Skip to main content
Log in

The dynamics of the early universe in a model with radiation and a generalized Chaplygin gas

Early universe with radiation and a generalized Chaplygin gas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The early universe is modeled through the quantization of a Friedmann-Robertson-Walker model with positive curvature of the spatial hypersurfaces. In this model, the universe is filled by two fluids: radiation and a generalized Chaplygin gas. The quantization of this model is made following the prescriptions due to J. A. Wheeler and B. DeWitt. Using the Schutz’s formalism, the time notion is recovered and the Wheeler-DeWitt equation transforms into a time-dependent Schrödinger equation, which rules the dynamics of the early universe, under the action of an effective potential \(V_{\mathrm{eff}}\). That potential depends on three parameters. Depending on the values of these parameters, \(V_{\mathrm{eff}}\) may have two different shapes. \(V_{\mathrm{eff}}(a)\) may have the shape of a barrier or the shape of a well followed by a barrier. We solve, numerically, the appropriate time-dependent Schrödinger equation and obtain the time evolution of an initial wave function, for both cases. These wave functions satisfy suitable boundary conditions. For both shapes of \(V_{\mathrm{eff}}\), we compute the tunneling probability, which is a function of the mean kinetic energy associated to the radiation energy \(E_{\mathrm{m}}\) and of the three parameters of the generalized Chaplygin gas: \(\alpha \), A and B. The tunneling probabilities, for both shapes of \(V_{\mathrm{eff}}\), indicate that the universe should nucleate with the highest possible values of \(E_{\mathrm{m}}\), \(\alpha \), A and B. Finally, we study the classical universe evolution after the wavefunction has tunneled \(V_{\mathrm{eff}}\). The calculations show that the universe may emerge from the Planck era in an inflationary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.S. DeWitt, Phys. Rev. 160, 1113 (1967)

    Article  ADS  Google Scholar 

  2. S.W. Hawking, G.F.R. Ellis, The large scale structure of space-time (Cambridge University Press, Cambridge, 1973)

    Book  Google Scholar 

  3. J.B. Hartle, S.W. Hawking, Phys. Rev. D 28, 2960 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Vilenkin, Phys. Lett. B 117, 25 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Vilenkin, Phys. Rev. D 33, 3560 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  6. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  7. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  8. S. Chaplygin, Sci. Mem. Moscow Univ. Math. Phys. 21, 1 (1904)

    Google Scholar 

  9. A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    Article  ADS  Google Scholar 

  10. N. Bilic, G.B. Tupper, R.D. Viollier, Phys. Lett. B 535, 17 (2002)

    Article  ADS  Google Scholar 

  11. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  12. M. Bouhmadi-Lopez, P.V. Moniz, Phys. Rev. D 71, 063521 (2005)

    Article  ADS  Google Scholar 

  13. G.A. Monerat, G. Oliveira-Neto, E.V. Corrêa Silva, L.G. Ferreira Filho, P. Romildo Jr., J.C. Fabris, R. Fracalossi, S.V.B. Gonçalves, F.G. Alvarenga, Phys. Rev. D 76, 024017 (2007)

    Article  ADS  Google Scholar 

  14. P. Pedram, S. Jalalzadeh, Phys. Lett. B 659, 6 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Pedram, S. Jalalzadeh, Gen. Rel. Grav. 42, 745 (2010)

    Article  ADS  Google Scholar 

  16. B. Majumder, Phys. Lett. B 697, 101 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. H. Ardehali, P. Pedram, Phys. Rev. D 93, 043532 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Shababi, P. Pedram, Int. J. Mod. Phys. D 26, 1750081 (2017)

    Article  ADS  Google Scholar 

  19. R. Arnowitt, S. Deser, C.W. Misner, Gen. Relativ. Gravit. 40, 1997 (2008)

    Article  ADS  Google Scholar 

  20. B.F. Schutz, Phys. Rev. D 2, 2762 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  21. B.F. Schutz, Phys. Rev. D 4, 3559 (1971)

    Article  ADS  Google Scholar 

  22. R. Mansouri, F. Nasseri, Phys. Rev. D 60, 123512 (1999)

    Article  ADS  Google Scholar 

  23. P.A.M. Dirac, Can. J. Math. 2, 129 (1950)

    Article  Google Scholar 

  24. P. A. M. Dirac, Proc. Roy. Soc. London A bf. 249, 326–333 (1958)

  25. P.A.M. Dirac, Phys. Rev. 114, 924 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  26. V.G. Lapchinskii, V.A. Rubakov, Theor. Math. Phys. 33, 1076 (1977)

    Article  Google Scholar 

  27. N.A. Lemos, J. Math. Phys. 37, 1449 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Crank, P. Nicolson, Proc. Cam. Philos. Soc. 43, 50 (1947)

    Article  ADS  Google Scholar 

  29. C. G. M. S. Mello, Uso do método de diferenças finitas no esquema Crank-Nicolson em cosmologia quântica. Master Thesis in Computational Modeling, (Instituto Politécnico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro), p. 63 (2018)

  30. E. Merzbacher, Quantum Mechanics, 2nd edn. (Wiley, Hoboken, 1970)

    MATH  Google Scholar 

  31. J.Acacio de Barros, E.V. Corrêa Silva, G.A. Monerat, G. Oliveira-Neto, L.G. Ferreira Filho, P. Romildo Jr., Phys. Rev. D 75, 104004 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C. G. M. Santos thanks CNPq for her scholarship. The authors thank Paulo Vargas Moniz for discussions at an early stage of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Oliveira-Neto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monerat, G.A., Santos, C.G.M., Oliveira-Neto, G. et al. The dynamics of the early universe in a model with radiation and a generalized Chaplygin gas. Eur. Phys. J. Plus 136, 34 (2021). https://doi.org/10.1140/epjp/s13360-020-00996-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00996-3

Navigation