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Abstract We derive exact traversable wormhole solutions in the framework of f (R) gravity
with no exotic matter and with stable conditions over the geometric fluid entering the throat.
For this purpose, we propose power-law f (R) models and two possible approaches for the
shape functionb(r)/r . The first approach makes use of an inverse power-law function, namely
b(r)/r ∼ r−1−β . The second one adopts Padé approximants, used to characterize the shape
function in a model-independent way. We single out the P(0, 1) approximant where the fluid
perturbations are negligible within the throat, if the sound speed vanishes at r = r0. The
former guarantees an overall stability of the geometrical fluid into the wormhole. Finally,
we get suitable bounds over the parameters of the model for the above discussed cases. In
conclusion, we find that small deviations from general relativity give stable solutions.

1 Introduction

Wormholes are solutions of field equations in General Relativity (GR) and in several theories
of gravity. They can be interpreted as “short-cuts” connecting different space-time regions [1]
and so they represent hypothetical tunnels between two asymptotic regimes of the same space
time [2]. In the most accredited scenario, the wormhole shortcut path is traversable through a
minimal surface area called wormhole throat. The simplest approach showing these features
is the so-called Einstein–Rosen bridge coming from the connection of two Schwarzschild
solutions [3–6]. It is characterized by spherical symmetry and by the presence of an event
horizon. This implies that any observer, trying to cross the wormhole throat, inevitably falls
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into the singularity [7]. Hence, the metric itself a priori prevents the traversability due to the
singularity. Consequently, to heal this issue, one can consider non-singular metrics defined
for every radial coordinates [8]. However, if the Birkhoff theorem is valid and matter fields
are included in a non-vanishing energy–momentum tensor, this approach leads to severe
bounds at the wormhole throat. There, the condition τ0 > ρ0c2 must hold, i.e., radial tension
might be large enough to exceed the total mass–energy density [8]. Consequently the energy–
momentum tensor violates the null energy condition (NEC) at the throat [1,9], Tμνkμkν < 0,
in naive analogy to some cosmological contexts, see e.g., [10,11]. Thus, in this standard
approach, i.e., in the framework of GR, one is forced to take a negative energy density and
pressure. This exotic landscape provides a structure that can be traversable, albeit it is not
clear how matter could exhibit negative energy density and pressure [12]. In other words,
standard matter cannot be used to achieve stable wormhole solutions in the framework of
GR.

In this respect, several approaches have been proposed to alleviate the problem. They focus
mainly in considering exotic forms of matter to overcome this strange behavior. Conversely,
extended and/or modified theories of gravity are natural suites where this can be addressed
retaining standard matter [13–17]. In fact, in these scenarios, the above conditions do not
apply directly to matter and so, in lieu of imposing exotic conditions over the energy and
pressure, one can take geometry to play the role of exotic matter [18]. This mimics the
wormhole properties through higher-order curvature terms and/or effective field theories that
can be mapped into Lagrangians extending the Hilbert–Einstein one.

In this paper, in analogy to GR, we consider a spherically symmetric metric with two
asymptotically flat regions. In particular, we take in to account f (R) gravity theories, in
metric formalism, and we assume time-independent metric coefficients, using the widely-
consolidate Morris–Thorne space time. We thus determine exact solutions of traversable
wormhole, without violating the signs of energy and pressure, postulating a power-law form
for f (R), i.e., f (R) = f0R1+ε where ε is a real number. Immediately, GR can be recovered
in the limit ε → 0. In this perspective, we can control deviations from GR and the role of
geometric terms in stabilizing the wormhole solutions.

In this context, two classes of stable and traversable wormhole can be recovered.
In the first case, the throat is assumed as an inverse power of the radial coordinate. In the

second case, we consider a parameter α controlling the size of the throat. It is worth noticing
that these solutions can be recovered by assuming simple rational series, made in terms of
(0, 1) Padé polynomials. We thus provide a physical interpretation over these choices and
investigate the physical properties associated with them. In this regard, we impose the fluid
perturbations passing through the throat are negligibly small. This condition is achieved if
the sound speed is vanishing during the fluid evolution. This feature cannot be found in
GR, albeit it gets suitable constraints over the free coefficients of our wormhole picture. In
particular, we show that if the sound speed is zero to guarantee stability, even the Starobinsky
scalaron [19] (with ∼ R2) is not fully recovered within this scheme, leading to solutions with
ε �= 0. It means that GR cannot be trivially recovered by construction. We thus discuss which
power law intervals are allowed under this scheme and discuss the corresponding physical
implications.

