Scholar 

  28. G.C. Wu, Z.G. Deng, D. Baleanu et al., Chaos. 29, 8 (2019)

    Google Scholar 

  29. T. Abdeljawad, S. Banerjee, G.C. Wu, Optik. 218, 163698 (2020)

    Article  ADS  Google Scholar 

  30. X.L. Chai, H.Y. Wu, Z.H. Gan et al., Signal Processing 171, 107525 (2020)

    Article  Google Scholar 

  31. Z.T. Njitacke, J. Kengne, AEU – Int. J. Electron. Commun. 93, 242–252 (2018)

    Google Scholar 

  32. R.M. Anderson, R.M. May, Nature 280, 5721 (1979)

    Google Scholar 

  33. H. Jahanshahi, A. Yousefpour, J.M. Munoz-Pacheco, Appl. Soft. Comput. 87, 105943 (2020)

    Article  Google Scholar 

  34. V. Vafaei, H. Kheiri, A.J. Akbarfam, Math. Meth. Appl. Sci. 42, 8 (2019)

    Article  Google Scholar 

  35. B. Meng, X.H. Wang, Math. Probl. Eng. 2018, 1603629 (2018)

    Article  Google Scholar 

  36. P. Prakash, J.P. Singh, B.K. Roy, Pramana-J. Phys. 92, 2 (2019)

    Article  Google Scholar 

  37. B. Yaghooti, A.S. Shadbad, K. Safavi, Proc. Inst. Mech. Eng. Part I-J Syst Control Eng. 234, 1 (2020)

  38. N.N. Yang, S.C. Chen, C.J. Wu et al., Complexity 6083853 (2019)

  39. N. Heymans, I. Podlubny, Rheol. Acta 45, 5 (2006)

    Article  Google Scholar 

  40. M. Caputo, Ann. Geophys. 19, 529–539 (1996)

    Google Scholar 

  41. C.Y. Zhou, Z.J. Li, F. Xie, Eur. Phys. J. Plus 134, 2 (2019)

    Article  Google Scholar 

  42. I. Podlubny, San Diego 198 (1999)

  43. D.W. Ding, X. Qian, W. Hu et al., Eur. Phys. J. Plus 132, 11 (2017)

    Article  Google Scholar 

  44. H. Kim, M.P. Sah, C.J. Yang et al., IEEE Trans. Circuits Syst. I-Regul. Pap. 59, 10 (2012)

    Google Scholar 

  45. C.J. Yang, Y. Choi, S. Park et al., Semicond. Sci. Technol. 30, 1 (2014)

    Google Scholar 

  46. M.J. Wang, Y. Deng, X.H. Liao et al., Int. J. Non-Linear Mech. 111, 5 (2019)

    Article  Google Scholar 

  47. B.C. Bao, H. Qian, Q. Xu et al., Front. Comput. Neurosc. 11, 81 (2017)

    Article  Google Scholar 

  48. J.L. Hindmarsh, R.M. Rose, Proc. R. Soc. London, Ser. B 221, 1222 (1984)

  49. S. Jafari, J.C. Sprott, S.M.R.H. Golpayegani, Phys. Lett. A 377, 9 (2013)

    Google Scholar 

  50. F.R. Tahir, S. Jafari, V.T. Pham, Int. J. Bifurcation Chaos 25, 4 (2015)

    Article  Google Scholar 

  51. V.I. Utkin, IEEE Trans. Ind. Electron. 40, 1 (2002)

    Google Scholar 

  52. A. Charef, H.H. Sun, Y.Y. Tsao et al., IEEE Trans. Autom. Control 37, 9 (2002)

    Google Scholar 

  53. A.S. Elwakil, IEEE Circuits Syst. Mag. 10, 4 (2010)

    Article  Google Scholar 

  54. C.G. Li, G.R. Chen, Physica A 341, 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbing Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Jiang, L., Hu, Y. et al. Hidden dynamical behaviors, sliding mode control and circuit implementation of fractional-order memristive Hindmarsh−Rose neuron model. Eur. Phys. J. Plus 136, 521 (2021). https://doi.org/10.1140/epjp/s13360-021-01107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01107-6

Navigation