Skip to main content

Advertisement

Log in

A simplified climate model and maximum entropy production

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A simplified climate model based on maximum entropy production, described by a variational principle, is revisited and an analytical solution to its Euler–Lagrange equation is found. Mindful of controversy about maximum or minimum entropy production in open thermodynamical systems, we show that the solution extremizing the action integral corresponds to a maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Friction, however, does not coincide with entropy production rate.

  2. The radiative budget is usually non-local, i.e., a functional of the vertical temperature profile, even in simple models when several layers of atmosphere are considered.

  3. In the end, Ref. [36] assumes \(I(\vartheta )= \beta - \alpha \sin ^2 \vartheta \), with \(\alpha \) and \(\beta \) constants.

References

  1. G. Paltridge, Global dynamics and climate-a system of minimum entropy exchange. Quart. J. Roy. Meteorol. Soc. 101, 475–484 (1975)

    Article  ADS  Google Scholar 

  2. R. Goody, Maximum entropy production in climate theory. J. Atmos. Sci. 64, 2735–2739 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. K. Caldeira, The maximum entropy principle: a critical discussion. Clim. Change 85, 267–269 (2007)

    Article  ADS  Google Scholar 

  4. C. Nicolis, G. Nicolis, Stability, complexity and the maximum dissipation conjecture. Quart. J. Roy. Meteorol. Soc. 136, 1161–1169 (2010)

    Article  ADS  Google Scholar 

  5. G. Paltridge, Thermodynamic dissipation and the global climate system. Quart. J. Roy. Meteorol. Soc. 107, 531–547 (1981)

    Article  ADS  Google Scholar 

  6. H. Grassl, The climate at the maximum-entropy production by meridional atmospheric and oceanic heat fluxes. Quart. J. Roy. Meteorol. Soc. 107, 153–166 (1981)

    Article  ADS  Google Scholar 

  7. A. Noda, T. Tokioka, Climates at minima of the entropy exchange rate. J. Meteorol. Soc. Jpn. 61, 894–908 (1983)

    Article  Google Scholar 

  8. R. Lorenz, J. Lunine, P. Withers, C. McKay, Titan, Mars and Earth: Entropy production by latitudinal heat transport. Geophys. Res. Lett. 28, 415–418 (2001)

    Article  ADS  Google Scholar 

  9. T. Pujol, J. Fort, States of maximum entropy production in a one-dimensional vertical model with convective adjustments. Tellus A 54, 363–369 (2002)

    ADS  Google Scholar 

  10. T. Pujol, Eddy heat diffusivity at maximum dissipation in a radiative-convective one-dimensional climate model. J. Meteorol. Soc. Jpn. 81, 305–315 (2003)

    Article  Google Scholar 

  11. A. Kleidon, Beyond Gaia: thermodynamic of life and earth system functioning. Clim. Change 66, 271–319 (2004)

    Article  Google Scholar 

  12. A. Kleidon, Nonequilibrium thermodynamics and maximum entropy production in the earth system. Naturwissenschaften 96, 653–677 (2009)

    Article  ADS  Google Scholar 

  13. A. Kleidon, A basic introduction to the thermodynamics of the earth system far from equilibrium and maximum entropy production. Philos. T. Roy. Soc. B 365, 1303–1315 (2010)

    Article  Google Scholar 

  14. T. Jupp, P. Cox, MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics. Philos. T. Roy. Soc. B 365, 1355–1365 (2010)

    Article  Google Scholar 

  15. C. Herbert, D. Paillard, B. Dubrulle, Entropy production and multiple equilibria: the case of the ice-albedo feedback. Earth Syst. Dyn. 2, 13–23 (2011)

    Article  ADS  Google Scholar 

  16. S.D. Mobbs, Extremal principles for global climate models. Quart. J. Roy. Met. Soc. 108, 535–550 (1982)

    Article  ADS  Google Scholar 

  17. A. Kleidon, K. Fraedrich, T. Kunz, F. Lunkeit, The atmospheric circulation and the states of maximum entropy production. Geophys. Res. Lett. 30, 2223 (2003)

    Article  ADS  Google Scholar 

  18. A. Kleidon, K. Fraedrich, E. Kirk, F. Lunkeit, Maximum entropy production and the strenght of boundary layer exchange in an atmospheric general circulation model. Geophys. Res. Lett. 33, L08709 (2006)