The layout of the paper is the following. In Sect. 2, we take into account f (R) gravity with
spherical symmetry assuming a Morris–Thorne metric. In the same section, we introduce the
basic ingredients of our approach. Thus, we consider power law f (R) considering deviations
with respect to GR. In particular, we impose the form of the metric functions and introduce
the Padé expansion. In Sect. 3, the stability condition, given by the vanishing sound speed,
is discussed: we find traversable and stable wormholes and constrain the parameters r0, β
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of the exact solutions and ε of the related gravity model. Discussion and conclusions are
reported in Sect. 4.

2 f (R) wormholes with rational shape function

Extended theories of gravity are built up through effective Lagrangians and can present
higher-order terms in curvature invariants that could mimic the exotic behavior of matter
within a wormhole [14,20]. In principle, they are extensions of Einstein theory where GR
is a particular case or it is recovered as soon as higher-order terms reduce to R. Here, we
consider a straightforward extension which is f (R) gravity in the metric formalism [14,21],
that is S = ∫

d4x
√−g[ f (R) + L] where f (R) is a generic function of the curvature scalar

R, g is the determinant of the metric tensor and L is the Lagrangian of standard matter
minimally coupled to gravity.

Varying with respect to the metric implies the following fourth-order field equations
[22,23]:

Gμν = 1

fR(R)

{
1

2
gμν

[
f (R) − R fR(R)

]
+ fR(R);μν − gμν� fR(R)

}

+ T (m)
μν

fR(R)
,

(1)

where T (m)
μν is the stress-energy tensor of ordinary matter. The right-hand side of (1) can be

regarded as an effective stress-energy tensor T (e f f )
μν , given by the sum of T (m)

μν and a curvature

fluid energy–momentum tensor T (curv)
μν , sourcing the effective Einstein equations.1

A static and spherically symmetric wormhole solution is

ds2 = e2Φ(r)dt2 − 1

1 − b(r)/r
dr2 − r2dΩ2, (2)

which is the so-called Morris and Thorne metric [8]. Equation (2) characterizes a wormhole
with the following features: (i) the space-time is static and spherically symmetric; (ii) the
throat has a minimal surface connecting two asymptotically flat regions; (iii) there is no
Killing horizon and then two-way travels are enabled. The physical realization of such criteria
depends on the gravitational forces, the proper time for crossing and astrophysical scales
where possible wormholes are expected [26].

In this picture, b(r) and Φ(r) are functions of the radial coordinate and they are denoted
respectively as shape and redshift functions. The radial coordinate r ranges from a minimum
and a positive value r0, defining the wormhole throat, to infinity. In order to avoid the pres-
ence of event horizons, one imposes that Φ(r) is finite at any r . It is possible to construct
asymptotically flat space times, where b(r)/r → 0 and Φ → 0 as r → ∞. A fundamen-
tal ingredient in wormhole physics is the the so-called flare-out condition of the wormhole
throat b(r0) = r0 [8] given by the condition (b′r − b)/2b2 < 0. In GR, the latter condition
implies that through the Einstein field equation, the stress-energy tensor violates the NEC at
the throat, i.e., Tμνkμkν |r0 < 0.

In this paper, we consider:

2Φ(r) = r0

r
(3)

1 This interpretation is based on the fact that further degrees of freedom coming from higher-order gravity
can be recast as an effective perfect fluid which reduces to the standard energy-matter one as soon as GR is
recovered. For a rigorous demonstration, see [24,25].
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that resembles a Newtonian potential for Φ(r) in analogy to black hole physics [27,28]. The
ratio b(r)

r is debated and its form is a priori unknown. Finding out the forms of Φ(r) and b(r)
from the field equations means to derive a Morris–Thorne-like wormhole solution. Here, we
follow two physically motivated strategies imposing:

b(r)

r
=

(r0

r

)1+β

, (4a)

b(r)

r
= r0

1 + α r
, (4b)

with β ∈ R and β + 1 > 0 and α ≡ r0−1
r0

to guarantee that at r = r0 the wormhole is not
singular.

