Skip to main content
Log in

Different roles of quantum interference in a quantum dot photocell with two intermediate bands

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

It is generally believed that quantum interference can improve the transport of photo-generated carriers in a photocell, thereby improve the photoelectric conversion efficiency. In this work, we explicitly explore different roles of quantum interferences in the photoelectric conversion efficiency in a quantum dot (QD) photocell with two intermediate bands. The increasing transition rates from different charge transport channels bring out first increasing, then decreasing, and then monotonically decreasing photoelectric conversion efficiencies. And the photoelectric conversions increase with quantum coherence generated by the upper transition rates owing to their robust quantum interference. However, the conversion efficiency decreases with the quantum interference induced by two lower-transition rates due to the shortened population lifetime in the intermediate bands. These results provide insight into different roles of quantum interferences in photoelectric conversion efficiency, and may provide some artificial strategies to achieve efficient photoelectric conversion via the adjusted quantum interferences in a QD photocell with multi-intermediate bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  ADS  Google Scholar 

  2. R.J. Handy, Theoretical analysis of the series resistance of a solar cell. Solid State Electron. 10(8), 765–775 (1967)

    Article  ADS  Google Scholar 

  3. M. Saam, E. Ayyildiz, A. Gumus, A. Turut, H. Efeou, S. Tuzemen, Series resistance calculation for the metal-insulator-semiconductor schottky barrier diodes. Appl. Phys. A 62(3), 269–273 (1996)

    Article  ADS  Google Scholar 

  4. G.S. Kar, S. Maikap, S.K. Banerjee, S.K. Ray, Series resistance and mobility degradation factor in c-incorporated sige heterostructure p-type metal-oxide semiconductor field-effect transistors. Semicond. Sci. Technol. 17(9), 938 (2015)

    Article  ADS  Google Scholar 

  5. S. K. Tobler, P. Bennett. A shadow-edge contact for epitaxial nanostructures on silicon. In APS Four Corners Section Meeting Abstracts, (October) (2009)

  6. Y. Kajiyama, K. Joseph, K. Kajiyama, S. Kudo, H. Aziz, Recent progress on the vacuum deposition of oleds with feature sizes 20 m using a contact shadow mask patterned in-situ by laser ablation. Sid Symp. Dig. Tech. Papers 43(1), 1544–1547 (2012)

    Article  Google Scholar 

  7. A. Luque, A. Mellor, I. Ramiro, E. Antoln, I. Tobas, A. Mart, Interband absorption of photons by extended states in intermediate band solar cells. Sol. Energy Mater. Sol. Cells 115(10), 138–144 (2013)

    Article  Google Scholar 

  8. L. Tian, M. Dagenais, Non-resonant below-bandgap two-photon absorption in quantum dot solar cells. Appl. Phys. Lett. 106(9), 171101 (2015)

    Article  ADS  Google Scholar 

  9. H. Kum, Y.S. Dai, T. Aihara, M.A. Slocum, T. Tayagaki, A. Fedorenko, S.J. Polly, Z. Bittner, T. Sugaya, S.M. Hubbard, Two-step photon absorption in InP/InGaP quantum dot solar cells. Appl. Phys. Lett. 113(4), 043902 (2018)

    Article  ADS  Google Scholar 

  10. B.S. Richards, Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006)

    Article  Google Scholar 

  11. G. Conibeer, R. Patterson, L. Huang, J.F. Guillemoles, D. Konig, S. Shrestha, M.A. Green, Modelling of hot carrier solar cell absorbers. Sol. Energy Mater. Sol. Cells 94(9), 1516–1521 (2010)

    Article  Google Scholar 

  12. L. Hirst, M. Fuhrer, D. J. Farrell, A. Lebris, J. F. Guillemoles, M. J. Y. Tayebjee, R. Clady, T. W. Schmidt, Y. P. Wang, M. Sugiyama. Hot carrier dynamics in InGaAs/GaAsP quantum well solar cells. In Photovoltaic Specialists Conference, (2011)

  13. G. Conibeer, S. Shrestha, S. J. Huang, R. Patterson, P. Aliberti, H. Xia, Y. Feng, N. Gupta, S. Smyth, Y. Liao. Hot carrier solar cell absorbers: Superstructures, materials and mechanisms for slowed carrier cooling. In Photovoltaic Specialists Conference, (2012)

  14. F.R. Graziani, The quantum radiative transfer equation: quantum damping, kirchoff’s law, and the approach to equilibrium of photons in a quantum plasma. J. Quant. Spectrosc. Radiat. Transfer 83(34), 711–733 (2004)

    Article  ADS  Google Scholar 

  15. Y. Yi, A. Massuda, C. Roquescarmes, S.E. Kooi, T. Christensen, S.G. Johnson, J.D. Joannopoulos, O.D. Miller, I. Kaminer, M. Soljai, Maximal spontaneous photon emission and energy loss from free electrons. Nature Physics (2018)

