Skip to main content
Log in

Mode coupling and enhanced Kerr nonlinearity with multiple Rayleigh scatterers containing a single dipole quantum emitter surrounding a whispering-gallery microcavity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We theoretically investigate a cavity quantum electrodynamics system in which a high-Q whispering-gallery-mode microcavity interacts simultaneously with a dipole quantum emitter and multiple Rayleigh scatterers. The scatterers are used to induce and to control mode coupling between counterclockwise and clockwise propagating light fields, which interact with the dipole quantum emitter. We study the effect of mode coupling on the linear and nonlinear output characteristics of coherent photon transport in a tapered fiber waveguide coupling the microcavity. It is found that enhanced optical Kerr nonlinearity with high linear transmission rate can be achieved efficiently when the system parameters are tuned properly. The present results illustrate the potential to utilize mode coupling for enhancing optical Kerr nonlinearities and controlling the transmission of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.M. Spillane, T.J. Kippenberg, K.J. Vahala, Nature (London) 415, 621 (2002)

    Article  ADS  Google Scholar 

  2. F. Vollmer, S. Arnold, D. Keng, Proc. Nat. Acad. Sci. 105, 20701 (2008)

    Article  ADS  Google Scholar 

  3. J. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L.N. He, D.R. Chen, L. Yang, Nat. Photon. 4, 46 (2010)

    Article  ADS  Google Scholar 

  4. Y.-F. Xiao, C.L. Zou, B.B. Li, Y. Li, C.H. Dong, Z.F. Han, Q. Gong, Phys. Rev. Lett. 105, 153902 (2010)

    Article  ADS  Google Scholar 

  5. W. Chen, S.K. Özdemir, G. Zhao, J. Wiersig, L. Yang, Nature (London) 548, 192 (2017)

    Article  ADS  Google Scholar 

  6. T. Aoki, B. Dayan, E. Wilcut, W.P. Bowen, A.S. Parkins, T.J. Kippenberg, K.J. Vahala, H.J. Kimble, Nature (London) 443, 671 (2006)

    Article  ADS  Google Scholar 

  7. B. Dayan, A.S. Parkins, T. Aoki, E.P. Ostby, K.J. Vahala, H.J. Kimble, Science 319, 1062 (2008)

    Article  ADS  Google Scholar 

  8. Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, Q. Gong, Phys. Rev. A 84, 011805(R) (2011)

    Article  ADS  Google Scholar 

  9. E.H.S. Sousa, J.A. Roversi, Eur. Phys. J. Plus 134, 607 (2019)

    Article  Google Scholar 

  10. R. Soref, Nat. Photon. 4, 495 (2010)

    Article  ADS  Google Scholar 

  11. L. Li, W.-X. Yang, Y. Zhang, T. Shui, A.-X. Chen, Z. Jiang, Phys. Rev. A 98, 063840 (2018)

    Article  ADS  Google Scholar 

  12. L. Li, W.-X. Yang, T. Shui, X. Wang, IEEE Photon. J. 12, 4500708 (2020)

    Google Scholar 

  13. S. Parkins, T. Aoki, Phys. Rev. A 90, 053822 (2014)

    Article  ADS  Google Scholar 

  14. J. Li, S. Zhang, R. Yu, D. Zhang, Y. Wu, Phys. Rev. A 90, 053832 (2014)

    Article  ADS  Google Scholar 

  15. Y.-L. Liu, G.-Z. Wang, Y.-X. Liu, F. Nori, Phys. Rev. A 93, 013856 (2016)

    Article  ADS  Google Scholar 

  16. C. Monroe, Nature (London) 416, 238 (2002)

    Article  ADS  Google Scholar 

  17. L.M. Duan, H.J. Kimble, Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  18. C.Y. Hu, W.J. Munro, J.G. Rarity, Phys. Rev. B 78, 125318 (2008)

    Article  ADS  Google Scholar 

  19. Y.-S. Park, A.K. Cook, H. Wang, Nano Lett. 6, 2075 (2006)

    Article  ADS  Google Scholar 

  20. A.S. Sørensen, K. Mølmer, Phys. Rev. Lett. 91, 097905 (2003)

    Article  ADS  Google Scholar 

  21. E. Waks, J. Vuckovic, Phys. Rev. Lett. 96, 153601 (2006)

    Article  ADS  Google Scholar 

  22. E. Waks, J. Vuckovic, Phys. Rev. A 73, 041803(R) (2006)

    Article  ADS  Google Scholar 

  23. J. Li, X. Zhan, C. Ding, D. Zhang, Y. Wu, Phys. Rev. A 92, 043830 (2015)

    Article  ADS  Google Scholar 

  24. X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. Gong, Phys. Rev. A 83, 023803 (2011)

    Article  ADS  Google Scholar 

  25. Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, Y.-F. Xiao, Phys. Rev. A 90, 043847 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant No. 11174100.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengang Shi or Xiongwen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Chen, X. & Song, K. Mode coupling and enhanced Kerr nonlinearity with multiple Rayleigh scatterers containing a single dipole quantum emitter surrounding a whispering-gallery microcavity. Eur. Phys. J. Plus 135, 888 (2020). https://doi.org/10.1140/epjp/s13360-020-00886-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00886-8

Navigation