Skip to main content
Log in

Holographic s-wave superconductors with conformal anomaly correction

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We build a holographic s-wave conductor/superconductor model and an insulator/superconductor model in the four-dimensional conformal anomaly corrected (CAC) AdS gravity. The effects of CAC parameter \(\alpha \) are studied using both numerical and analytical methods in the probe approximation. Concretely, when the CAC parameter increases, the critical temperature increases for the conductor/superconductor phase transition, while the critical chemical potential decreases for the insulator/superconductor case, which suggests that the increasing CAC parameter enhances both superconducting phase transitions. Meanwhile, below the critical temperature or beyond the critical chemical potential, the scalar hair begins to condense, and the condensed phases are found to be thermodynamically stable. The critical behaviors obtained from numerics are confirmed by our analytical analysis. In addition, the energy gap in the conductor/superconductor model decreases monotonically with the increasing CAC parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. It should be noted that the range of the CAC parameter \(\alpha \) is insufficiently rigorous. Nonetheless, the following calculation will show that the results are self-consistent from numerical and analytical methods, especially, our model satisfies the requirement in Ref. [72] that the real part of conductivity is always positive.

References

  1. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). [hep-th/9711200]

    Article  ADS  MathSciNet  Google Scholar 

  2. R.G. Cai, L. Li, L.F. Li, R.Q. Yang, Sci. China Phys. Mech. Astron. 58(6), 060401 (2015). [arXiv:1502.00437 [hep-th]]

    Article  Google Scholar 

  3. H. Liu, J. Sonner, Holographic systems far from equilibrium: a review. arXiv:1810.02367 [hep-th]

  4. S.A. Hartnoll, A. Lucas, S. Sachdev, Holographic quantum matter. arXiv:1612.07324 [hep-th]

  5. K. Landsteiner, Y. Liu, Y.W. Sun, Sci. China Phys. Mech. Astron. 63(5), 250001 (2020). [arXiv:1911.07978 [hep-th]]

    Article  ADS  Google Scholar 

  6. R.G. Cai, S. He, S.J. Wang, Y.X. Zhang, JHEP 08, 102 (2020). [arXiv:2001.11626 [hep-th]]

    Article  ADS  Google Scholar 

  7. Y.S. An, R.G. Cai, L. Li, Y. Peng, Phys. Rev. D 101(4), 046006 (2020). [arXiv:1909.12172 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  8. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Phys. Rev. Lett. 101, 031601 (2008). [arXiv:0803.3295 [hep-th]]

    Article  ADS  Google Scholar 

  9. G.T. Horowitz, M.M. Roberts, Phys. Rev. D 78, 126008 (2008). [arXiv:0810.1077 [hep-th]]

    Article  ADS  Google Scholar 

  10. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, JHEP 0812, 015 (2008). [arXiv:0810.1563 [hep-th]]

    Article  ADS  Google Scholar 

  11. K. Maeda, M. Natsuume, T. Okamura, Phys. Rev. D 81, 026002 (2010). [arXiv:0910.4475 [hep-th]]

    Article  ADS  Google Scholar 

  12. G. Siopsis, J. Therrien, JHEP 1005, 013 (2010). [arXiv:1003.4275 [hep-th]]

    Article  ADS  Google Scholar 

  13. S.S. Gubser, S.S. Pufu, JHEP 0811, 033 (2008). [arXiv:0805.2960 [hep-th]]

    Article  ADS  Google Scholar 

  14. J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen, C.-P. Yeh, Phys. Rev. D 81, 106008 (2010). [arXiv:1003.2991 [hep-th]]

    Article  ADS  Google Scholar 

  15. R.G. Cai, S. He, L. Li, L.F. Li, JHEP 1312, 036 (2013). [arXiv:1309.2098 [hep-th]]

    Article  ADS  Google Scholar 

  16. R.G. Cai, L. Li, L.F. Li, JHEP 01, 032 (2014). [arXiv:1309.4877 [hep-th]]

    Article  ADS  Google Scholar 

  17. C.P. Herzog, P.K. Kovtun, D.T. Son, Phys. Rev. D 79, 066002 (2009). [arXiv:0809.4870 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  18. P. Basu, A. Mukherjee, H.H. Shieh, Phys. Rev. D 79, 045010 (2009). [arXiv:0809.4494 [hep-th]]