Therefore, our wormhole metric takes two possible forms:

ds2 = er0/rdt2 − 1

1 − ( r0
r

)β+1 dr
2 − r2dΩ2, (5)

ds2 = er0/rdt2 − 1

1 − r0
1+αr

dr2 − r2dΩ2. (6)

In both cases, the expressions are polynomials characterizing b/r . To enable stability,
one can require that within the whole interval of r , the ratio b(r)/r does not diverge. An
intriguing proposal has been shown in [28], where a shape function of the type b(r) =
r0

( r0
r

)β exp
(
−δ r−r0

r0

)
has been introduced. As r − r0 
 1, it is possible to make a Taylor

expansion that leads to Eq. (4a) that turns out to be an extension of the cases discussed in
[27,28]. Hereafter, Eq. (4a) will be dubbed phenomenological shape function, to stress that
is has been argued from heuristic considerations.

At r = r0, to avoid discontinuities in the Morris–Thorne metric, we can require the domain
to be stable even before r = r0. Thus, one can imagine to expand around r = r0 in terms
of rational expansions, made by Padé functions, widely used in recent literature [16,29,30].
The corresponding ratio, constructed by means of Padé polynomials, changes dramatically
the form of solutions or leaves it unaltered. As a prototype of our recipe, we take into account
the simplest Padé expansion [31]. To this end, we recall that the Padé technique is built
up from the standard Taylor series, being to lower divergences or singular points. Hence,
given a function f (z) = ∑∞

i=0 ci z
i , expanded with a given set of coefficients, namely ci ,it

is approximated by means of a (n,m) Padé approximant by the ratio [34]:

Pn,m(z) =
∑n

κ=0
aκ z

κ

1 +
∑m

σ=1
bσ z

σ
, (7)

where the Taylor expansion matches the coefficients of the expansion up to the highest
possible order:

P ′
n,m(0) = f ′(0), (8)

...

P(n+m)
n,m (0) = f (n+m)(0), (9)

with the additional request Pn,m(0) = f (0).
The numerator is thus constructed to have n + 1 independent coefficients, whereas in the
denominator, it is m, for a total of n + m + 1 unknown terms.
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For small radii, rational expressions are essentially indistinguishable from the Taylor one,
but, at larger radii, the convergence radius of rational polynomials is determined by the
following practical rule [35,36]:

I. The most suitable rational approximation order leads to the function that maximizes the
convergence radius.

II. The most suitable rational approximation minimizes the involved free constants.

Consequently, a small number of free parameters is essential to enable the rational approx-
imation to be convergent, providing the compromise between arbitrary-order expansions and
minimal number of free parameters in the denominator.

The lowest Padé orders are two: (1,0) and (0,1). They turn out to be the simplest approaches
to use in the framework of wormholes. We are forced to take the (0, 1) order since it guarantees
that all the other assumptions over the stability of b/r are preserved.2 In both cases, the
asymptotic conditions are automatically satisfied, i.e., er0/r → 1 and 1

1−b(r)/r → 1 as
r → ∞.
We are now able to get the corresponding energy conditions and to check whether the above
consistency conditions are satisfied.

Let us start with the field Eq. (1) which can be rewritten as :

T (m)
μν = fR(R)Gμν −

{
1

2
gμν

[
f (R) − R fR(R)

]

+ fR(R);μν − gμν� fR(R)
}
. (10)

In order to write energy conditions [1,9], we can choose:

Tμ
ν = diag(ρ,−pr ,−pt ,−pt ), f (R) = f0R

1+ε, (11)

where pt is the tangential pressure, pr the radial pressure and ρ the energy density, whereas
f (R) is a power law, with f0 dimensional constant.3 For ε 
 1, it can be written in the form

f (R) ∼ R + εR ln R + O(ε2), (12)

corresponding to the GR plus a correction. Clearly, this form is useful to control little devia-
tions with respect to the standard Einstein theory. Recently, this approach revealed particularly
useful to study compact objects, like neutron stars and black holes, where deviations with
respect to GR can be useful to fit observations [32,33].

