Skip to main content
Log in

Develop lattice Boltzmann method and its related boundary conditions models for the benchmark oscillating walls by modifying hydrodynamic and thermal distribution functions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Preset works aim to develop the lattice Boltzmann method ability to simulate the periodic supposed problems. Hence, a two-dimensional rectangular enclosure is considered so that its top cold lid oscillates horizontally with time. The stationary sidewalls are kept insulated. It would be necessary to present an appropriate boundary condition model of LBM for the oscillating lid, based on the hydrodynamic and thermal distribution functions. The influences of various lid oscillation frequencies (Strouhal number) are investigated at different values of Richardson numbers at free, mixed and force convections states by using D2Q9 lattice. It is seen that the lid oscillation frequency effect is more significant at less amounts of Richardson number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Iwatsu, J.M. Hyun, K. Kuwahara, Mixed convection in a driven cavity with a stable vertical temperature gradient. Int. J. Heat Mass Transf. 36, 1601–1608 (1993)

    Google Scholar 

  2. S. Habchi, S. Acharya, Laminar mixed convection in a partially blocked, vertical channel. Int. J. Heat Mass Transf. 29, 1711–1722 (1986)

    Google Scholar 

  3. N.T. Nguyen, S.T. Wereley, Fundamentals and Applications of Microfluidics, Second edition, Artech house INC, Norwood, MA 02062, (2006)

  4. S. Kandlikar, S. Garimella, D. Li, S. Colin, M.R. King, Heat transfer and fluid flow in minichannels and microchannels, (2006)

  5. M. Gad-el-Hak, Flow physics in MEMS. Rev. Mec. Ind. 2, 313–341 (2001)

    Google Scholar 

  6. M. Mozaffari, A. Karimipour, A. D’Orazio, Increase lattice Boltzmann method ability to simulate slip flow regimes with dispersed CNTs nanoadditives inside. J. Therm. Anal. Calorim. 137(1), 229–243 (2019)

    Google Scholar 

  7. A. D’Orazio, A. Karimipour, A useful case study to develop lattice Boltzmann method performance: Gravity effects on slip velocity and temperature profiles of an air flow inside a microchannel under a constant heat flux boundary condition. Int. J. Heat Mass Transf. 136, 1017–1029 (2019)

    Google Scholar 

  8. A. Karimipour, A. D’Orazio, M. Goodarzi, Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nanoparticles in water through a micro flow imposed to the specified heat flux. Phys. A 509, 729–745 (2018)

    Google Scholar 

  9. M.R. Safaei, A. Karimipour, A. Abdollahi, T.K. Nguyen, The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method. Phys. A 509, 515–535 (2018)

    Google Scholar 

  10. Y.H. Qian, D. d’Humieres, P. Lallemand, Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992)

    ADS  MATH  Google Scholar 

  11. Z. Tian, S. Chen, C.G. Zheng, Lattice Boltzmann simulation of gaseous finite-Kundsen microflows. Int. J. Mod. Phys. C 21, 769–783 (2010)

    ADS  MATH  Google Scholar 

  12. M. Goodarzi, I. Tlili, H. Moria, E.M. Cardoso, T.A. Alkanhal, A.E. Anqi, M.R. Safaei, Boiling flow of graphene nanoplatelets nano-suspension on a small copper disk. Powder Technol. 377, 10–19 (2020)

    Google Scholar 

  13. I. Tlili, H.A. Nabwey, S.P. Samrat, N. Sandeep, 3D MHD nonlinear radiative flow of CuO–MgO/methanol hybrid nanofluid beyond an irregular dimension surface with slip effect. Sci. Rep. 10(1), 1–14 (2020)

    Google Scholar 

  14. I. Tlili, H.A. Nabwey, G.P. Ashwinkumar, N. Sandeep, 3-D magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effect. Sci. Rep. 10(1), 1–13 (2020)

    Article  Google Scholar 

  15. S.U. Khan, I. Tlili, Significance of activation energy and effective Prandtl number in accelerated flow of Jeffrey nanoparticles with gyrotactic microorganisms. J. Energy Resour. Technol. 142(11) (2020)