    Article  ADS  Google Scholar 

  19. A. Salvio, JHEP 09, 134 (2012). [arXiv:1207.3800 [hep-th]]

    Article  ADS  Google Scholar 

  20. Y.B. Wu, J.W. Lu, C.Y. Zhang, N. Zhang, X. Zhang, Z.Q. Yang, S.Y. Wu, Phys. Lett. B 741, 138 (2015). [arXiv:1412.3689 [hep-th]]

    Article  ADS  Google Scholar 

  21. C.Y. Xia, H.B. Zeng, H.Q. Zhang, Z.Y. Nie, Y. Tian, X. Li, Phys. Rev. D 100(6), 061901 (2019). [arXiv:1904.10925 [hep-th]]

    Article  ADS  Google Scholar 

  22. R.G. Cai, L. Li, L.F. Li, Y.Q. Wang, JHEP 09, 074 (2013). [arXiv:1307.2768 [hep-th]]

    Article  ADS  Google Scholar 

  23. E. Kiritsis, L. Li, JHEP 1601, 147 (2016). [arXiv:1510.00020 [cond-mat.str-el]]

    Article  ADS  Google Scholar 

  24. Z.Y. Nie, Y.P. Hu, H. Zeng, The holographic p + ip solution failed to win the competition in dRGT massive gravity. Eur. Phys. J. C 80(11), 1015 (2020). https://doi.org/10.1140/epjc/s10052-020-08594-4

  25. Z.Y. Nie, R.G. Cai, X. Gao, L. Li, H. Zeng, Eur. Phys. J. C 75, 559 (2015). [arXiv:1501.00004 [hep-th]]

    Article  ADS  Google Scholar 

  26. Y. Ling, P. Liu, C. Niu, J.P. Wu, Z.Y. Xian, JHEP 1502, 059 (2015). [arXiv:1410.6761 [hep-th]]

    Article  ADS  Google Scholar 

  27. R.G. Cai, L. Li, Y.Q. Wang, J. Zaanen, Phys. Rev. Lett. 119(18), 181601 (2017). [arXiv:1706.01470 [hep-th]]

    Article  ADS  Google Scholar 

  28. Y. Ling, P. Liu, M.H. Wu, Holographic superconductor induced by charge density waves. arXiv:1911.10368 [hep-th]

  29. S. Cremonini, L. Li, J. Ren, Phys. Rev. D 95(4), 041901 (2017). [arXiv:1612.04385 [hep-th]]

    Article  ADS  Google Scholar 

  30. S. Cremonini, L. Li, J. Ren, JHEP 1909, 014 (2019). [arXiv:1906.02753 [hep-th]]

    Article  ADS  Google Scholar 

  31. T. Nishioka, S. Ryu, T. Takayanagi, JHEP 1003, 131 (2010). [arXiv:0911.0962 [hep-th]]

    Article  ADS  Google Scholar 

  32. R.G. Cai, H.F. Li, H.Q. Zhang, Phys. Rev. D 83, 126007 (2011). [arXiv:1103.5568 [hep-th]]

    Article  ADS  Google Scholar 

  33. H.F. Li, JHEP 1307, 135 (2013). [arXiv:1306.3071 [hep-th]]

    Article  ADS  Google Scholar 

  34. M. Montull, O. Pujolas, A. Salvio, P.J. Silva, JHEP 04, 135 (2012). [arXiv:1202.0006 [hep-th]]

    Article  ADS  Google Scholar 

  35. R.Q. Yang, H.S. Jeong, C. Niu, K.Y. Kim, JHEP 1904, 146 (2019). [arXiv:1902.07586 [hep-th]]

    Article  ADS  Google Scholar 

  36. R.G. Cai, S. He, L. Li, Y.L. Zhang, JHEP 07, 088 (2012). [arXiv:1203.6620 [hep-th]]

    Article  ADS  Google Scholar 

  37. T. Albash, C.V. Johnson, JHEP 05, 079 (2012). [arXiv:1202.2605 [hep-th]]

    Article  ADS  Google Scholar 

  38. R.G. Cai, S. He, L. Li, Y.L. Zhang, JHEP 07, 027 (2012). [arXiv:1204.5962 [hep-th]]

    Article  ADS  Google Scholar 

  39. O. Domenech, M. Montull, A. Pomarol, A. Salvio, P.J. Silva, JHEP 08, 033 (2010). [arXiv:1005.1776 [hep-th]]

    Article  ADS  Google Scholar 

  40. E.J. Brynjolfsson, U.H. Danielsson, L. Thorlacius, T. Zingg, J. Phys. A 43, 065401 (2010). [arXiv:0908.2611 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  41. Z. Fan, JHEP 1309, 048 (2013). [arXiv:1305.2000 [hep-th]]