Here, we adopt a similar approach to investigate which cases correspond to small depar-
tures from Einstein’s gravity according to the values of ε. As we will see below, ε is con-
strained in range of values providing wormhole solutions with vanishing sound speed. In
other words, we can state that:
Stable and traversable wormhole solutions are possible for small deviations of Einstein’s
gravity in the presence of standard perfect fluid matter.

Starting from (10) and (11), we get the components of the energy–momentum tensor for
the generic metric (2):

ρ(r) = 1

2

[
r
(
r2

0 + r(r0 − 4r)b′(r)
) − r0(r0 + r)b(r)

2r5

]1+ε

2 The expansion (1,0) corresponds to a first-order Taylor expansion and does not work well to guarantee
that, for r → ∞, b

r → 0. We have to check this property for all cases at the wormhole throat, namely r0,
b(r0)/r0 = 1.
3 From now on, we set this constant equal to 1.
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×
{

ε − 4(1 + ε)r3b′(r)
r
(
r(4r − r0)b′(r) − r2

0

) + r0(r0 + r)b(r)

+ 2ε(1 + ε)r2
(
rb′(r) − b(r)

) (
r
(−r2

0 − 4r0r + 8r2
)
b′(r) − 4r2

0 r + r3(r0 − 4r)b′′(r) + r0(5r0 + 4r)b(r)
)

(
r0(r0 + r)b(r) − r

(
r2

0 + r(r0 − 4r)b′(r)
))2

− 1
(
r
(
r2

0 + r(r0 − 4r)b′(r)
) − r0(r0 + r)b(r)

)3

×
[

2ε(1 + ε)r(r − b(r))
[
r2

0 (r0 + r)
(

5r2
0 + 44r0r + 24r2

)
b(r)2

+r0rb(r)
(
r2(r0 + r)

((
3r2

0 + 6r0r − 16r2
)
b′′(r) − 2r2(r0 − 4r)b(3)(r)

)

−3r2
0

(
3r2

0 + 24r0r + 16r2
)

−
(
r4

0 + 26r3
0 r + 60r2

0 r
2 − 152r0r

3 − 112r4
)
b′(r)

)

+r2
(

4
(
r5

0 + 6r4
0 r + 2(ε − 1)r13

)

+r(r0 − 4r)
(
r3

0 + 20r2
0 r + 16r0r

2 − 16r3
)
b′(r)2

+r2
0 r

2
((

−3r2
0 − 6r0r + 16r2

)
b′′(r) + 2r2(r0 − 4r)b(3)(r)

)

+b′(r)
(
r3(r0 − 4r)

((
−3r2

0 − 6r0r + 16r2
)
b′′(r)

+2r2(r0 − 4r)b(3)(r)
)

+r2
0

(
r3

0 + 24r2
0 r + 24r0r

2 − 112r3
)))]]}

, (13)

pr (r) = 1

2

[
r
(
r2

0 + r(r0 − 4r)b′(r)
) − r0(r0 + r)b(r)

2r5

]1+ε

×
{[

−ε + 4(1 + ε)r((r − r0)b(r) + r0r)

r
(
r(4r − r0)b′(r) − r2

0

) + r0(r0 + r)b(r)

+ (
2ε(1 + ε)r(r0 − 4r)(r − b(r))

(
r
(
r2

0 + 4r0r − 8r2) b′(r)

+4r2
0r + r3(4r − r0)b

′′(r) − r0(5r0 + 4r)b(r)
))

]

×
[(

r0(r0 + r)b(r) − r
(
r2

0 + r(r0 − 4r)b′(r)
))2

]−1}

, (14)

pt (r) = 1

2

[
r
(
r2

0 + r(r0 − 4r)b′(r)
) − r0(r0 + r)b(r)

2r5

]1+ε

×
{

(1 + ε)
((
r2

0 + r0r + 2r2
)
b(r) + r

(
r(r0 − 2r)b′(r) − r0(r0 + 2r)

))

r
(
r2

0 + r(r0 − 4r)b′(r)
) − r0(r0 + r)b(r)

+

−ε + 2ε(1 + ε)r2
(
b(r) − rb′(r)

) (
r
(−r2

0 − 4r0r + 8r2
)
b′(r) − 4r2

0 r + r3(r0 − 4r)b′′(r) + r0(5r0 + 4r)b(r)
)

