Skip to main content
Log in

Constraints of observational mass of neutron stars on the saturation parameters of nuclear matter with SU(6) symmetry

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Since the massive neutron stars (NSs) were detected, NSs have received more extensive attention and research. The discoveries of pulsars PSR J0348-0432 and MSP J0740\(+\)6620 confirm the existence of massive NS and therefore present a strict limit to the equation of state (EoS) of nuclear matter, but the appearance of hyperons will soften the EoS. In order to get a stiff EoS and solve the hyperon puzzle, in this paper we firstly study the effects of the saturation properties of nuclear matter on the mass of NS and then in turn, constrain the saturation properties of nuclear matter by the observed mass of massive NSs with SU(6) symmetry. The study shows that based on the SU(6) symmetry, it is almost impossible to obtain a stiff enough EoS to support the maximum mass of a NS up to 2.0 \(M_{\odot }\) within the range of empirical value of saturation properties of nuclear matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.B. Demorest, T. Pennucci, S.M. Ransom et al., Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  2. E. Fonseca, T.T. Pennucci, J.A. Ellis et al., Astrophys. J. 832, 167 (2016)

    Article  ADS  Google Scholar 

  3. A. Arzoumanian, A. Brazier, S. Burke-Spolaor et al., Astrophys. J. Suppl. S. 235, 37 (2018)

    Article  ADS  Google Scholar 

  4. J. Antoniadis, P.C.C. Freire, N. Wex et al., Science 340, 448 (2013)

    Article  ADS  Google Scholar 

  5. H.T. Cromartie, E. Fonseca, S.M. Ransom et al., Nat. Astron. 4, 72 (2020)

    Article  ADS  Google Scholar 

  6. C.A. Raithel, F. Özel, D. Psaltis, Astrophys. J. Lett. 857, L23 (2018)

    Article  ADS  Google Scholar 

  7. L. Rezzolla, E.R. Most, L.R. Weih, Astrophys. J. Lett. 852, L25 (2018)

    Article  ADS  Google Scholar 

  8. J.B. Wei, G.F. Burgio, H.J. Schulze, Mon. Not. R. Astron. Soc. 484, 5162 (2019)

    Article  ADS  Google Scholar 

  9. F. Hernandez Vivanco, R. Smith, E. Thrane et al., Phys. Rev. D 100, 103009 (2019)

    Article  ADS  Google Scholar 

  10. L.R. Weih, E.R. Most, L. Rezzolla, Astrophys. J. 881, 73 (2019)

    Article  ADS  Google Scholar 

  11. P.S. Koliogiannis, ChC Moustakidis, Phys. Rev. C 101, 015805 (2020)

    Article  ADS  Google Scholar 

  12. O. Gottlieb, A. Loeb, Mon. Not. R. Astron. Soc. 493, 1753 (2020)

    Article  ADS  Google Scholar 

  13. S. Molla, B. Ghosh, M. Kalam, Eur. Phys. J. Plus 135, 362 (2020)

    Article  Google Scholar 

  14. M. Fortin, S.S. Avancini, C. Providência, I. Vidaña, Phys. Rev. C 95, 065803 (2017)

    Article  ADS  Google Scholar 

  15. S.K. Greif, G. Raaijmakers, K. Hebeler et al., Mon. Not. R. Astron. Soc. 485, 5363 (2019)

    Article  ADS  Google Scholar 

  16. D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva, Phys. Rev. Lett. 114, 092301 (2015)

    Article  ADS  Google Scholar 

  17. K.A. Maslov, E.E. Kolomeitsev, D.N. Voskresensky, Phys. Lett. B 748, 369 (2015)

    Article  ADS  Google Scholar 

  18. R. Wirth, R. Roth, Phys. Rev. Lett. 117, 182501 (2016)

    Article  ADS  Google Scholar 

  19. L.L. Lopes, D.P. Menezes, Eur. Phys. J. A 56, 122 (2020)

    Article  ADS  Google Scholar 

  20. D. Chatterjee, I. Vidaña, Eur. Phys. J. A 52, 29 (2016)

    Article  ADS  Google Scholar 

  21. K.A. Maslov, E.E. Kolomeitsev, D.N. Voskresensky, Nucl. Phys. A 950, 64 (2016)

    Article  ADS  Google Scholar 

  22. M. Fortin, A.R. Raduta, S. Avancini, C. Providência, Phys. Rev. D 101, 034017 (2020)

    Article  ADS  Google Scholar 

  23. N.K. Glendenning, Astrophys. J. 293, 470 (1985)

    Article  ADS  Google Scholar 

  24. N.K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics and General Relativity (Springer, Berlin, 1997)

    MATH  Google Scholar 

  25. N.K. Glendenning, Phys. Lett. B 114, 392 (1982)

    Article  ADS  Google Scholar 

  26. J. Schaffner, C.B. Dover, A. Gal et al., Phys. Rev. Lett. 71, 1328 (1993)

    Article  ADS  Google Scholar 

  27. J. Schaffner, C.B. Dover, A. Gal et al., Ann. Phys. 235, 35 (1994)

    Article  ADS  Google Scholar 

  28. N.K. Glendenning, Nucl. Phys. A 469, 600 (1987)

    Article  ADS  Google Scholar 

  29. J. Schaffner, I.N. Mishustin, Phys. Rev. C 53, 1416 (1996)

    Article  ADS  Google Scholar 

  30. S. Pal, M. Hanauske, I. Zakout et al., Phys. Rev. C 60, 015802 (1999)

    Article  ADS  Google Scholar 

  31. H. Shen, Phys. Rev. C 63, 035802 (2002)

    Article  ADS  Google Scholar 

  32. H. Müller, Phys. Rev. C 59, 1405 (1999)

    Article  ADS  Google Scholar 

  33. S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Phys. Rev. C 85, 065802 (2012)

    Article  ADS  Google Scholar 

  34. S. Aoki, S.Y. Bahk, K.S. Chung et al., Phys. Lett. B 355, 45 (1995)

    Article  ADS  Google Scholar 

  35. C.J. Batty, E. Friedman, A. Gal, Phys. Rep. 287, 385 (1997)

    Article  ADS  Google Scholar 

  36. P. Khaustov, D.E. Alburger, P.D. Barnes et al., Phys. Rev. C 61, 054603 (2000)

    Article  ADS  Google Scholar 

  37. E. Friedman, A. Gal, Phys. Rep. 452, 89 (2007)

    Article  ADS  Google Scholar 

  38. N.K. Glendenning, S.A. Moszkowski, Phys. Rev. Lett. 67, 2414 (1991)

    Article  ADS  Google Scholar 

  39. Y. Sugahara, H. Toki, Nucl. Phys. A 579, 557 (1994)

    Article  ADS  Google Scholar 

  40. U. Garg, G. Colò, Prog. Part. Nucl. Phys. 101, 55 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for many useful comments and suggestions. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11947018 and 11947128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueling Mu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, X., Zhou, X. & He, G. Constraints of observational mass of neutron stars on the saturation parameters of nuclear matter with SU(6) symmetry. Eur. Phys. J. Plus 136, 99 (2021). https://doi.org/10.1140/epjp/s13360-021-01087-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01087-7

Navigation