    Article  ADS  Google Scholar 

  42. J.W. Lu, Y.B. Wu, P. Qian, Y.Y. Zhao, X. Zhang, Nucl. Phys. B 887, 112 (2014). [arXiv:1311.2699 [hep-th]]

    Article  ADS  Google Scholar 

  43. P.M. Chesler, A.M. Garcia-Garcia, H. Liu, Phys. Rev. X 5(2), 021015 (2015). [arXiv:1407.1862 [hep-th]]

    Google Scholar 

  44. H.B. Zeng, C.Y. Xia, W.H. Zurek, H.Q. Zhang, Topological defects as relics of spontaneous symmetry breaking in a holographic superconductor. arXiv:1912.08332 [hep-th]

  45. M. Natsuume, T. Okamura, Phys. Rev. D 95(10), 106009 (2017). [arXiv:1703.00933 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  46. Y. Bu, M. Fujita, S. Lin, Phys. Rev. D 101(2), 026003 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  47. R.G. Cai, Z.Y. Nie, H.Q. Zhang, Phys. Rev. D 83, 066013 (2011). [arXiv:1012.5559 [hep-th]]

    Article  ADS  Google Scholar 

  48. R.G. Cai, L. Li, L.F. Li, H.Q. Zhang, Y.L. Zhang, Phys. Rev. D 87(2), 026002 (2013). [arXiv:1209.5049 [hep-th]]

    Article  ADS  Google Scholar 

  49. X.M. Kuang, W.J. Li, Y. Ling, JHEP 1012, 069 (2010). [arXiv:1008.4066 [hep-th]]

    Article  ADS  Google Scholar 

  50. M. Mohammadi, A. Sheykhi, M.Kord Zangeneh, Eur. Phys. J. C 78(8), 654 (2018). [arXiv:1805.07377 [hep-th]]

    Article  ADS  Google Scholar 

  51. J. Cheng, Q. Pan, H. Yu, J. Jing, Eur. Phys. J. 78(3), 239 (2018). [arXiv:1803.08204 [hep-th]]

    Article  ADS  Google Scholar 

  52. Y. Lv, X. Qiao, M. Wang, Q. Pan, W.L. Qian, J. Jing, Phys. Lett. B 802, 135216 (2020). [arXiv:2001.08364 [hep-th]]

    Article  MathSciNet  Google Scholar 

  53. J.W. Lu, Y.B. Wu, B.P. Dong, H. Liao, Phys. Lett. B 785, 517 (2018)

    Article  ADS  Google Scholar 

  54. J.P. Wu, Y. Cao, X.M. Kuang, W.J. Li, Phys. Lett. B 697, 153 (2011). [arXiv:1010.1929 [hep-th]]

    Article  ADS  Google Scholar 

  55. J.P. Wu, P. Liu, Phys. Lett. B 774, 527 (2017). [arXiv:1710.07971 [hep-th]]

    Article  ADS  Google Scholar 

  56. J.W. Lu, Y.B. Wu, B.P. Dong, Y. Zhang, Eur. Phys. J. C 80(2), 114 (2020)

    Article  ADS  Google Scholar 

  57. Y. Ling, X. Zheng, Nucl. Phys. B 917, 1 (2017). [arXiv:1609.09717 [hep-th]]

    Article  ADS  Google Scholar 

  58. M. Duff, Class. Quantum Gravity 11, 1387–1404 (1994). [arXiv:hep-th/9308075 [hep-th]]

    Article  ADS  Google Scholar 

  59. S.M. Christensen, S.A. Fulling, Phys. Rev. D 15, 2088 (1977)

    Article  ADS  Google Scholar 

  60. S. Hawking, T. Hertog, H. Reall, Phys. Rev. D 63, 083504 (2001). [arXiv:hep-th/0010232 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  61. S. Nojiri, S.D. Odintsov, Phys. Lett. B 484, 119–123 (2000). [arXiv:hep-th/0004097 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  62. R.G. Cai, L.M. Cao, N. Ohta, JHEP 04, 082 (2010). [arXiv:0911.4379 [hep-th]]