  16. A. D’Orazio, M. Corcione, G.P. Celata, Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition. Int. J. Therm. Sci. 43, 575–586 (2004)

    Article  Google Scholar 

  17. C. Qi, J. Tang, G. Wang, Natural convection of composite nanofluids based on a two-phase lattice Boltzmann model. J. Therm. Anal. Calorim., pp. 1–11 (2020)

  18. C. Qi, G. Wang, L. Yang, Y. Wan, Z. Rao, Two-phase lattice Boltzmann simulation of the effects of base fluid and nanoparticle size on natural convection heat transfer of nanofluid. Int. J. Heat Mass Transf. 105, 664–672 (2017)

    Article  Google Scholar 

  19. C. Qi, L. Yang, G. Wang, Numerical study on convective heat transfer enhancement in horizontal rectangle enclosures filled with Ag–Ga nanofluid. Nanoscale Res. Lett. 12(1), 326 (2017)

    Article  ADS  Google Scholar 

  20. C. Qi, L. Liang, Z. Rao, Study on the flow and heat transfer of liquid metal based nanofluid with different nanoparticle radiuses using two-phase lattice Boltzmann method. Int. J. Heat Mass Transf. 94, 316–326 (2016)

    Google Scholar 

  21. A. Karimipour, M.H. Esfe, M.R. Safaei, D.T. Semiromi, S. Jafari, S.N. Kazi, Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Phys. A 402, 150–168 (2014)

    Google Scholar 

  22. A. Karimipour, A.H. Nezhad, A. D’Orazio, M.H. Esfe, M.R. Safaei, E. Shirani, Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. Eur. J. Mech.-B/Fluids 49, 89–99 (2015)

    ADS  Google Scholar 

  23. Y. Xuan, Q. Li, M. Ye, Investigations of convective heat transfer in ferrofluid microflows using lattice-Boltzmann approach. Int. J. Therm. Sci. 46, 105–111 (2007)

    Google Scholar 

  24. X. Nie, G.D. Doolen, S. Chen, Lattice-Boltzmann simulation of fluid flows in MEMS. J. Stat. Phys. 107, 279–289 (2002)

    MATH  Google Scholar 

  25. S. Chen, Z. Tian, Entropy generation analysis of thermal micro-Couette flows in slip regime. Int. J. Therm. Sci. 49, 2211–2221 (2010)

    Google Scholar 

  26. S. Chen, Z. Tian, Simulation of thermal micro-flow using lattice Boltzmann method with Langmuir slip model. Int. J. Heat Fluid Flow 31, 227–235 (2010)

    Google Scholar 

  27. S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  28. X. He, S. Chen, G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 146, 282–300 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  29. P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision process in gases. I. Small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511–522 (1954)

    ADS  MATH  Google Scholar 

  30. Y. Kazemian, J.A. Esfahani, S. Rashidi, Enhancing the convergence speed of numerical solution using the flow rate control in a novel lattice Boltzmann method. Eur. Phys. J. Plus 133(12), 555 (2018)

    Google Scholar 

  31. M. Ezzatabadipour, H. Zahedi, Simulation of a fluid flow and investigation of a permeability-porosity relationship in porous media with random circular obstacles using the curved boundary lattice Boltzmann method. Eur. Phys. J. Plus 133(11), 464 (2018)

    Google Scholar 

  32. Z. Li, M. Sheikholeslami, A.S. Mittal, A. Shafee, R.U. Haq, Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice Boltzmann method. Eur. Phys. J. Plus 134(1), 1–10 (2019)

    Google Scholar 

  33. S.S. Noori, M.T. Rahni, S.S. Taleghani, Multiple-relaxation time color-gradient lattice Boltzmann model for simulating contact angle in two-phase flows with high density ratio. Eur. Phys. J. Plus 134(8), 399 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhosein Mosavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Orazio, A., Karimipour, A. & Mosavi, A. Develop lattice Boltzmann method and its related boundary conditions models for the benchmark oscillating walls by modifying hydrodynamic and thermal distribution functions. Eur. Phys. J. Plus 135, 915 (2020). https://doi.org/10.1140/epjp/s13360-020-00925-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00925-4

Navigation