(
r0(r0 + r)b(r) − r

(
r2

0 + r(r0 − 4r)b′(r)
))2

+ 1
(
r
(
r2

0 + r(r0 − 4r)b′(r)
) − r0(r0 + r)b(r)

)3

×
[

2ε(1 + ε)r(r − b(r))
[
r2

0 (r0 + r)
(

5r2
0 + 54r0r + 32r2

)
b(r)2

+r0rb(r)
(
−r2

0

(
9r2

0 + 90r0r + 64r2
)

−
(
r4

0 + 28r3
0 r + 80r2

0 r
2 − 192r0r

3 − 160r4
)
b′(r)
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+r2(r0 + r)
((

3r2
0 + 8r0r − 24r2

)
b′′(r) − 2r2(r0 − 4r)b(3)(r)

))

+r2
(

4
(
r5

0 + 8r4
0 r + 2(ε − 1)r13

)

+r(r0 − 4r)(r0 + 2r)
(
r2

0 + 20r0r − 16r2
)
b′(r)2 + r2

0 r
2

×
((

−3r2
0 − 8r0r + 24r2

)
b′′(r) + 2r2(r0 − 4r)b(3)(r)

)

+b′(r)
(
r3(r0 − 4r)

((
−3r2

0 − 8r0r + 24r2
)
b′′(r)

+2r2(r0 − 4r)b(3)(r)
)

+r2
0

(
r3

0 + 26r2
0 r + 40r0r

2 − 160r3
)))]]}

. (15)

Here, the form of b(r) is not specified. If we consider the energy–momentum tensor for
perfect fluids written in the form Tμ

ν = diag(ρ,−p,−p,−p), the average pressure is
p(r) = 1

3 [pr (r) + 2pt (r)], and then:

p(r) = 1

6

[
r
(
r2

0 + r(r0 − 4r)b′(r)
) − r0(r0 + r)b(r)

2r5

]1+ε

×
{

4(1 + ε)r((r − r0)b(r) + r0r)

r
(
r(4r − r0)b′(r) − r2

0

) + r0(r0 + r)b(r)

−ε + 2ε(1 + ε)r(r0 − 4r)(r − b(r))
(
r
(
r2

0 + 4r0r − 8r2
)
b′(r) + 4r2

0 r + r3(4r − r0)b′′(r) − r0(5r0 + 4r)b(r)
)

(
r0(r0 + r)b(r) − r

(
r2

0 + r(r0 − 4r)b′(r)
))2

+2

[

−ε + (1 + ε)
((
r2

0 + r0r + 2r2
)
b(r) + r

(
r(r0 − 2r)b′(r) − r0(r0 + 2r)

))

r
(
r2

0 + r(r0 − 4r)b′(r)
) − r0(r0 + r)b(r)

+ 2ε(1 + ε)r2
(
b(r) − rb′(r)

) (
r
(−r2

0 − 4r0r + 8r2
)
b′(r) − 4r2

0 r + r3(r0 − 4r)b′′(r) + r0(5r0 + 4r)b(r)
)

(
r0(r0 + r)b(r) − r

(
r2

0 + r(r0 − 4r)b′(r)
))2

+ 1
(
r
(
r2

0 + r(r0 − 4r)b′(r)
) − r0(r0 + r)b(r)

)3

×
[
2ε(1 + ε)r(r − b(r))

(
r2

0 (r0 + r)
(

5r2
0 + 54r0r + 32r2

)
b(r)2

+r0rb(r)
(
r2(r0 + r)

((
3r2

0 + 8r0r − 24r2
)
b′′(r) − 2r2(r0 − 4r)b(3)(r)

)

−r2
0

(
9r2

0 + 90r0r + 64r2
)

+

−
(
r4

0 + 28r3
0 r + 80r2

0 r
2 − 192r0r

3 − 160r4
)
b′(r)

)

+r2(4
(
r5

0 + 8r4
0 r + 2(ε − 1)r13

)

+r(r0 − 4r)(r0 + 2r)
(
r2

0 + 20r0r − 16r2
)
b′(r)2 + r2

0 r
2

×
((

−3r2
0 − 8r0r + 24r2

)
b′′(r) + 2r2(r0 − 4r)b(3)(r)

)

+b′(r)
(
r3(r0 − 4r)