    Article  ADS  Google Scholar 

  63. R.G. Cai, Phys. Lett. B 733, 183–189 (2014). [arXiv:1405.1246 [hep-th]]

    Article  ADS  Google Scholar 

  64. D. Glavan, C. Lin, Phys. Rev. Lett. 124(8), 081301 (2020). [arXiv:1905.03601 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  65. M. Gürses, T.Ç. Şişman, Eur. Phys. J. C 80(7), 647 (2020). [arXiv:2004.03390 [gr-qc]]

    Article  ADS  Google Scholar 

  66. S. Mahapatra, A note on the total action of 4D Gauss-Bonnet theory. Eur. Phys. J. C 80(10), 992 (2020). https://doi.org/10.1140/epjc/s10052-020-08568-6

  67. F.W. Shu, Vacua in novel 4D Einstein-Gauss-Bonnet Gravity: pathology and instability? Phys. Lett. B 811, 135907 (2020). https://doi.org/10.1016/j.physletb.2020.135907

  68. R.A. Hennigar, D. Kubizňák, R.B. Mann, C. Pollack, JHEP 07, 027 (2020). [arXiv:2004.09472 [gr-qc]]

    Article  ADS  Google Scholar 

  69. J. Arrechea, A. Delhom, A. Jimenez-Cano, Inconsistencies in four-dimensional Einstein-Gauss-Bonnet gravity. arXiv:2004.12998 [gr-qc]

  70. X. Qiao, L. OuYang, D. Wang, Q. Pan, J. Jing, Holographic superconductors in 4D Einstein-Gauss-Bonnet gravity. arXiv:2005.01007 [hep-th]

  71. S. Deser, A. Schwimmer, Phys. Lett. B 309, 279–284 (1993). [arXiv:hep-th/9302047 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  72. W. Witczak-Krempa, Phys. Rev. B 89(16), 161114 (2014). [arXiv:1312.3334 [cond-mat.str-el]]

    Article  ADS  Google Scholar 

  73. R. Gregory, S. Kanno, J. Soda, JHEP 10, 010 (2009). [arXiv:0907.3203 [hep-th]]

    Article  ADS  Google Scholar 

  74. Y. Brihaye, B. Hartmann, Phys. Rev. D 81, 126008 (2010). [arXiv:1003.5130 [hep-th]]

    Article  ADS  Google Scholar 

  75. Q. Pan, B. Wang, E. Papantonopoulos, J. Oliveira, A.B. Pavan, Phys. Rev. D 81, 106007 (2010). [arXiv:0912.2475 [hep-th]]

    Article  ADS  Google Scholar 

  76. A. Sheykhi, H.R. Salahi, A. Montakhab, JHEP 04, 058 (2016). [arXiv:1603.00075 [gr-qc]]

    ADS  Google Scholar 

  77. H.F. Li, R.G. Cai, H.Q. Zhang, JHEP 04, 028 (2011). [arXiv:1103.2833 [hep-th]]

    Article  ADS  Google Scholar 

  78. Q. Pan, J. Jing, B. Wang, JHEP 11, 088 (2011). [arXiv:1105.6153 [gr-qc]]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. L. Li for his helpful discussions and comments. This work is supported in part by NSFC (Nos. 11865012, 12075109, 12075143, 11647167 and 11747615), Foundation of Guizhou Educational Committee(Nos. Qianjiaohe KY Zi [2016]311 Zi), Foundation of Scientific Innovative Research Team of Education Department of Guizhou Province (QNYSKYTD2018002), Program for the Natural Science Foundation of Shanxi Province, China(Grant No.201901D111315) and the Natural Science Foundation for Young Scientists of Shanxi Province,China (Grant No.201901D211441).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Wang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, JW., Li, HF. & Wu, YB. Holographic s-wave superconductors with conformal anomaly correction. Eur. Phys. J. Plus 135, 903 (2020). https://doi.org/10.1140/epjp/s13360-020-00931-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00931-6

Navigation