Skip to main content
Log in

Stable entanglement in a quadripartite cavity optomechanics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, making use of negativity, we study bipartite entanglements in a quadripartite system composed of two two-level atoms and a cavity optomechanics. An atom is inside a single-mode cavity with a movable mirror and the other one is isolated outside, i.e., there is no direct interaction between this atom and cavity optomechanics with the atom therein. The entanglement dynamics of various types of bipartite systems obtained has been numerically investigated to understand the roles of initial state of cavity field, movable mirror and atoms, the ratio of the atom-field coupling strength to the optomechanical coupling coefficient on physical properties. The results amazingly show the bipartite entanglement between the interior and exterior isolated atoms. Depending on the above-mentioned ratio and different initial states adopted to the system, the relatively stable entanglement can be generated between the atoms. Furthermore, the so-called atomic entanglement sudden death, which is independent of the degree of entanglement of the initial state, occurs in some situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  2. F.J. Duarte, Fundamentals of Quantum Entanglement (IOP Publishing, Bristol, 2019)

    Book  Google Scholar 

  3. C.H. Bennett, D.P. DiVincenzo, Nature 404(6775), 247 (2000)

    Article  ADS  Google Scholar 

  4. N. Ganguly, S. Adhikari, A.S. Majumdar, J. Chatterjee, Phys. Rev. Lett. 107, 270501 (2011)

    Article  Google Scholar 

  5. S. Barzanjeh, S. Pirandola, C. Weedbrook, Phys. Rev. A 88, 042331 (2013)

    Article  ADS  Google Scholar 

  6. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 84, 4729 (2000)

    Article  ADS  Google Scholar 

  7. S. Wehner, D. Elkouss, R. Hanson, Science 362, 6412 (2018)

    Article  Google Scholar 

  8. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature 464(7285), 45 (2010)

    Article  ADS  Google Scholar 

  9. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51(1), 89 (1963)

    Article  Google Scholar 

  10. H.I. Yoo, J.H. Eberly, Phys. Rep. 118, 239 (1985)

    Article  ADS  Google Scholar 

  11. S. Mahmood, M.S. Zubairy, Phys. Rev. A 35, 425 (1987)

    Article  ADS  Google Scholar 

  12. V. Bužek, Phys. Rev. A 39, 3196 (1989)

    Article  ADS  Google Scholar 

  13. A. Joshi, R.R. Puri, Phys. Rev. A 45, 5056 (1992)

    Article  ADS  Google Scholar 

  14. A. Joshi, Phys. Rev. A 62, 043812 (2000)

    Article  ADS  Google Scholar 

  15. S.V. Prants, M.Y. Uleysky, V.Y. Argonov, Phys. Rev. A 73, 023807 (2006)

    Article  ADS  Google Scholar 

  16. M.J. Faghihi, M.K. Tavassoly, M.R. Hooshmandasl, J. Opt. Soc. Am. B 30(5), 1109 (2013)

    Article  ADS  Google Scholar 

  17. H.R. Baghshahi, M.K. Tavassoly, Eur. Phys. J. Plus 130(3), 1 (2015)

    Article  Google Scholar 

  18. H.R. Baghshahi, M.K. Tavassoly, A. Behjat, Eur. Phys. J. Plus 131(4), 80 (2016)

    Article  Google Scholar 

  19. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  20. T. Yu, J.H. Eberly, Phys. Rev. Lett. 97, 140403 (2006)

    Article  ADS  Google Scholar 

  21. J. Laurat, K.S. Choi, H. Deng, C.W. Chou, H.J. Kimble, Phys. Rev. Lett. 99, 180504 (2007)

    Article  ADS  Google Scholar 

  22. Y.J. Zhang, Z.X. Man, Y.J. Xia, J. Phys. B At. Mol. Opt. Phys. 42, 095503 (2009)

    Article  ADS  Google Scholar 

  23. T. Yu, J.H. Eberly, Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Yönaç, T. Yu, J.H. Eberly, J. Phys. B At. Mol. Opt. Phys. 39(15), S621 (2006)

    Article  ADS  Google Scholar 

  25. Z.J. Li, J.Q. Li, Y.H. Jin, Y.H. Nie, J. Phys. B At. Mol. Opt. Phys. 40(17), 3401 (2007)

    Article  Google Scholar 

  26. H.P. Zhang, W.C. Qiang, Int. J. Theor. Phys. 57(4), 1141 (2018)

    Article  Google Scholar 

  27. W.C. Qiang, G.H. Sun, Q. Dong, O. Camacho-Nieto, S.H. Dong, Quantum Inf. Process. 17(4), 90 (2018)

    Article  ADS  Google Scholar 

  28. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  29. S. Barzanjeh, M.H. Naderi, M. Soltanolkotabi, Phys. Rev. A 84(2), 023803 (2011)

    Article  ADS  Google Scholar 

  30. M.H. Nadiki, M.K. Tavassoly, Laser Phys. 26(12), 125204 (2016)

    Article  ADS  Google Scholar 

  31. Q. Liao, W. Nie, J. Xu, Y. Liu, N. Zhou, Q. Yan, A. Chen, N. Liu, M. Ahmad, Laser Phys. 26(5), 055201 (2016)

    Article  ADS  Google Scholar 

  32. D. James, J. Jerke, Can. J. Phys. 85(6), 625 (2007)

    Article  ADS  Google Scholar 

  33. C. Eltschka, J. Siewert, Phys. Rev. Lett. 111, 100503 (2013)

    Article  ADS  Google Scholar 

  34. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223(1), 1 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  36. R. Simon, Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  37. R.F. Werner, M.M. Wolf, Phys. Rev. Lett. 86, 3658 (2001)

    Article  ADS  Google Scholar 

  38. P. Horodecki, M. Lewenstein, G. Vidal, I. Cirac, Phys. Rev. A 62, 032310 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  39. G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Baghshahi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momenabadi, F.M., Baghshahi, H.R., Faghihi, M.J. et al. Stable entanglement in a quadripartite cavity optomechanics. Eur. Phys. J. Plus 136, 7 (2021). https://doi.org/10.1140/epjp/s13360-020-00988-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00988-3

Navigation