Skip to main content
Log in

Mass spectrum of heavy quarkonium for screened Kratzer potential (SKP) using series expansion method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, the radial Schrödinger equation is solved with the screened Kratzer potential using the series expansion method. The bound state energy spectra are obtained. To check the correctness of the result obtained from this method, we carry out suitable adjustments to the screened Kratzer potential parameters resulting in potential models, such as the Kratzer and Coulomb potentials are deduced as special cases. The numerical values of the energy spectra of the special cases (Kratzer potential) for hydrogen chloride and lithium hydride diatomic molecules are computed for different quantum numbers; n and l and the results are in consonance with the theoretical works of similar investigation. The expression for the energy spectra is applied to obtain the mass spectra of heavy quarkonium systems (charmonium and bottomonium). The numerical results agree with the experimental values and theoretical studies in previous works. Our results will have possible applications in high energy physics, molecular physics, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E.E. Ibekwe, A.T. Ngiangia, U.S. Okorie, A.N. Ikot, H.Y. Abdullah, Iran J. Sci. Technol. Trans. Sci. 44, 1191 (2020)

    Article  MathSciNet  Google Scholar 

  2. R. Kumar, C. Fakir, Phys. Scr. 85, 055008 (2012)

    Article  ADS  Google Scholar 

  3. E. Omugbe, O.E. Osafile, M.C. Hindawi, Adv. High Energy Phys. (2020). https://doi.org/10.1155/2020/5901464

    Article  Google Scholar 

  4. B. Roy, P. Roy, J. Phys. A Math. Gen. 35, 3961 (2002)

    Article  ADS  Google Scholar 

  5. M. Abu-Shady, T. Abdel-Karim, E. Khokha, Sci. Fed J. Quant. Phys. 2, 1 (2018)

    Google Scholar 

  6. R. Rani, F. Chand, Ind. J. Phys. 92, 145 (2018)

    Article  Google Scholar 

  7. H. Ciftci, F.H. Kisoglu, Hindawi. Adv. High Energy Phys. 45, 497057 (2018)

    Google Scholar 

  8. M.S. Child, S.H. Dong, X.G. Wang, J. Phys. A Math. Gen. 33, 5653 (2000)

    Article  ADS  Google Scholar 

  9. H. Panahi, M.M. Gavabar, J. Phys. 86, 985 (2016)

    Google Scholar 

  10. A.D. Alhaidari, Phys. Rev. A 66, 042116 (2002)

    Article  ADS  Google Scholar 

  11. B.H. Yazarloo, H. Mehraban, EPL 116, 31004 (2016)

    Article  ADS  Google Scholar 

  12. S.A. Alavi, S. Rouhani, Phys. Lett. A 320, 327 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Arima, F. Iachello, Ann. Phys. 281, 2 (2000)

    Article  ADS  Google Scholar 

  14. D. Bonatsos, C. Daskaloyannis, P. Kolokotronis, J. Chem. Phys. 106, 605 (1997)

    Article  ADS  Google Scholar 

  15. M Abu-Shady, Sh Y (2019) Ezz- Few-Body Syst. 60 66

  16. H. Hassanabadi, E. Maghsoodi, A.N. Ikot, S. Zarrinkamar, Eur Phys. J. Plus 128, 79 (2013)

    Article  Google Scholar 

  17. A.N. Ikot, E.O. Chukwuocha, M.C. Onyeaju, C.A. Onate, B.I. Ita, M.E. Udoh, Pramana J. Phys. 90, 22 (2018)

    Article  ADS  Google Scholar 

  18. R. Rani, S.B. Hardwar, F. Chand, Commun. Theor. Phys. 70, 179 (2018)

    Article  ADS  Google Scholar 

  19. M. Abu-Shady, Int. J. Appl. Math. Theor. Phys. 16, 2 (2015)

    Google Scholar 

  20. R. De, R. Dutt, U. Sukhatme, J. Phys. A Math. Gen. 25, 843 (1992)

    Article  ADS  Google Scholar 

  21. A.N. Ikot, U.S. Okorie, G. Osobonye, P.O. Amadi, C.O. Edet, M.J. Sithole, G.J. Rampho, R. Sever, Heliyon 6, e03738 (2020)