((
−3r2

0 − 8r0r + 24r2
)
b′′(r)

+2r2(r0 − 4r)b(3)(r)
)

+r2
0

(
r3

0 + 26r2
0 r + 40r0r

2 − 160r3
))))]]}

. (16)

In this way, the null energy condition [1,9] at the throat, for the metric (5), that is for
b(r)
r = ( r0

r

)β+1, is expressed as:

ρ + p|r0 =
(1 + ε)

(
3β−1
2r2

0

)1+ε {
6 + β − 3β2(8 + β) + (1 + ε) [−5 + β(1 + 3β(3 + β))]

}

3(1 − 3β)2

≥ 0, (17)
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while for the metric (6), i.e., for b(r)
r = r0

1+αr , it is:

ρ + p|r0 = −
(1 + ε)

(

− r0+3
2r3

0

)1+ε {
(r0 − 1) [r0(5r0 + 9) − 6] (1 + ε) − 2

[
r0

(
3r2

0 + r0 − 15
) + 3

]}

3r0(r0 + 3)2

≥ 0. (18)

Another aspect to check is the flare-out condition [37]:

b′(r)r − b(r)

2b(r)2

∣
∣
∣
∣
r0

< 0, (19)

which becomes, for the metric (5) at the throat:

− 1 + β

2r0
< 0 → β > −1. (20)

In the other case, it is fulfilled for:

− r0 − 1

2r2
0

< 0 → r0 > 1, (21)

provided that r0 > 0. The consistency of our model is guaranteed in both cases. These results
allow to give necessary conditions on the function b(r)/r but they are not sufficient to show
that the form of b(r) is of the form of a polynomial. To ensure this hypothesis, we assume
that the sound speed, i.e., the variation of the pressure with respect to the density is negligibly
small [38]. Combining this additional requirement, we stabilize the solution as we shall show
below.

3 The stability condition and the sound speed

We require the solutions to be stable, besides being traversable. This reflects to the stability
of fluids inside the throat, with the hypothesis of satisfying the above energy conditions.

Thus, let us consider the perturbation condition by means of the adiabatic sound speed,
cs , i.e., we assume the sound speed definition in adiabatic perturbations, in analogy to what
happens in fluid dynamics [39,40]. So, defining the adiabatic sound speed by [41–43]:

c2
s =

(
∂p

∂ρ

)

S
, (22)

we can guarantee how perturbations affect solutions analyzing its value within the throat.
Hence, the sound speed is essential to guarantee the viability of our approximated versions
of b/r . The above expression for cs can be specified as

dp

dρ

∣
∣
∣
∣
r0

= 0. (23)

Plugging Eqs. (13) and (16) in Eq. (23) and considering
b(r)

r
=

(r0

r

)β+1
, we get the fol-

lowing stability condition for the metric (5):

147 − 32r8
0 ε(ε − 1)(1 + β) − 4(1 + ε)2(1 + β)[5 − 3β(2 + β)]2

+β{−428 + β[−926 + 3β(148 + β(161 + 24β))]} +
−(1 + ε){45 + β[−288 + β(−658 + 3β(60 + β(95 + 12β)))]}
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×
{

3
[
16r8

0 ε(ε − 1)(1 + β) + 2(1 + ε)2(1 + β)[5 − 3β(2 + β)]2 +
−55 + (1 + ε)(1 + β)[5 + β(−113 + 3β(−37 + β(19 + 6β)))]
+β[166 − β(−400 + 3β(38 + β(67 + 12β)))]

]}−1 = 0. (24)

Similarly, by considering
b(r)

r
= r0

1 + αr
, we get the stability condition for the metric (6):

1

3

{

−2 − r0(r0 + 3)
[
r0

(
r2

0 (35(1 + ε) − 37)

−12r0(ε + 2) − 177(1 + ε) + 135) + 90(1 + ε) − 54
][
r0 + 36(7 − 5(1 + ε))

+ (−714 + r0
(
393 + r0

(
389 + r0

(−137 + r0
(
32(r0 − 1)r7

0 − 55
)))))

+r0(1 + ε) (354 + r0 (−39 + r0 (−163

+ r0
(−48r9

0 + 48r8
0 + 5r0 + 23

))))

+2(r0 − 1)(1 + ε)2 (
36 + r0

(−108 + r0
(
21 + r0

(
8r9

0 + 25r0 + 90
))))]−1

}

= 0. (25)

We can therefore analyze the consequence of such conditions for our wormhole solutions
as reported in the next subsection. The corresponding results are clearly numerical since no
analytical solutions can be obtained integrating the above stability conditions4 coming from
cs = 0.