    Article  Google Scholar 

  19. T. Kunz, K. Fraedrich, E. Kirk, Optimisation of simplified GCMS using circulation indices and maximum entropy production. Clim. Dyn. 30, 803–813 (2008)

    Article  Google Scholar 

  20. S. Pascale, J. Gregory, M. Ambaum, R. Tailleux, A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM. Clim. Dyn. 38, 1211–1227 (2012)

    Article  Google Scholar 

  21. R.C. Dewar, Maximum entropy production and the fluctuation theorem. J. Phys. A 38, L371–L381 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. G. Grinstein, R. Linsker, Comments on a derivation and application of the maximum entropy production principle. J. Phys. A 40, 9717–9720 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. V. Labarre, private communication (2020)

  24. J. Li, On the extreme of internal entropy production. J. Phys. A: Math. Theor. 42, 035002 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Larson et al., Equilibrium beach profiles under breaking and non-breaking waves. Coast. Eng. 36, 59 (1999)

    Article  Google Scholar 

  26. S.A. Jenkins, D.L. Inman, Thermodynamic solutions for equilibrium beach profiles. J. Geophys. Res. Oceans 111, C02003 (2006)

    Article  ADS  Google Scholar 

  27. S. Maldonado, Do beach profiles under non-breaking waves minimize energy dissipation? J. Geophys. Res. Oceans 125, e2019JC015876 (2020)

    Article  ADS  Google Scholar 

  28. S. Maldonado, M. Uchasara, On the thermodynamics-based equilibrium beach profile derived by Jenkins and Inman (2006). arXiv:1908.07825 [physics.geo-ph] (2019)

  29. V. Faraoni, On the extremization of wave energy dissipation rates in equilibrium beach profiles. J. Oceanogr. (2020). https://doi.org/10.1007/s10872-020-00556-4

    Article  Google Scholar 

  30. V. Faraoni, Maximizing friction in the erosion of glacial valleys. J. Glaciol. (2020). https://doi.org/10.1017/jog.2020.47

    Article  Google Scholar 

  31. J.M. Harbor, A discussion of Hirano and Aniya’s (1988, 1989) explanation of glacial-valley cross profile development. Earth Surf. Process. Landf. 15, 369–377 (1990)

    Article  ADS  Google Scholar 

  32. M. Hirano, M. Aniya, A rational explanation of cross-profile morphology for glacial valleys and of glacial valley development. Earth Surf. Process. Landf. 13, 707–716 (1988)

    Article  ADS  Google Scholar 

  33. M. Hirano, M. Aniya, A reply to ‘a discussion of Hirano and Aniya’s (1988, 1989) explanation of glacial-valley cross profile development’ by Jonathan M. Harbor. Earth Surf. Process. Landf. 15, 379–381 (1990)

    Article  ADS  Google Scholar 

  34. M. Hirano, M. Aniya, Response to Morgan’s comment. Earth Surf. Process. Landf. 30, 515 (2005)

    Article  ADS  Google Scholar 

  35. F. Morgan, A note on cross-profile morphology for glacial valleys. Earth Surf. Process. Landf. 30, 513–514 (2005)

    Article  ADS  Google Scholar 

  36. S. Murakami, A. Kitoh, Euler–Lagrange equation of the most simple 1-d climate model based on the maximum entropy production hypothesis. Quart. J. Roy. Meteorol. Soc. 131, 1529–1538 (1953)

    Article  ADS  Google Scholar 

  37. D.M. O’Brien, G.L. Stephens, Entropy and climate. II: simple models. Quart. J. Roy. Meteorol. Soc. 121, 1773–1796 (1995)

    Article  ADS  Google Scholar 

  38. C. Rodgers, Comments on Paltridge’s minimum entropy exchange principle. Quart. J. Roy. Meteorol. Soc. 102, 455–457 (1976)

    ADS  Google Scholar 

  39. H.J. Weber, G.B. Arfken, Essential Mathematical Methods for Physicists (Elsevier/Academic Press, Amsterdam, 2004)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank a referee for suggestions leading to improvements in the manuscript. This work is supported by the Natural Sciences and Engineering Research Council of Canada (Grant No. 2016-03803) and by Bishop’s University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Faraoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraoni, V. A simplified climate model and maximum entropy production. Eur. Phys. J. Plus 135, 868 (2020). https://doi.org/10.1140/epjp/s13360-020-00879-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00879-7

Navigation