Skip to main content
Log in

Universal critical behavior in polycrystalline La0.75Ca0.25-xNaxMnO3 (x = 0.00; 0.05) samples

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The critical behavior of the manganese La0.75Ca0.25−xNaxMnO3 (x = 0.00; 0.05) was studied around the PM-FM phase transition. Various techniques are used to obtain the critical exponents of our samples; such as modified Arrott plot (MAP), Kouvel–Fisher (KF) method and the critical isotherm analysis (CI) around the Curie temperature (Tc). The experimental results indicated that our samples had a second-order magnetic phase transition. Based on the above methods, the critical exponents (β, γ and δ) were extracted in the low- and the high-magnetic fields from the magnetic isotherms data. The obtained critical exponents were close to those expected for the Tricritical Mean-Field model. These critical exponents obey to the Widom scaling relation δ = 1 + γ/β, which proves the reliability and the self-consistency of all critical exponents values. The magnetization–field–temperature (Mµ0HT) falls into two curves, below and above TC. It follows the single scaling equation \( M\left( {H,\varepsilon } \right) = \varepsilon^{\beta } f_{ \pm } \left( {\frac{H}{{\varepsilon^{\beta + \gamma } }}} \right) \) with ε = (TTC)/TC is the reduced temperature. This confirms the reasonability of the critical exponents with the scaling hypothesis. Moreover, the analysis of the effective exponents βeff and γeff indicates that βeff (ɛ) for the two samples and γeff (ɛ) for x = 0.00 are self-consistency and in good agreements with the Tricritical mean-Field model, but γeff (ɛ) for x = 0.05 is heterogeneous with any class of predicted universality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Boutahar, H. Lassri, E.K. Hlil, D. Fruchart, J. Magn. Magn. Mater. 398, 26–31 (2016)

    Article  ADS  Google Scholar 

  2. N. Ameur, M. Triki, E. Dhahri, E.K. Hlil, Solid State Commun. 292, 40–49 (2019)

    Article  ADS  Google Scholar 

  3. R. Cabassi, F. Bolzoni, A. Gauzzi, F. Licci, Phys. Rev. B: Condens. Matter 74, 184425 (2006)

    Article  ADS  Google Scholar 

  4. M. Fähnle, W.U. Kellner, H. Kronmüller, Phys. Rev. B: Condens. Matter 35, 3640 (1987)

    Article  ADS  Google Scholar 

  5. N.V. Khiem, P.T. Phong, L.V. Bau, D.N.H. Nam, L.V. Hong, N.X. Phuc, J. Magn. Magn. Mater. 321, 2027–2031 (2009)

    Article  ADS  Google Scholar 

  6. M. Triki, E. Dhahri, E.K. Hlil, J. Solid State Chem. 201, 63–67 (2013)

    Article  ADS  Google Scholar 

  7. S.N. Kaul, J. Magn. Magn. Mater. 53, 5–53 (1985)

    Article  ADS  Google Scholar 

  8. S. Bouzidi, M.A. Gdaiem, S. Rebaoui, J. Dhahri, E.K. Hlil, Appl. Phys. A 126, 60 (2020)

    Article  ADS  Google Scholar 

  9. S.K. Banerjee, J. Phys. Lett. 12, 16 (1964)

    Article  ADS  Google Scholar 

  10. A. Arrott, J.E. Noakes, Phys. Rev. Lett. 19, 786–789 (1967)

    Article  ADS  Google Scholar 

  11. J. Yang, Y.P. Lee, Appl. Phys. Lett. 91, 142512 (2007)

    Article  ADS  Google Scholar 

  12. Y.K. Fu, X. Luo, Z.H. Huang, L. Hu, W.J. Lu, B.C. Zhao, Y.P. Sun, J. Magn. Magn. Mater. 326, 205–209 (2013)

    Article  ADS  Google Scholar 

  13. H.E. Stanley, Rev. Mod. Phys. 71, 358–366 (1999)

    Article  Google Scholar 

  14. J.S. Kouvel, M.E. Fisher, Phys. Rev. 136, 1626–1632 (1964)

    Article  ADS  Google Scholar 

  15. B. Widom, J. Chem. Phys. 43, 3898–3905 (1965)

    Article  ADS  Google Scholar 

  16. K. Huang, Statist. Mech., 2nd edn. (Wiley, New York, 1987)

    Google Scholar 

  17. A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, J. Alloy. Compd 648, 1043 (2015)

    Article  Google Scholar 

  18. M.H. Phan, V. Franco, N.S. Bingham, H. Srikanth, N.H. Hur, S.C. Yu, J. Alloys Compd 508, 238–244 (2010)

    Article  Google Scholar 

  19. H.S. Shin, J.E. Lee, Y.S. Nam, H.L. Ju, C.W. Park, Solid State Commun. 118, 377–380 (2001)

    Article  ADS  Google Scholar 

  20. T.A. The-LongPhan, P.D. Ho, Q.T. Thang, T.D. Tran, N.X. Thanh, M.H. Phu, B.T. Phan, S.C. Huy, Yu. J. Alloy. Comp. 615, 937–945 (2014)

    Article  Google Scholar 

  21. D. Kim, B. Revaz, B.L. Zink, F. Hellman, J.J. Rhyne, J.F. Mitchell, Phys. Rev. Lett. 89, 227202-1–227202-4 (2002)

    ADS  Google Scholar 

  22. J. Fan, L. Ling, B. Hong, L. Zhang, L. Pi, Y. Zhang, Phys. Rev. B 81, 144426-1–144426-6 (2010)

    ADS  Google Scholar 

  23. T.L. Phan, Q.T. Tran, P.Q. Thanh, P.D.H. Yen, T.D. Thanh, S.C. Yu, Solid State Commun. 184, 40–46 (2014)

    Article  ADS  Google Scholar 

  24. V. Franco, R. Caballero-Flores, A. Conde, K.E. Knipling, M.A. Willard, Appl. Phys. Lett. 98, 102505-1–102505-3 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Dhahri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzidi, S., Dhahri, M., Dhahri, J. et al. Universal critical behavior in polycrystalline La0.75Ca0.25-xNaxMnO3 (x = 0.00; 0.05) samples. Eur. Phys. J. Plus 136, 23 (2021). https://doi.org/10.1140/epjp/s13360-020-00958-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00958-9

Navigation