3.1 The wormhole solutions

In the case of metric (5), we have determined a class of wormhole solutions satisfying the
three above conditions, namely the null energy condition (17), the flare-out condition (20)
and the stability condition (24). In particular, once the value of the β parameter is fixed, we
determine the wormhole throat (as a function of ε) and the values of ε that satisfy Eqs. (17),
(20), (24) and the condition r0 > 0. We have summarized the results obtained in Table 1.

In particular, we note that ε = 1
2 , i.e., f (R) = R3/2, is obtained in three cases5:

1. β = 7 ⇒ r0  3.632;
2. β = 8 ⇒ r0  3.862;
3. β = 9 ⇒ r0  4.078.

These correspond to three wormhole metrics, respectively:

1. ds2 = er0/rdt2 − 1

1−
(
r0
r

)8 dr
2 − r2dΩ2;

2. ds2 = er0/rdt2 − 1

1−
(
r0
r

)9 dr
2 − r2dΩ2;

3. ds2 = er0/rdt2 − 1

1−
(
r0
r

)10 dr
2 − r2dΩ2.

In the case of metric (6), the validity of NEC (18) points out that 1 + ε must be an integer.
For ε integer and odd, we found no solutions satisfying also the flare-out condition (21).

4 The assumption cs = 0 is also used in astrophysics to guarantee stability of virialized structures. See e.g.,
[44].
5 f (R) gravity with 1 + ε = 3/2 is particularly relevant for cosmological and astrophysical applications.
It is related to invertible conformal transformation [22]. It allows a curvature interpretation of dark matter
phenomena according to MOND [45] and the transition from decelerated to accelerated regimes in cosmology
[46].
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Table 1 Wormhole solutions for different values of the β parameter. Here, we adopted the parameterization
given in Eq. (4a)

β r0 ε

0 1275
128

1
5

1 No solution No solution

2 8

√
5332ε2+14653ε+150

96ε−96ε2 −2.986 � ε < −1 ∪ 0.965 � ε < 1

3
8
√

2
(
100ε2+317ε−14

)

(1−ε)ε
−3.213 � ε < −1 ∪ 0.800 � ε < 1

4 8

√
89780ε2+289269ε−9922

160(1−ε)ε
−3.256 � ε < −1 ∪ 0.689 � ε < 1

5 8

√
15000ε2+48455ε−1372

12(1−ε)ε
−3.258 � ε < −1 ∪ 0.607 � ε < 1

6 8

√
540988ε2+1744781ε−42194

224(1−ε)ε
−3.249 � ε < −1 ∪ 0.542 � ε < 1

7 8

√
8464ε2+27216ε−575

2(1−ε)ε
−3.236 � ε < −1 ∪ 0.489 � ε < 1

8 8

√
1988100ε2+6370997ε−119554

288(1−ε)ε
−3.223 � ε < −1 ∪ 0.446 � ε < 1

9 8

√
213160ε2+680759ε−11492

20(1−ε)ε
−3.210 � ε < −1 ∪ 0.409 � ε < 1

The allowed range values of ε are also reported

Table 2 Wormhole solutions for different values of ε

ε r0

0 No solution

2 1.150

4 1.114

6 1.090

8 1.075

10 1.064

12 1.056

14 1.050

16 1.045

18 1.040

Here, we adopted the parameterization given in Eq. (4b)

Consequently, the only solutions that satisfy all three conditions (18), (21) and (25) are
those with ε integer and even. Therefore, once the value of ε is fixed, we determine the
corresponding wormhole throat. The results are given in Table 2. We note that ε = 0,
implying GR leads to no solutions as the NEC is not satisfied. The theoretical consequences
of our approach are summarized below.
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Fig. 1 Interpolations of r0 vs β and of r0 vs ε. The curves have been obtained through WolframMathematica
and represent an extrapolation based on the fitting functions 3.03 ·10−5x4 +1.13 ·10−3x3 −4.65 ·10−2x2 +
8.01 · 10−1x + 1.79 and 2.43 · 10−6x4 − 1.43 · 10−4x3 + 3.30 · 10−3x2 − 3.80 · 10−2x + 1.24 respectively
for the left and right plots