  16. C.H. Henry, C.H. Henry, Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51(8), 4494–4500 (1980)

    Article  ADS  Google Scholar 

  17. V.I. Klimov, High-efficiency carrier multiplication in semiconductor nanocrystals: Implications for solar energy conversion traditional solar cell: Ultimate efficiency. Phys. Rev. Lett. 92(18), 186601 (2004)

    Article  ADS  Google Scholar 

  18. A. Luque, Will we exceed 50\(\%\) efficiency in photovoltaics ? J. Appl. Phys. 110(3), 031301 (2011)

    Article  ADS  Google Scholar 

  19. A. Luque, A. Mart, C. Stanley, Understanding intermediate-band solar cells. Nat. Photonics 6(3), 146–152 (2012)

    Article  ADS  Google Scholar 

  20. A. Creti, V. Tasco, A. Cola, G. Montagna, I. Tarantini, A. Salhi, A. Al-Muhanna, A. Passaseo, M. Lomascolo, Role of charge separation on two-step two photon absorption in InAs/GaAs quantum dot intermediate band solar cells. Appl. Phys. Lett. 108(6), 063901 (2016)

    Article  ADS  Google Scholar 

  21. N.S. Beattie, P. See, G. Zoppi, P. Ushasree, M. Duchamp, I. Farrer, D.A. Ritchie, S. Tomic, Quantum engineering of InAs/GaAs quantum dot based intermediate band solar cells. Acs Photonics 4(11), 2745–2750 (2017)

    Article  Google Scholar 

  22. O.E. Semonin, J.M. Luther, C. Sukgeun, H.Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100\(\%\) via meg in a quantum dot solar cell. Science 334(6062), 1530 (2011)

    Article  ADS  Google Scholar 

  23. M.O. Scully, Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. Phys. Rev. Lett. 104(20), 207701 (2010)

    Article  ADS  Google Scholar 

  24. A.A. Svidzinsky, K.E. Dorfman, M.O. Scully, Enhancing photovoltaic power by fano-induced coherence. Phys. Rev. A 84(5), 6140–6145 (2011)

    Article  Google Scholar 

  25. S.C. Zhao, J.Y. Chen, Enhanced quantum yields and efficiency in a quantum dot photocell modeled by a multi-level system. New J. Phys. 21(10), 103015 (2019)

    Article  ADS  Google Scholar 

  26. M. Daryani, A. Rostami, G. Darvish, M.K.M. Farshi, High efficiency solar cells using quantum interferences. Opt. Quant. Electron. 49(7), 255 (2017)

    Article  Google Scholar 

  27. Y. Kayanuma, Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 38, 9797–9805 (1988)

    Article  ADS  Google Scholar 

  28. S. Ithurria, M.D. Tessier, B. Mahler, R.P.S.M. Lobo, B. Dubertret, A.L. Efros, Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10(12), 936–41 (2011)

    Article  ADS  Google Scholar 

  29. A.W. Achtstein, A. Schliwa, A. Prudnikau, M. Hardzei, M.V. Artemyev, C. Thomsen, U. Woggon, Electronic structure and exciton-phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett. 12(6), 3151–3157 (2012)

    Article  ADS  Google Scholar 

  30. P. Tighineanu, R.S. Daveau, T.B. Lehmann, H.E. Beere, Da A Ritchie, P. Lodahl, S. Stobbe, Single-photon superradiance from a quantum dot. Phys. Rev. Lett. 116(16), 163604 (2016)

    Article  ADS  Google Scholar 

  31. M. Yoshida, N.J. Ekins-Daukes, D.J. Farrell, C.C. Phillips, Photon ratchet intermediate band solar cells. Appl. Phys. Lett. 100(26), 510–135 (2012)

    Article  Google Scholar 

  32. Konstantin E. Dorfman, Anatoly A. Svidzinsky, Marlan O. Scully, Increasing photovoltaic power by noise induced coherence between intermediate band states. Coherent Opt. Phenom. 1, 42–49 (2013)

    ADS  Google Scholar 

  33. S.C. Zhao, Q.X. Wu, High quantum yields generated by a multi-band quantum dot photocell. Superlattices Microstruct. 137, 106329 (2020)

    Article  Google Scholar 

  34. V. Popescu, G. Bester, M.C. Hanna, A.G. Norman, A. Zunger, Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In, Ga)As/Ga(As, P) quantum dot solar cells. Phys. Rev. B 78(78), 2599–2604 (2008)

    Google Scholar 

Download references

Acknowledgements

We thank the financial supports from the National Natural Science Foundation of China (Grant Nos. 62065009 and 61565008), and Yunnan Fundamental Research Projects, China (Grant No. 2016FB009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-Cai Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, SC., Chen, JY. & Li, X. Different roles of quantum interference in a quantum dot photocell with two intermediate bands. Eur. Phys. J. Plus 135, 892 (2020). https://doi.org/10.1140/epjp/s13360-020-00913-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00913-8

Navigation