    Article  Google Scholar 

  22. C.O. Edet, K.O. Okorie, H. Louis, N.A. Nzeata-Ibe, Indian J. Phys. 94, 243 (2020)

    Article  ADS  Google Scholar 

  23. C.O. Edet, P.O. Okoi, S.O. Chima, Rev. Bras. Ens. Fís. 42, e20190083 (2019)

    Article  Google Scholar 

  24. P.O. Okoi, C.O. Edet, T.O. Magu, Rev. Mex. Fis. 66, 1 (2020)

    Google Scholar 

  25. C.O. Edet, P.O. Okoi, Rev. Mex. Fis. 65, 333 (2019)

    Article  Google Scholar 

  26. L G Ixaru, H De Meyer and G V Berghe, Phys. Rev. E 61 3151 (2000)

  27. P. Sandin, M gren, M Gulliksson. Phys. Rev. E 93, 033301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Al-Jamel, H. Wityan, Appl. Phys. Res. 1916, 9639 (2012)

    Google Scholar 

  29. O.S. Rosmalen, I.F. Von, R.D. Levine, A.E. Dieperink, J. Chem. Phys. 79, 2515 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Kumar, C. Fakir, Commun. Theor. Phys. 59, 528 (2013)

    Article  ADS  Google Scholar 

  31. A.N. Ikot, U.S. Okorie, A.T. Ngiangia, C.A. Onate, C.O. Edet, I.O. Akpan, P.O. Amadi, Eclet. Quím. J. 45, 65 (2020)

    Article  Google Scholar 

  32. B.I. Ita, H. Louis, O.U. Akakuru, N.A. Nzeata-Ibe, A.I. Ikeuba, T.O. Magu, P.I. Amos, C.O. Edet, Bulg. J. Phys. 45, 323 (2018)

    Google Scholar 

  33. M. Hamzavi, S.M. Ikhdair, K.E. Thylwe, J. Math. Chem. 51, 227 (2013)

    Article  MathSciNet  Google Scholar 

  34. A.N. Ikot, H.P. Obong, T.M. Abbey, S. Zare, M. Ghafourian, H. Hassanabadi, Few-Body Syst. 16, 1111 (2016)

    Google Scholar 

  35. C.O. Edet, P.O. Amadi, U.S. Okorie, A. Tas, A.N. Ikot, G. Rampho, Solut. Rev. Mex. Fıs. 66, 824 (2020)

    Google Scholar 

  36. C.O. Edet, U.S. Okorie, G. Osobonye, A.N. Ikot, G.J. Rampho, R. Sever, J. Math. Chem. 58, 989 (2020)

    Article  MathSciNet  Google Scholar 

  37. R.N. Choudhury, M. Mondal, Phys. Rev. A 52, 1850 (1995)

    Article  ADS  Google Scholar 

  38. A. Al-Jamel, J. Theor. Appl. Phys. 5, 21 (2011)

    Google Scholar 

  39. B. Patel, P.C. Vinodkumar, J. Phys. G 36, 035003 (2009)

    Article  ADS  Google Scholar 

  40. A.J. Rai, B. Patel, P.C. Vinodkumar, Phys. Rev. C 78, 055202 (2008)

    Article  ADS  Google Scholar 

  41. E.C. Reyes, M. Rigol, J.R. Soneira, Rev. Bras de Ens 1, 25 (2003)

    Google Scholar 

  42. K. Zalewski, Acta Phys. Polon. B 29, 2535 (1998)

    ADS  Google Scholar 

  43. G. Bhanot, S. Rudaz, Phys. Lett. 78, 119 (1978)

    Article  Google Scholar 

  44. A. Al-Jamel, Mod. Phys. Lett. A 32, 1850185 (2018)

    Article  MathSciNet  Google Scholar 

  45. H. Ciftci, H.F. Kisoglu, Adv. High Energy Phys. (2018). https://doi.org/10.1155/2018/4549705

    Article  Google Scholar 

  46. N.V. Maksimenko, S.M. Kuchin, Russ. Phys. J 54, 57 (2011)

    Article  Google Scholar 

  47. M Abu-Shady 2019 T A Abdel-Karim and Sh Y Ezz-Alarab J. Egyp. Math. Soc. 27 14

  48. A.N. Ikot, U.S. Okorie, R. Sever, G.J. Rampho, Eur. Phys. J. Plus 134, 386 (2019)

    Article  Google Scholar 

  49. S.M. Ikhdair, R. Sever, J. Math. Chem. 45, 1137 (2009)

    Article  MathSciNet  Google Scholar 

  50. R. Chaturvedi, A.K. Rai, Int. J. Theo. Phys. 59, 3508 (2020)

    Article  Google Scholar 

  51. V. Kher, A.K. Rai, Chin. Phy. C 42, 8 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Ibekwe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibekwe, E.E., Okorie, U.S., Emah, J.B. et al. Mass spectrum of heavy quarkonium for screened Kratzer potential (SKP) using series expansion method. Eur. Phys. J. Plus 136, 87 (2021). https://doi.org/10.1140/epjp/s13360-021-01090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01090-y

Navigation