Fig. 2 Comparison between the shape functions of our models (red and blue lines), the standard approach
proposed in [8] (grey line) and the model proposed in [28] (green line). The value of the β parameter cho-
sen for our model (4a) is β = 2. Our Padé expansion better adapts to the standard approach than other
phenomenological ansatz

3.2 Theoretical considerations

We assumed a power-law form for f (R), where GR is recovered for ε = 0. From our analyses,
it is possible to provide two classes of the shape function b(r)/r . The first possibility, already
adopted in the literature, represents a class of inverse powers with respect to r [27,28]. This
approach departs significantly from the one provided in the original work by Morris and
Thorne [8] as it appears evident from Fig. 1. Even though appealing, these possibilities
are therefore disfavored than the Padé expansion that we proposed above. The (0, 1) Padé
polynomial resembles much more the Morris–Thorne shape function and candidates as a
suitable approach that turns out to bemodel-independent in reconstructingb/r . The expansion
of b/r is constructed by means of rational series. The only dependence from the model
occurs as one chooses the order (n,m). This approach is significantly better than ad hoc
functions postulated at the beginning over b. In this respect, it is possible to provide two
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cases summarized in Tables 1 and 2. In Table 1, we consider the case of inverse power law
approximation. It appears evident that the case f ∼ R2 is not recovered indicating small
departures from the Starobinsky scalaron model [19]. The inverse solution, i.e., 1+ε negative,
is not excluded. In this case, the repulsive effects are stronger than the case of positive 1 + ε.
On the other hand, the Padé approximation excludes GR as well as the previous case but
shows very small departures from r0, indicating moreover that the Starobinsky scalaron is
excluded again. In particular, the energy conditions are not fulfilled in the case of odd ε. The
results are well-suited in the Padé scenario and candidate to reconstruct the shape function
without imposing any ad hoc functions. In all the aforementioned cases, it is possible to
notice that ε is quite small, confirming that only small deviations from GR are permitted as
soon as one considers wormholes in extended theories of gravity with vanishing sound speed
(Fig. 2).

4 Final outlooks and perspectives

In GR, wormhole solutions are possible only if exotic matter is considered. In other words,
standard matter prevents the wormhole stability and, consequently, its formation. Hence,
natural landscapes in which wormholes may exist could be represented by extended and/or
modified theories of gravity. There, the wormhole structure can be traversable without con-
sidering exotic matter contributions, i.e., a fluid with a negative energy and pressure density
violating the energy conditions.

Here, we considered f (R) gravity. Postulating a power-law form f (R) = f0R1+ε , we
investigated two possible approaches to characterize the shape function and, in particu-
lar, the ratio b(r)/r . The first attempt is a phenomenological inverse power law, recovered
from widely investigated approaches in the literature. The second considers the numerical
pathology of the ratio b(r)/r within the throat. We thus introduced the Padé approximant to
characterize the shape function in a model-independent way. Our strategy to decide the Padé
orders is straightforward: we singled out the simplest approximant that resembles a first-order
Taylor expansion. To do so, there are two possibilities, i.e., the (1,0) and (0,1) expansions.
The first coincides with pure Taylor expansion and is unable to guarantee that b → 0 as
r → ∞. The second possibility, namely (0,1) fulfills our requirement. Thus, we worked out
the wormhole solution under this ansatz, adding the additional requirement of stable fluids,
whose perturbations are negligible inside the throat. For this purpose, we assumed the sound
speed to vanish in analogy to cosmological contexts where the sound speed is associated
with the fluid evolution. In particular, the sound speed has to vanish on the wormhole throat.
Finally, it is possible to constrain the set of coefficients (β, ε, r0). It is worth noticing that in all
the analyzed cases, as soon as GR is recovered, exotic matter is needed to satisfy wormhole
stability and traversability criteria.

In future works, we will extend such a scenario considering a general Padé approach to
characterize the shape function. Other extended/modified theories of gravity will be taken
into account besides f (R) gravity.
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